Merge pull request #448 from MichaelDvP/v2

V2 sensor fix esp32
This commit is contained in:
Proddy
2020-08-03 10:40:47 +02:00
committed by GitHub
5 changed files with 74 additions and 28 deletions

View File

@@ -161,7 +161,11 @@ void OneWire::begin(uint8_t pin) {
//
// Returns 1 if a device asserted a presence pulse, 0 otherwise.
//
#ifdef ARDUINO_ARCH_ESP32
uint8_t IRAM_ATTR OneWire::reset(void) {
#else
uint8_t OneWire::reset(void) {
#endif
IO_REG_TYPE mask IO_REG_MASK_ATTR = bitmask;
volatile IO_REG_TYPE * reg IO_REG_BASE_ATTR = baseReg;
uint8_t r;
@@ -195,7 +199,11 @@ uint8_t OneWire::reset(void) {
// Write a bit. Port and bit is used to cut lookup time and provide
// more certain timing.
//
#ifdef ARDUINO_ARCH_ESP32
void IRAM_ATTR OneWire::write_bit(uint8_t v) {
#else
void OneWire::write_bit(uint8_t v) {
#endif
IO_REG_TYPE mask IO_REG_MASK_ATTR = bitmask;
volatile IO_REG_TYPE * reg IO_REG_BASE_ATTR = baseReg;
@@ -222,7 +230,11 @@ void OneWire::write_bit(uint8_t v) {
// Read a bit. Port and bit is used to cut lookup time and provide
// more certain timing.
//
#ifdef ARDUINO_ARCH_ESP32
uint8_t IRAM_ATTR OneWire::read_bit(void) {
#else
uint8_t OneWire::read_bit(void) {
#endif
IO_REG_TYPE mask IO_REG_MASK_ATTR = bitmask;
volatile IO_REG_TYPE * reg IO_REG_BASE_ATTR = baseReg;
uint8_t r;
@@ -473,6 +485,7 @@ bool OneWire::search(uint8_t * newAddr, bool search_mode /* = true */) {
for (int i = 0; i < 8; i++)
newAddr[i] = ROM_NO[i];
}
// depower(); // https://github.com/PaulStoffregen/OneWire/pull/80
return search_result;
}

View File

@@ -78,7 +78,11 @@ class OneWire {
// Perform a 1-Wire reset cycle. Returns 1 if a device responds
// with a presence pulse. Returns 0 if there is no device or the
// bus is shorted or otherwise held low for more than 250uS
#ifdef ARDUINO_ARCH_ESP32
uint8_t IRAM_ATTR reset(void);
#else
uint8_t reset(void);
#endif
// Issue a 1-Wire rom select command, you do the reset first.
void select(const uint8_t rom[8]);
@@ -101,11 +105,18 @@ class OneWire {
// Write a bit. The bus is always left powered at the end, see
// note in write() about that.
void write_bit(uint8_t v);
#ifdef ARDUINO_ARCH_ESP32
void IRAM_ATTR write_bit(uint8_t v);
#else
void write_bit(uint8_t v);
#endif
// Read a bit.
#ifdef ARDUINO_ARCH_ESP32
uint8_t IRAM_ATTR read_bit(void);
#else
uint8_t read_bit(void);
#endif
// Stop forcing power onto the bus. You only need to do this if
// you used the 'power' flag to write() or used a write_bit() call
// and aren't about to do another read or write. You would rather

View File

@@ -141,8 +141,7 @@ Thermostat::Thermostat(uint8_t device_type, uint8_t device_id, uint8_t product_i
// if we're on auto mode, register this thermostat if it has a device id of 0x10 or 0x17
// or if its the master thermostat we defined
// see https://github.com/proddy/EMS-ESP/issues/362#issuecomment-629628161
if (((num_devices == 1) && (actual_master_thermostat == EMSESP_DEFAULT_MASTER_THERMOSTAT) && ((device_id == 0x10) || (device_id == 0x17)))
|| (master_thermostat == device_id)) {
if (((num_devices == 1) && (actual_master_thermostat == EMSESP_DEFAULT_MASTER_THERMOSTAT)) || (master_thermostat == device_id)) {
EMSESP::actual_master_thermostat(device_id);
LOG_DEBUG(F("Registering new thermostat with device ID 0x%02X (as master)"), device_id);
init_mqtt();
@@ -427,8 +426,6 @@ void Thermostat::thermostat_cmd(const char * message) {
}
return;
}
// thermostat mode changes
if (strcmp(command, "mode") == 0) {
std::string mode = doc["data"];
if (mode.empty()) {
@@ -437,7 +434,6 @@ void Thermostat::thermostat_cmd(const char * message) {
set_mode(mode, hc_num);
return;
}
if (strcmp(command, "nighttemp") == 0) {
float f = doc["data"];
if (f) {
@@ -445,7 +441,6 @@ void Thermostat::thermostat_cmd(const char * message) {
}
return;
}
if (strcmp(command, "daytemp") == 0) {
float f = doc["data"];
if (f) {
@@ -453,7 +448,6 @@ void Thermostat::thermostat_cmd(const char * message) {
}
return;
}
if (strcmp(command, "holidaytemp") == 0) {
float f = doc["data"];
if (f) {
@@ -461,7 +455,6 @@ void Thermostat::thermostat_cmd(const char * message) {
}
return;
}
if (strcmp(command, "ecotemp") == 0) {
float f = doc["data"];
if (f) {
@@ -469,7 +462,6 @@ void Thermostat::thermostat_cmd(const char * message) {
}
return;
}
if (strcmp(command, "heattemp") == 0) {
float f = doc["data"];
if (f) {
@@ -477,7 +469,6 @@ void Thermostat::thermostat_cmd(const char * message) {
}
return;
}
if (strcmp(command, "nofrosttemp") == 0) {
float f = doc["data"];
if (f) {
@@ -485,7 +476,6 @@ void Thermostat::thermostat_cmd(const char * message) {
}
return;
}
if (strcmp(command, "summertemp") == 0) {
float f = doc["data"];
if (f) {
@@ -493,7 +483,6 @@ void Thermostat::thermostat_cmd(const char * message) {
}
return;
}
if (strcmp(command, "designtemp") == 0) {
float f = doc["data"];
if (f) {
@@ -501,7 +490,6 @@ void Thermostat::thermostat_cmd(const char * message) {
}
return;
}
if (strcmp(command, "offsettemp") == 0) {
float f = doc["data"];
if (f) {
@@ -509,6 +497,40 @@ void Thermostat::thermostat_cmd(const char * message) {
}
return;
}
if (strcmp(command, "remotetemp") == 0) {
float f = doc["data"];
if (f > 100 || f < 0) {
Roomctrl::set_remotetemp(hc_num - 1, EMS_VALUE_SHORT_NOTSET);
} else {
Roomctrl::set_remotetemp(hc_num - 1, (int16_t)(f * 10));
}
return;
}
if (strcmp(command, "control") == 0) {
uint8_t ctrl = doc["data"];
set_control(ctrl, hc_num);
return;
}
if (strcmp(command, "pause") == 0) {
uint8_t p = doc["data"];
set_pause(p, hc_num);
return;
}
if (strcmp(command, "party") == 0) {
uint8_t p = doc["data"];
set_party(p, hc_num);
return;
}
if (strcmp(command, "holiday") == 0) {
std::string holiday = doc["data"];
set_holiday(holiday.c_str(), hc_num);
return;
}
if (strcmp(command, "date") == 0) {
std::string date = doc["data"];
set_datetime(date.c_str());
return;
}
}
void Thermostat::thermostat_cmd_temp(const char * message) {

View File

@@ -72,7 +72,6 @@ void Sensors::loop() {
YIELD;
bus_.skip();
bus_.write(CMD_CONVERT_TEMP);
state_ = State::READING;
} else {
// no sensors found
@@ -86,20 +85,15 @@ void Sensors::loop() {
// LOG_DEBUG(F("Scanning for sensors")); // uncomment for debug
bus_.reset_search();
found_.clear();
state_ = State::SCANNING;
last_activity_ = time_now;
state_ = State::SCANNING;
} else if (time_now - last_activity_ > READ_TIMEOUT_MS) {
LOG_ERROR(F("Sensor read timeout"));
state_ = State::IDLE;
last_activity_ = time_now;
state_ = State::IDLE;
}
} else if (state_ == State::SCANNING) {
if (time_now - last_activity_ > SCAN_TIMEOUT_MS) {
LOG_ERROR(F("Sensor scan timeout"));
state_ = State::IDLE;
last_activity_ = time_now;
state_ = State::IDLE;
} else {
uint8_t addr[ADDR_LEN] = {0};
@@ -133,11 +127,15 @@ void Sensors::loop() {
}
} else {
bus_.depower();
devices_ = std::move(found_);
if ((found_.size() >= devices_.size()) || (retrycnt_ > 5)) {
devices_ = std::move(found_);
retrycnt_ = 0;
} else {
retrycnt_++;
}
found_.clear();
// LOG_DEBUG(F("Found %zu sensor(s). Adding them."), devices_.size()); // uncomment for debug
state_ = State::IDLE;
last_activity_ = time_now;
state_ = State::IDLE;
}
}
}

View File

@@ -90,7 +90,7 @@ class Sensors {
static constexpr uint32_t READ_INTERVAL_MS = 5000; // 5 seconds
static constexpr uint32_t CONVERSION_MS = 1000; // 1 seconds
static constexpr uint32_t READ_TIMEOUT_MS = 2000; // 2 seconds
static constexpr uint32_t SCAN_TIMEOUT_MS = 30000; // 30 seconds
static constexpr uint32_t SCAN_TIMEOUT_MS = 3000; // 3 seconds
static constexpr uint8_t CMD_CONVERT_TEMP = 0x44;
static constexpr uint8_t CMD_READ_SCRATCHPAD = 0xBE;
@@ -111,6 +111,8 @@ class Sensors {
std::vector<Device> devices_;
uint8_t mqtt_format_;
uint8_t retrycnt_ = 0;
};
} // namespace emsesp