optimized MQTT json

This commit is contained in:
Paul
2020-02-23 14:23:10 +01:00
parent 7d402d4518
commit 89a2dcac05
4 changed files with 252 additions and 190 deletions

View File

@@ -433,22 +433,23 @@ void MyESP::_printMQTTLog() {
// Publish using the user's custom retain flag // Publish using the user's custom retain flag
void MyESP::mqttPublish(const char * topic, const char * payload) { void MyESP::mqttPublish(const char * topic, const char * payload) {
mqttPublish(topic, payload, _mqtt_retain); _mqttQueue(topic, payload, _mqtt_retain);
}
void MyESP::mqttPublish(const char * topic, JsonDocument payload) {
_mqttQueue(topic, payload, _mqtt_retain);
} }
// MQTT Publish // MQTT Publish
void MyESP::mqttPublish(const char * topic, const char * payload, bool retain) { void MyESP::mqttPublish(const char * topic, const char * payload, bool retain) {
if (!_hasValue(topic)) { _mqttQueue(topic, payload, retain);
return; }
} void MyESP::mqttPublish(const char * topic, JsonDocument payload, bool retain) {
_mqttQueue(topic, payload, retain);
_mqttQueue(topic, payload, retain); // queue the message
} }
// put a payload string into the queue
bool MyESP::_mqttQueue(const char * topic, const char * payload, bool retain) { bool MyESP::_mqttQueue(const char * topic, const char * payload, bool retain) {
// Queue is not meant to send message "offline" if (!mqttClient.connected() || _mqtt_queue.size() >= MQTT_QUEUE_MAX_SIZE || !_hasValue(topic)) {
// We must prevent the queue does not get full while offline
if (!mqttClient.connected() || (_mqtt_queue.size() >= MQTT_QUEUE_MAX_SIZE)) {
return false; return false;
} }
@@ -458,7 +459,7 @@ bool MyESP::_mqttQueue(const char * topic, const char * payload, bool retain) {
element.retain = retain; element.retain = retain;
element.packetId = 0; element.packetId = 0;
element.retry_count = 0; element.retry_count = 0;
if (NULL != payload) { if (payload != NULL) {
element.payload = strdup(payload); element.payload = strdup(payload);
} }
#ifdef MYESP_DEBUG #ifdef MYESP_DEBUG
@@ -469,6 +470,34 @@ bool MyESP::_mqttQueue(const char * topic, const char * payload, bool retain) {
return true; return true;
} }
// convert json doc to a string buffer and place on queue
bool MyESP::_mqttQueue(const char * topic, JsonDocument payload, bool retain) {
if (!mqttClient.connected() || _mqtt_queue.size() >= MQTT_QUEUE_MAX_SIZE || !_hasValue(topic)) {
return false;
}
// create a new message
mqtt_message_t element;
element.topic = strdup(topic);
element.retain = retain;
element.packetId = 0;
element.retry_count = 0;
// reserve space for buffer and serialize json into it
const size_t capacity = measureJson(payload) + 1;
if (capacity) {
element.payload = (char *)malloc(capacity);
serializeJson(payload, (char *)element.payload, capacity);
}
#ifdef MYESP_DEBUG
myDebug_P(PSTR("[MQTT] Adding to queue: #%d [%s] %s"), _mqtt_queue.size(), element.topic, element.payload);
#endif
_mqtt_queue.push_back(element);
return true;
}
// called when an MQTT Publish ACK is received // called when an MQTT Publish ACK is received
// check if ACK matches the last Publish we sent, if not report an error // check if ACK matches the last Publish we sent, if not report an error
// and always remove from queue // and always remove from queue
@@ -1604,11 +1633,10 @@ void MyESP::heartbeatCheck(bool force) {
uint32_t free_memory = ESP.getFreeHeap(); uint32_t free_memory = ESP.getFreeHeap();
uint8_t mem_available = 100 * free_memory / total_memory; // as a % uint8_t mem_available = 100 * free_memory / total_memory; // as a %
StaticJsonDocument<MYESP_JSON_MAXSIZE_SMALL> doc; const size_t capacity = JSON_OBJECT_SIZE(6);
JsonObject rootHeartbeat = doc.to<JsonObject>(); StaticJsonDocument<capacity> doc;
JsonObject rootHeartbeat = doc.to<JsonObject>();
//rootHeartbeat["version"] = _app_version;
//rootHeartbeat["IP"] = WiFi.localIP().toString();
rootHeartbeat["rssid"] = getWifiQuality(); rootHeartbeat["rssid"] = getWifiQuality();
rootHeartbeat["load"] = getSystemLoadAverage(); rootHeartbeat["load"] = getSystemLoadAverage();
rootHeartbeat["uptime"] = _getUptime(); rootHeartbeat["uptime"] = _getUptime();
@@ -1616,10 +1644,7 @@ void MyESP::heartbeatCheck(bool force) {
rootHeartbeat["tcpdrops"] = _getSystemDropoutCounter(); rootHeartbeat["tcpdrops"] = _getSystemDropoutCounter();
rootHeartbeat["mqttpublishfails"] = _mqtt_publish_fails; rootHeartbeat["mqttpublishfails"] = _mqtt_publish_fails;
char data[300] = {0}; mqttPublish(MQTT_TOPIC_HEARTBEAT, doc, false); // send to MQTT with retain off
serializeJson(doc, data, sizeof(data));
(void)mqttPublish(MQTT_TOPIC_HEARTBEAT, data, false); // send to MQTT with retain off
} }
} }
@@ -1632,13 +1657,13 @@ void MyESP::heartbeatPrint() {
uint32_t total_memory = _getInitialFreeHeap(); uint32_t total_memory = _getInitialFreeHeap();
uint32_t free_memory = ESP.getFreeHeap(); uint32_t free_memory = ESP.getFreeHeap();
myDebug("[%d] uptime:%d bytesfree:%d (%2u%%), load:%d, dropouts:%d", myDebug_P(PSTR("[%d] uptime:%d bytesfree:%d (%2u%%), load:%d, dropouts:%d"),
i++, i++,
_getUptime(), _getUptime(),
free_memory, free_memory,
100 * free_memory / total_memory, 100 * free_memory / total_memory,
getSystemLoadAverage(), getSystemLoadAverage(),
_getSystemDropoutCounter() _getSystemDropoutCounter()
); );
} }
@@ -2418,7 +2443,7 @@ void MyESP::writeLogEvent(const uint8_t type, const char * msg) {
// Handles WebSocket Events // Handles WebSocket Events
void MyESP::_onWsEvent(AsyncWebSocket * server, AsyncWebSocketClient * client, AwsEventType type, void * arg, uint8_t * data, size_t len) { void MyESP::_onWsEvent(AsyncWebSocket * server, AsyncWebSocketClient * client, AwsEventType type, void * arg, uint8_t * data, size_t len) {
if (type == WS_EVT_ERROR) { if (type == WS_EVT_ERROR) {
myDebug("[WEB] WebSocket[%s][%u] error(%u): %s\r\n", server->url(), client->id(), *((uint16_t *)arg), (char *)data); myDebug_P(PSTR("[WEB] WebSocket[%s][%u] error(%u): %s\r\n"), server->url(), client->id(), *((uint16_t *)arg), (char *)data);
} else if (type == WS_EVT_DATA) { } else if (type == WS_EVT_DATA) {
AwsFrameInfo * info = (AwsFrameInfo *)arg; AwsFrameInfo * info = (AwsFrameInfo *)arg;
uint64_t index = info->index; uint64_t index = info->index;
@@ -2550,7 +2575,7 @@ bool MyESP::_fs_sendConfig() {
// send custom status via ws // send custom status via ws
void MyESP::_sendCustomStatus() { void MyESP::_sendCustomStatus() {
DynamicJsonDocument doc(MYESP_JSON_MAXSIZE_LARGE); DynamicJsonDocument doc(MYESP_JSON_MAXSIZE_MEDIUM);
JsonObject root = doc.to<JsonObject>(); JsonObject root = doc.to<JsonObject>();
@@ -2566,7 +2591,7 @@ void MyESP::_sendCustomStatus() {
(_web_callback_f)(root); (_web_callback_f)(root);
} }
char buffer[MYESP_JSON_MAXSIZE_LARGE]; char buffer[MYESP_JSON_MAXSIZE_MEDIUM];
size_t len = serializeJson(root, buffer); size_t len = serializeJson(root, buffer);
#ifdef MYESP_DEBUG #ifdef MYESP_DEBUG
@@ -2582,13 +2607,13 @@ void MyESP::_sendStatus() {
uint32_t total_memory = _getInitialFreeHeap(); uint32_t total_memory = _getInitialFreeHeap();
uint32_t free_memory = ESP.getFreeHeap(); uint32_t free_memory = ESP.getFreeHeap();
DynamicJsonDocument doc(MQTT_MAX_PAYLOAD_SIZE_LARGE); DynamicJsonDocument doc(MYESP_JSON_MAXSIZE_MEDIUM);
JsonObject root = doc.to<JsonObject>(); JsonObject root = doc.to<JsonObject>();
root["command"] = "status"; root["command"] = "status";
FSInfo fsinfo; FSInfo fsinfo;
if (!SPIFFS.info(fsinfo)) { if (!SPIFFS.info(fsinfo)) {
myDebug("[SYSTEM] Error getting info on SPIFFS"); myDebug_P(PSTR("[SYSTEM] Error getting info on SPIFFS"));
} else { } else {
root["availspiffs"] = (fsinfo.totalBytes - fsinfo.usedBytes) / 1000; root["availspiffs"] = (fsinfo.totalBytes - fsinfo.usedBytes) / 1000;
root["spiffssize"] = (fsinfo.totalBytes / 1000); root["spiffssize"] = (fsinfo.totalBytes / 1000);
@@ -2626,7 +2651,7 @@ void MyESP::_sendStatus() {
sprintf(uptime, "%d day%s %d hour%s %d minute%s %d second%s", d, (d == 1) ? "" : "s", h, (h == 1) ? "" : "s", m, (m == 1) ? "" : "s", sec, (sec == 1) ? "" : "s"); sprintf(uptime, "%d day%s %d hour%s %d minute%s %d second%s", d, (d == 1) ? "" : "s", h, (h == 1) ? "" : "s", m, (m == 1) ? "" : "s", sec, (sec == 1) ? "" : "s");
root["uptime"] = uptime; root["uptime"] = uptime;
char buffer[MQTT_MAX_PAYLOAD_SIZE_LARGE]; char buffer[MYESP_JSON_MAXSIZE_MEDIUM];
size_t len = serializeJson(root, buffer); size_t len = serializeJson(root, buffer);
_ws->textAll(buffer, len); _ws->textAll(buffer, len);
@@ -2783,13 +2808,13 @@ void MyESP::_printHeap(const char * prefix) {
uint32_t total_memory = _getInitialFreeHeap(); uint32_t total_memory = _getInitialFreeHeap();
uint32_t free_memory = ESP.getFreeHeap(); uint32_t free_memory = ESP.getFreeHeap();
myDebug("%s Free Heap: %d bytes initially | %d bytes used (%2u%%) | %d bytes free (%2u%%)", myDebug_P(PSTR("%s Free Heap: %d bytes initially | %d bytes used (%2u%%) | %d bytes free (%2u%%)"),
prefix, prefix,
total_memory, total_memory,
total_memory - free_memory, total_memory - free_memory,
100 * (total_memory - free_memory) / total_memory, 100 * (total_memory - free_memory) / total_memory,
free_memory, free_memory,
100 * free_memory / total_memory); 100 * free_memory / total_memory);
} }
// send UTC time via ws // send UTC time via ws
@@ -2959,7 +2984,7 @@ void MyESP::loop() {
} }
if (_formatreq) { if (_formatreq) {
myDebug("[SYSTEM] Factory reset initiated. Please wait. System will automatically restart when complete..."); myDebug_P(PSTR("[SYSTEM] Factory reset initiated. Please wait. System will automatically restart when complete..."));
SPIFFS.end(); SPIFFS.end();
_ws->enable(false); _ws->enable(false);
SPIFFS.format(); SPIFFS.format();
@@ -2969,7 +2994,7 @@ void MyESP::loop() {
if (_shouldRestart) { if (_shouldRestart) {
writeLogEvent(MYESP_SYSLOG_INFO, "System is restarting"); writeLogEvent(MYESP_SYSLOG_INFO, "System is restarting");
myDebug("[SYSTEM] Restarting..."); myDebug_P(PSTR("[SYSTEM] Restarting..."));
_deferredReset(500, CUSTOM_RESET_TERMINAL); _deferredReset(500, CUSTOM_RESET_TERMINAL);
ESP.restart(); ESP.restart();
} }
@@ -2977,6 +3002,4 @@ void MyESP::loop() {
delay(MYESP_DELAY); // some time to WiFi and everything else to catch up, calls yield, and also prevent overheating delay(MYESP_DELAY); // some time to WiFi and everything else to catch up, calls yield, and also prevent overheating
} }
MyESP myESP; MyESP myESP;

View File

@@ -96,22 +96,18 @@ extern struct rst_info resetInfo;
#define MQTT_QOS 0 // default qos 0 #define MQTT_QOS 0 // default qos 0
#define MQTT_WILL_TOPIC "status" // for last will & testament topic name #define MQTT_WILL_TOPIC "status" // for last will & testament topic name
#define MQTT_MAX_TOPIC_SIZE 50 // max length of MQTT topic #define MQTT_MAX_TOPIC_SIZE 50 // max length of MQTT topic
#define MQTT_MAX_PAYLOAD_SIZE 700 // max size of a JSON object. See https://arduinojson.org/v6/assistant/ #define MQTT_QUEUE_MAX_SIZE 50 // Size of the MQTT queue
#define MQTT_MAX_PAYLOAD_SIZE_LARGE 2000 // max size of a large JSON object #define MQTT_PUBLISH_WAIT 750 // time in ms before sending MQTT messages
#define MQTT_MAX_PAYLOAD_SIZE_SMALL 200 #define MQTT_PUBLISH_MAX_RETRY 4 // max retries for giving up on publishing
#define MQTT_QUEUE_MAX_SIZE 20 // Size of the MQTT queue #define MYESP_JSON_MAXSIZE_LARGE 2000 // for large Dynamic json files - https://arduinojson.org/v6/assistant/
#define MQTT_PUBLISH_WAIT 1000 // every 1 second check MQTT queue #define MYESP_JSON_MAXSIZE_MEDIUM 800 // for medium Dynamic json files - https://arduinojson.org/v6/assistant/
#define MQTT_PUBLISH_MAX_RETRY 4 // max retries for giving up on publishing #define MYESP_JSON_MAXSIZE_SMALL 200 // for smaller Static json documents - https://arduinojson.org/v6/assistant/
// Internal MQTT events // Internal MQTT events
#define MQTT_CONNECT_EVENT 0 #define MQTT_CONNECT_EVENT 0
#define MQTT_DISCONNECT_EVENT 1 #define MQTT_DISCONNECT_EVENT 1
#define MQTT_MESSAGE_EVENT 2 #define MQTT_MESSAGE_EVENT 2
#define MYESP_JSON_MAXSIZE_LARGE 2000 // for large Dynamic json files
#define MYESP_JSON_MAXSIZE_MEDIUM 800 // for medium Dynamic json files
#define MYESP_JSON_MAXSIZE_SMALL 200 // for smaller Static json documents
#define MYESP_MQTT_PAYLOAD_ON '1' // for MQTT switch on #define MYESP_MQTT_PAYLOAD_ON '1' // for MQTT switch on
#define MYESP_MQTT_PAYLOAD_OFF '0' // for MQTT switch off #define MYESP_MQTT_PAYLOAD_OFF '0' // for MQTT switch off
@@ -213,9 +209,9 @@ struct RtcmemData {
static_assert(sizeof(RtcmemData) <= (RTCMEM_BLOCKS * 4u), "RTCMEM struct is too big"); static_assert(sizeof(RtcmemData) <= (RTCMEM_BLOCKS * 4u), "RTCMEM struct is too big");
#define MYESP_SYSTEM_CHECK_TIME 60000 // The system is considered stable after these many millis (1 minute) #define MYESP_SYSTEM_CHECK_TIME 60000 // The system is considered stable after these many millis (1 min)
#define MYESP_SYSTEM_CHECK_MAX 10 // After this many crashes on boot #define MYESP_SYSTEM_CHECK_MAX 10 // After this many crashes on boot
#define MYESP_HEARTBEAT_INTERVAL 120000 // in milliseconds, how often the MQTT heartbeat is sent (2 mins) #define MYESP_HEARTBEAT_INTERVAL 60000 // in milliseconds, how often the MQTT heartbeat is sent (1 min)
typedef struct { typedef struct {
bool set; // is it a set command? bool set; // is it a set command?
@@ -286,6 +282,8 @@ class MyESP {
void mqttUnsubscribe(const char * topic); void mqttUnsubscribe(const char * topic);
void mqttPublish(const char * topic, const char * payload); void mqttPublish(const char * topic, const char * payload);
void mqttPublish(const char * topic, const char * payload, bool retain); void mqttPublish(const char * topic, const char * payload, bool retain);
void mqttPublish(const char * topic, JsonDocument payload);
void mqttPublish(const char * topic, JsonDocument payload, bool retain);
void setMQTT(mqtt_callback_f callback); void setMQTT(mqtt_callback_f callback);
bool mqttUseNestedJson(); bool mqttUseNestedJson();
@@ -346,6 +344,7 @@ class MyESP {
void _sendStart(); void _sendStart();
char * _mqttTopic(const char * topic); char * _mqttTopic(const char * topic);
bool _mqttQueue(const char * topic, const char * payload, bool retain); bool _mqttQueue(const char * topic, const char * payload, bool retain);
bool _mqttQueue(const char * topic, JsonDocument payload, bool retain);
void _printMQTTLog(); void _printMQTTLog();
void _mqttPublishQueue(); void _mqttPublishQueue();
void _mqttRemoveLastPublish(); void _mqttRemoveLastPublish();

View File

@@ -573,14 +573,14 @@ void publishSensorValues() {
// each payload per sensor is 30 bytes so calculate if we have enough space // each payload per sensor is 30 bytes so calculate if we have enough space
if ((EMSESP_Settings.dallas_sensors * 50) > DS18_MQTT_PAYLOAD_MAXSIZE) { if ((EMSESP_Settings.dallas_sensors * 50) > DS18_MQTT_PAYLOAD_MAXSIZE) {
myDebug("Error: too many Dallas sensors for MQTT payload"); myDebug_P(PSTR("Error: too many Dallas sensors for MQTT payload"));
} }
StaticJsonDocument<DS18_MQTT_PAYLOAD_MAXSIZE> doc; StaticJsonDocument<DS18_MQTT_PAYLOAD_MAXSIZE> doc;
JsonObject sensors = doc.to<JsonObject>(); JsonObject sensors = doc.to<JsonObject>();
bool hasdata = false; bool hasdata = false;
char buffer[128] = {0}; // temp string buffer char buffer[128]; // temp string buffer
// if we're not using nested JSON, send each sensor out seperately // if we're not using nested JSON, send each sensor out seperately
if (!myESP.mqttUseNestedJson()) { if (!myESP.mqttUseNestedJson()) {
@@ -593,9 +593,7 @@ void publishSensorValues() {
strlcat(topic, _int_to_char(buffer, i + 1), sizeof(topic)); strlcat(topic, _int_to_char(buffer, i + 1), sizeof(topic));
sensors[PAYLOAD_EXTERNAL_SENSOR_ID] = ds18.getDeviceID(buffer, i); // add ID sensors[PAYLOAD_EXTERNAL_SENSOR_ID] = ds18.getDeviceID(buffer, i); // add ID
sensors[PAYLOAD_EXTERNAL_SENSOR_TEMP] = sensorValue; // add temp value sensors[PAYLOAD_EXTERNAL_SENSOR_TEMP] = sensorValue; // add temp value
char data[100] = {0}; myESP.mqttPublish(topic, doc); // and publish
serializeJson(doc, data, sizeof(data)); // convert to string
myESP.mqttPublish(topic, data); // and publish
} }
} }
if (hasdata) { if (hasdata) {
@@ -604,24 +602,25 @@ void publishSensorValues() {
return; // exit return; // exit
} }
// see if the sensor values have changed, if so send it on // group all sensors together - https://github.com/proddy/EMS-ESP/issues/327
for (uint8_t i = 0; i < EMSESP_Settings.dallas_sensors; i++) { for (uint8_t i = 0; i < EMSESP_Settings.dallas_sensors; i++) {
float sensorValue = ds18.getValue(i); float sensorValue = ds18.getValue(i);
if (sensorValue != DS18_DISCONNECTED) { if (sensorValue != DS18_DISCONNECTED) {
hasdata = true; hasdata = true;
// create a nested object - https://github.com/proddy/EMS-ESP/issues/327 #ifdef SENSOR_MQTT_USEID
sensors[ds18.getDeviceID(buffer, i)] = sensorValue;
#else
char sensorID[10]; // sensor{1-n} char sensorID[10]; // sensor{1-n}
strlcpy(sensorID, PAYLOAD_EXTERNAL_SENSOR_NUM, sizeof(sensorID)); strlcpy(sensorID, PAYLOAD_EXTERNAL_SENSOR_NUM, sizeof(sensorID));
strlcat(sensorID, _int_to_char(buffer, i + 1), sizeof(sensorID)); strlcat(sensorID, _int_to_char(buffer, i + 1), sizeof(sensorID));
JsonObject dataSensor = sensors.createNestedObject(sensorID); JsonObject dataSensor = sensors.createNestedObject(sensorID);
dataSensor[PAYLOAD_EXTERNAL_SENSOR_ID] = ds18.getDeviceID(buffer, i); dataSensor[PAYLOAD_EXTERNAL_SENSOR_ID] = ds18.getDeviceID(buffer, i);
dataSensor[PAYLOAD_EXTERNAL_SENSOR_TEMP] = sensorValue; dataSensor[PAYLOAD_EXTERNAL_SENSOR_TEMP] = sensorValue;
#endif
} }
} }
char data[DS18_MQTT_PAYLOAD_MAXSIZE] = {0}; myESP.mqttPublish(TOPIC_EXTERNAL_SENSORS, doc);
serializeJson(doc, data, sizeof(data));
myESP.mqttPublish(TOPIC_EXTERNAL_SENSORS, data);
if (hasdata) { if (hasdata) {
myDebugLog("Publishing external sensor data via MQTT"); myDebugLog("Publishing external sensor data via MQTT");
@@ -630,10 +629,11 @@ void publishSensorValues() {
// publish Boiler data via MQTT // publish Boiler data via MQTT
void publishEMSValues_boiler() { void publishEMSValues_boiler() {
char s[20] = {0}; // for formatting strings const size_t capacity = JSON_OBJECT_SIZE(34); // must recalculate if more objects addded https://arduinojson.org/v6/assistant/
StaticJsonDocument<MQTT_MAX_PAYLOAD_SIZE> doc; DynamicJsonDocument doc(capacity);
char data[MQTT_MAX_PAYLOAD_SIZE] = {0}; JsonObject rootBoiler = doc.to<JsonObject>();
JsonObject rootBoiler = doc.to<JsonObject>();
char s[20]; // for formatting strings
if (EMS_Boiler.wWComfort == EMS_VALUE_UBAParameterWW_wwComfort_Hot) { if (EMS_Boiler.wWComfort == EMS_VALUE_UBAParameterWW_wwComfort_Hot) {
rootBoiler["wWComfort"] = "Hot"; rootBoiler["wWComfort"] = "Hot";
@@ -643,126 +643,153 @@ void publishEMSValues_boiler() {
rootBoiler["wWComfort"] = "Intelligent"; rootBoiler["wWComfort"] = "Intelligent";
} }
if (EMS_Boiler.wWSelTemp != EMS_VALUE_INT_NOTSET) if (EMS_Boiler.wWSelTemp != EMS_VALUE_INT_NOTSET) {
rootBoiler["wWSelTemp"] = EMS_Boiler.wWSelTemp; rootBoiler["wWSelTemp"] = EMS_Boiler.wWSelTemp;
if (EMS_Boiler.wWDesinfectTemp != EMS_VALUE_INT_NOTSET) }
if (EMS_Boiler.wWDesinfectTemp != EMS_VALUE_INT_NOTSET) {
rootBoiler["wWDesinfectionTemp"] = EMS_Boiler.wWDesinfectTemp; rootBoiler["wWDesinfectionTemp"] = EMS_Boiler.wWDesinfectTemp;
if (EMS_Boiler.selFlowTemp != EMS_VALUE_INT_NOTSET) }
if (EMS_Boiler.selFlowTemp != EMS_VALUE_INT_NOTSET) {
rootBoiler["selFlowTemp"] = EMS_Boiler.selFlowTemp; rootBoiler["selFlowTemp"] = EMS_Boiler.selFlowTemp;
if (EMS_Boiler.selBurnPow != EMS_VALUE_INT_NOTSET) }
if (EMS_Boiler.selBurnPow != EMS_VALUE_INT_NOTSET) {
rootBoiler["selBurnPow"] = EMS_Boiler.selBurnPow; rootBoiler["selBurnPow"] = EMS_Boiler.selBurnPow;
if (EMS_Boiler.curBurnPow != EMS_VALUE_INT_NOTSET) }
if (EMS_Boiler.curBurnPow != EMS_VALUE_INT_NOTSET) {
rootBoiler["curBurnPow"] = EMS_Boiler.curBurnPow; rootBoiler["curBurnPow"] = EMS_Boiler.curBurnPow;
if (EMS_Boiler.pumpMod != EMS_VALUE_INT_NOTSET) }
if (EMS_Boiler.pumpMod != EMS_VALUE_INT_NOTSET) {
rootBoiler["pumpMod"] = EMS_Boiler.pumpMod; rootBoiler["pumpMod"] = EMS_Boiler.pumpMod;
if (EMS_Boiler.wWCircPump != EMS_VALUE_BOOL_NOTSET) }
if (EMS_Boiler.wWCircPump != EMS_VALUE_BOOL_NOTSET) {
rootBoiler["wWCircPump"] = EMS_Boiler.wWCircPump; rootBoiler["wWCircPump"] = EMS_Boiler.wWCircPump;
}
if (EMS_Boiler.extTemp > EMS_VALUE_SHORT_NOTSET) if (EMS_Boiler.extTemp > EMS_VALUE_SHORT_NOTSET) {
rootBoiler["outdoorTemp"] = (float)EMS_Boiler.extTemp / 10; rootBoiler["outdoorTemp"] = (float)EMS_Boiler.extTemp / 10;
if (EMS_Boiler.wWCurTmp < EMS_VALUE_USHORT_NOTSET) }
if (EMS_Boiler.wWCurTmp < EMS_VALUE_USHORT_NOTSET) {
rootBoiler["wWCurTmp"] = (float)EMS_Boiler.wWCurTmp / 10; rootBoiler["wWCurTmp"] = (float)EMS_Boiler.wWCurTmp / 10;
if (EMS_Boiler.wWCurFlow != EMS_VALUE_INT_NOTSET) }
if (EMS_Boiler.wWCurFlow != EMS_VALUE_INT_NOTSET) {
rootBoiler["wWCurFlow"] = (float)EMS_Boiler.wWCurFlow / 10; rootBoiler["wWCurFlow"] = (float)EMS_Boiler.wWCurFlow / 10;
if (EMS_Boiler.curFlowTemp < EMS_VALUE_USHORT_NOTSET) }
if (EMS_Boiler.curFlowTemp < EMS_VALUE_USHORT_NOTSET) {
rootBoiler["curFlowTemp"] = (float)EMS_Boiler.curFlowTemp / 10; rootBoiler["curFlowTemp"] = (float)EMS_Boiler.curFlowTemp / 10;
if (EMS_Boiler.retTemp < EMS_VALUE_USHORT_NOTSET) }
if (EMS_Boiler.retTemp < EMS_VALUE_USHORT_NOTSET) {
rootBoiler["retTemp"] = (float)EMS_Boiler.retTemp / 10; rootBoiler["retTemp"] = (float)EMS_Boiler.retTemp / 10;
if (EMS_Boiler.switchTemp < EMS_VALUE_USHORT_NOTSET) }
if (EMS_Boiler.switchTemp < EMS_VALUE_USHORT_NOTSET) {
rootBoiler["switchTemp"] = (float)EMS_Boiler.switchTemp / 10; rootBoiler["switchTemp"] = (float)EMS_Boiler.switchTemp / 10;
if (EMS_Boiler.sysPress != EMS_VALUE_INT_NOTSET) }
if (EMS_Boiler.sysPress != EMS_VALUE_INT_NOTSET) {
rootBoiler["sysPress"] = (float)EMS_Boiler.sysPress / 10; rootBoiler["sysPress"] = (float)EMS_Boiler.sysPress / 10;
if (EMS_Boiler.boilTemp < EMS_VALUE_USHORT_NOTSET) }
if (EMS_Boiler.boilTemp < EMS_VALUE_USHORT_NOTSET) {
rootBoiler["boilTemp"] = (float)EMS_Boiler.boilTemp / 10; rootBoiler["boilTemp"] = (float)EMS_Boiler.boilTemp / 10;
if (EMS_Boiler.exhaustTemp < EMS_VALUE_USHORT_NOTSET) }
if (EMS_Boiler.exhaustTemp < EMS_VALUE_USHORT_NOTSET) {
rootBoiler["exhaustTemp"] = (float)EMS_Boiler.exhaustTemp / 10; rootBoiler["exhaustTemp"] = (float)EMS_Boiler.exhaustTemp / 10;
if (EMS_Boiler.wWActivated != EMS_VALUE_BOOL_NOTSET) }
if (EMS_Boiler.wWActivated != EMS_VALUE_BOOL_NOTSET) {
rootBoiler["wWActivated"] = _bool_to_char(s, EMS_Boiler.wWActivated); rootBoiler["wWActivated"] = _bool_to_char(s, EMS_Boiler.wWActivated);
}
if (EMS_Boiler.wWActivated != EMS_VALUE_BOOL_NOTSET) if (EMS_Boiler.wWActivated != EMS_VALUE_BOOL_NOTSET) {
rootBoiler["wWOnetime"] = _bool_to_char(s, EMS_Boiler.wWOneTime); rootBoiler["wWOnetime"] = _bool_to_char(s, EMS_Boiler.wWOneTime);
}
if (EMS_Boiler.wWCirc != EMS_VALUE_BOOL_NOTSET) if (EMS_Boiler.wWCirc != EMS_VALUE_BOOL_NOTSET) {
rootBoiler["wWCirc"] = _bool_to_char(s, EMS_Boiler.wWCirc); rootBoiler["wWCirc"] = _bool_to_char(s, EMS_Boiler.wWCirc);
}
if (EMS_Boiler.burnGas != EMS_VALUE_BOOL_NOTSET) if (EMS_Boiler.burnGas != EMS_VALUE_BOOL_NOTSET) {
rootBoiler["burnGas"] = _bool_to_char(s, EMS_Boiler.burnGas); rootBoiler["burnGas"] = _bool_to_char(s, EMS_Boiler.burnGas);
}
if (EMS_Boiler.flameCurr < EMS_VALUE_USHORT_NOTSET) if (EMS_Boiler.flameCurr < EMS_VALUE_USHORT_NOTSET) {
rootBoiler["flameCurr"] = (float)(int16_t)EMS_Boiler.flameCurr / 10; rootBoiler["flameCurr"] = (float)(int16_t)EMS_Boiler.flameCurr / 10;
}
if (EMS_Boiler.heatPmp != EMS_VALUE_BOOL_NOTSET) if (EMS_Boiler.heatPmp != EMS_VALUE_BOOL_NOTSET) {
rootBoiler["heatPmp"] = _bool_to_char(s, EMS_Boiler.heatPmp); rootBoiler["heatPmp"] = _bool_to_char(s, EMS_Boiler.heatPmp);
}
if (EMS_Boiler.fanWork != EMS_VALUE_BOOL_NOTSET) if (EMS_Boiler.fanWork != EMS_VALUE_BOOL_NOTSET) {
rootBoiler["fanWork"] = _bool_to_char(s, EMS_Boiler.fanWork); rootBoiler["fanWork"] = _bool_to_char(s, EMS_Boiler.fanWork);
}
if (EMS_Boiler.ignWork != EMS_VALUE_BOOL_NOTSET) if (EMS_Boiler.ignWork != EMS_VALUE_BOOL_NOTSET) {
rootBoiler["ignWork"] = _bool_to_char(s, EMS_Boiler.ignWork); rootBoiler["ignWork"] = _bool_to_char(s, EMS_Boiler.ignWork);
}
if (EMS_Boiler.heating_temp != EMS_VALUE_INT_NOTSET) if (EMS_Boiler.heating_temp != EMS_VALUE_INT_NOTSET) {
rootBoiler["heating_temp"] = EMS_Boiler.heating_temp; rootBoiler["heating_temp"] = EMS_Boiler.heating_temp;
if (EMS_Boiler.pump_mod_max != EMS_VALUE_INT_NOTSET) }
if (EMS_Boiler.pump_mod_max != EMS_VALUE_INT_NOTSET) {
rootBoiler["pump_mod_max"] = EMS_Boiler.pump_mod_max; rootBoiler["pump_mod_max"] = EMS_Boiler.pump_mod_max;
if (EMS_Boiler.pump_mod_min != EMS_VALUE_INT_NOTSET) }
if (EMS_Boiler.pump_mod_min != EMS_VALUE_INT_NOTSET) {
rootBoiler["pump_mod_min"] = EMS_Boiler.pump_mod_min; rootBoiler["pump_mod_min"] = EMS_Boiler.pump_mod_min;
}
if (EMS_Boiler.wWHeat != EMS_VALUE_BOOL_NOTSET) if (EMS_Boiler.wWHeat != EMS_VALUE_BOOL_NOTSET) {
rootBoiler["wWHeat"] = _bool_to_char(s, EMS_Boiler.wWHeat); rootBoiler["wWHeat"] = _bool_to_char(s, EMS_Boiler.wWHeat);
}
if (abs(EMS_Boiler.wWStarts) != EMS_VALUE_LONG_NOTSET) if (abs(EMS_Boiler.wWStarts) != EMS_VALUE_LONG_NOTSET) {
rootBoiler["wWStarts"] = (float)EMS_Boiler.wWStarts; rootBoiler["wWStarts"] = (float)EMS_Boiler.wWStarts;
if (abs(EMS_Boiler.wWWorkM) != EMS_VALUE_LONG_NOTSET) }
if (abs(EMS_Boiler.wWWorkM) != EMS_VALUE_LONG_NOTSET) {
rootBoiler["wWWorkM"] = (float)EMS_Boiler.wWWorkM; rootBoiler["wWWorkM"] = (float)EMS_Boiler.wWWorkM;
if (abs(EMS_Boiler.UBAuptime) != EMS_VALUE_LONG_NOTSET) }
if (abs(EMS_Boiler.UBAuptime) != EMS_VALUE_LONG_NOTSET) {
rootBoiler["UBAuptime"] = (float)EMS_Boiler.UBAuptime; rootBoiler["UBAuptime"] = (float)EMS_Boiler.UBAuptime;
}
if (abs(EMS_Boiler.burnStarts) != EMS_VALUE_LONG_NOTSET) if (abs(EMS_Boiler.burnStarts) != EMS_VALUE_LONG_NOTSET) {
rootBoiler["burnStarts"] = (float)EMS_Boiler.burnStarts; rootBoiler["burnStarts"] = (float)EMS_Boiler.burnStarts;
if (abs(EMS_Boiler.burnWorkMin) != EMS_VALUE_LONG_NOTSET) }
if (abs(EMS_Boiler.burnWorkMin) != EMS_VALUE_LONG_NOTSET) {
rootBoiler["burnWorkMin"] = (float)EMS_Boiler.burnWorkMin; rootBoiler["burnWorkMin"] = (float)EMS_Boiler.burnWorkMin;
if (abs(EMS_Boiler.heatWorkMin) != EMS_VALUE_LONG_NOTSET) }
if (abs(EMS_Boiler.heatWorkMin) != EMS_VALUE_LONG_NOTSET) {
rootBoiler["heatWorkMin"] = (float)EMS_Boiler.heatWorkMin; rootBoiler["heatWorkMin"] = (float)EMS_Boiler.heatWorkMin;
}
if (EMS_Boiler.serviceCode != EMS_VALUE_USHORT_NOTSET) { if (EMS_Boiler.serviceCode != EMS_VALUE_USHORT_NOTSET) {
rootBoiler["ServiceCode"] = EMS_Boiler.serviceCodeChar; rootBoiler["ServiceCode"] = EMS_Boiler.serviceCodeChar;
rootBoiler["ServiceCodeNumber"] = EMS_Boiler.serviceCode; rootBoiler["ServiceCodeNumber"] = EMS_Boiler.serviceCode;
} }
serializeJson(doc, data, sizeof(data));
myDebugLog("Publishing boiler data via MQTT"); myDebugLog("Publishing boiler data via MQTT");
myESP.mqttPublish(TOPIC_BOILER_DATA, data); myESP.mqttPublish(TOPIC_BOILER_DATA, doc);
// see if the heating or hot tap water has changed, if so send // see if the heating or hot tap water has changed, if so send
// last_boilerActive stores heating in bit 1 and tap water in bit 2 // last_boilerActive stores heating in bit 1 and tap water in bit 2
static uint8_t last_boilerActive = 0xFF; // for remembering last setting of the tap water or heating on/off static uint8_t last_boilerActive = 0xFF; // for remembering last setting of the tap water or heating on/off
if (last_boilerActive != ((EMS_Boiler.tapwaterActive << 1) + EMS_Boiler.heatingActive)) { if (last_boilerActive != ((EMS_Boiler.tapwaterActive << 1) + EMS_Boiler.heatingActive)) {
myDebugLog("Publishing hot water and heating states via MQTT");
myESP.mqttPublish(TOPIC_BOILER_TAPWATER_ACTIVE, EMS_Boiler.tapwaterActive == 1 ? "1" : "0"); myESP.mqttPublish(TOPIC_BOILER_TAPWATER_ACTIVE, EMS_Boiler.tapwaterActive == 1 ? "1" : "0");
myESP.mqttPublish(TOPIC_BOILER_HEATING_ACTIVE, EMS_Boiler.heatingActive == 1 ? "1" : "0"); myESP.mqttPublish(TOPIC_BOILER_HEATING_ACTIVE, EMS_Boiler.heatingActive == 1 ? "1" : "0");
last_boilerActive = ((EMS_Boiler.tapwaterActive << 1) + EMS_Boiler.heatingActive); // remember last state last_boilerActive = ((EMS_Boiler.tapwaterActive << 1) + EMS_Boiler.heatingActive); // remember last state
} }
} }
// handle the thermostat values // handle the thermostat values
void publishEMSValues_thermostat() { void publishEMSValues_thermostat() {
char s[20] = {0}; // for formatting strings StaticJsonDocument<MYESP_JSON_MAXSIZE_MEDIUM> doc;
StaticJsonDocument<MQTT_MAX_PAYLOAD_SIZE> doc; JsonObject rootThermostat = doc.to<JsonObject>();
char data[MQTT_MAX_PAYLOAD_SIZE] = {0}; JsonObject dataThermostat;
JsonObject rootThermostat = doc.to<JsonObject>();
bool has_data = false;
for (uint8_t hc_v = 1; hc_v <= EMS_THERMOSTAT_MAXHC; hc_v++) { for (uint8_t hc_v = 1; hc_v <= EMS_THERMOSTAT_MAXHC; hc_v++) {
_EMS_Thermostat_HC * thermostat = &EMS_Thermostat.hc[hc_v - 1]; _EMS_Thermostat_HC * thermostat = &EMS_Thermostat.hc[hc_v - 1];
// only send if we have an active Heating Circuit with an actual setpoint temp temperature values // only send if we have an active Heating Circuit with an actual setpoint temp temperature values
if ((thermostat->active) && (thermostat->setpoint_roomTemp > EMS_VALUE_SHORT_NOTSET)) { if ((thermostat->active) && (thermostat->setpoint_roomTemp > EMS_VALUE_SHORT_NOTSET)) {
// build new json object uint8_t model = ems_getThermostatModel(); // fetch model flags
char hc[10]; // hc{1-4} has_data = true;
strlcpy(hc, THERMOSTAT_HC, sizeof(hc));
strlcat(hc, _int_to_char(s, thermostat->hc), sizeof(hc)); if (myESP.mqttUseNestedJson()) {
JsonObject dataThermostat = rootThermostat.createNestedObject(hc); // create nested json for each HC
uint8_t model = ems_getThermostatModel(); char hc[10]; // hc{1-4}
strlcpy(hc, THERMOSTAT_HC, sizeof(hc));
char s[20]; // for formatting strings
strlcat(hc, _int_to_char(s, thermostat->hc), sizeof(hc));
dataThermostat = rootThermostat.createNestedObject(hc);
} else {
dataThermostat = rootThermostat;
}
// different logic depending on thermostat types // different logic depending on thermostat types
if (model == EMS_DEVICE_FLAG_EASY) { if (model == EMS_DEVICE_FLAG_EASY) {
@@ -808,26 +835,46 @@ void publishEMSValues_thermostat() {
} else if (thermoMode == EMS_THERMOSTAT_MODE_NIGHT) { } else if (thermoMode == EMS_THERMOSTAT_MODE_NIGHT) {
dataThermostat[THERMOSTAT_MODE] = "night"; dataThermostat[THERMOSTAT_MODE] = "night";
} }
// if its not nested, send immediately
if (!myESP.mqttUseNestedJson()) {
char topic[30];
char s[20]; // for formatting strings
strlcpy(topic, TOPIC_THERMOSTAT_DATA, sizeof(topic));
strlcat(topic, _int_to_char(s, thermostat->hc), sizeof(topic)); // append hc to topic
char data[MYESP_JSON_MAXSIZE_MEDIUM];
serializeJson(doc, data);
myESP.mqttPublish(topic, data);
}
} }
} }
serializeJson(doc, data, sizeof(data)); // if we're using nested json, send all in one go
myDebugLog("Publishing thermostat data via MQTT"); if (myESP.mqttUseNestedJson() && has_data) {
myESP.mqttPublish(TOPIC_THERMOSTAT_DATA, data); char data[MYESP_JSON_MAXSIZE_MEDIUM];
serializeJson(doc, data);
myESP.mqttPublish(TOPIC_THERMOSTAT_DATA, data);
}
if (has_data) {
myDebugLog("Publishing thermostat data via MQTT");
}
} }
// publish mixing data // publish mixing data
// only sending if we have an active hc
void publishEMSValues_mixing() { void publishEMSValues_mixing() {
char s[20] = {0}; // for formatting strings char s[20]; // for formatting strings
StaticJsonDocument<MQTT_MAX_PAYLOAD_SIZE> doc; StaticJsonDocument<MYESP_JSON_MAXSIZE_MEDIUM> doc;
char data[MQTT_MAX_PAYLOAD_SIZE] = {0}; JsonObject rootMixing = doc.to<JsonObject>();
JsonObject rootMixing = doc.to<JsonObject>(); bool has_data = false;
for (uint8_t hc_v = 1; hc_v <= EMS_MIXING_MAXHC; hc_v++) { for (uint8_t hc_v = 1; hc_v <= EMS_MIXING_MAXHC; hc_v++) {
_EMS_MixingModule_HC * mixingHC = &EMS_MixingModule.hc[hc_v - 1]; _EMS_MixingModule_HC * mixingHC = &EMS_MixingModule.hc[hc_v - 1];
// only send if we have an active Heating Circuit with real data
if (mixingHC->active) { if (mixingHC->active) {
has_data = true;
char hc[10]; // hc{1-4} char hc[10]; // hc{1-4}
strlcpy(hc, MIXING_HC, sizeof(hc)); strlcpy(hc, MIXING_HC, sizeof(hc));
strlcat(hc, _int_to_char(s, mixingHC->hc), sizeof(hc)); strlcat(hc, _int_to_char(s, mixingHC->hc), sizeof(hc));
@@ -845,8 +892,9 @@ void publishEMSValues_mixing() {
for (uint8_t wwc_v = 1; wwc_v <= EMS_MIXING_MAXWWC; wwc_v++) { for (uint8_t wwc_v = 1; wwc_v <= EMS_MIXING_MAXWWC; wwc_v++) {
_EMS_MixingModule_WWC * mixingWWC = &EMS_MixingModule.wwc[wwc_v - 1]; _EMS_MixingModule_WWC * mixingWWC = &EMS_MixingModule.wwc[wwc_v - 1];
// only send if we have an active Warm water Circuit with real data
if (mixingWWC->active) { if (mixingWWC->active) {
has_data = true;
char wwc[10]; // wwc{1-2} char wwc[10]; // wwc{1-2}
strlcpy(wwc, MIXING_WWC, sizeof(wwc)); strlcpy(wwc, MIXING_WWC, sizeof(wwc));
strlcat(wwc, _int_to_char(s, mixingWWC->wwc), sizeof(wwc)); strlcat(wwc, _int_to_char(s, mixingWWC->wwc), sizeof(wwc));
@@ -860,72 +908,69 @@ void publishEMSValues_mixing() {
} }
} }
serializeJson(doc, data, sizeof(data)); if (has_data) {
myDebugLog("Publishing mixing data via MQTT"); myDebugLog("Publishing mixing data via MQTT");
myESP.mqttPublish(TOPIC_MIXING_DATA, data); myESP.mqttPublish(TOPIC_MIXING_DATA, doc);
}
} }
// For SM10 and SM100/SM200 Solar Modules // For SM10 and SM100/SM200 Solar Modules
void publishEMSValues_solar() { void publishEMSValues_solar() {
StaticJsonDocument<MQTT_MAX_PAYLOAD_SIZE> doc; StaticJsonDocument<MYESP_JSON_MAXSIZE_SMALL> doc;
char data[MQTT_MAX_PAYLOAD_SIZE] = {0}; JsonObject rootSM = doc.to<JsonObject>();
JsonObject rootSM = doc.to<JsonObject>();
if (EMS_SolarModule.collectorTemp > EMS_VALUE_SHORT_NOTSET) if (EMS_SolarModule.collectorTemp > EMS_VALUE_SHORT_NOTSET) {
rootSM[SM_COLLECTORTEMP] = (float)EMS_SolarModule.collectorTemp / 10; rootSM[SM_COLLECTORTEMP] = (float)EMS_SolarModule.collectorTemp / 10;
}
if (EMS_SolarModule.bottomTemp > EMS_VALUE_SHORT_NOTSET) if (EMS_SolarModule.bottomTemp > EMS_VALUE_SHORT_NOTSET) {
rootSM[SM_BOTTOMTEMP] = (float)EMS_SolarModule.bottomTemp / 10; rootSM[SM_BOTTOMTEMP] = (float)EMS_SolarModule.bottomTemp / 10;
}
if (EMS_SolarModule.pumpModulation != EMS_VALUE_INT_NOTSET) if (EMS_SolarModule.pumpModulation != EMS_VALUE_INT_NOTSET) {
rootSM[SM_PUMPMODULATION] = EMS_SolarModule.pumpModulation; rootSM[SM_PUMPMODULATION] = EMS_SolarModule.pumpModulation;
}
if (EMS_SolarModule.pump != EMS_VALUE_BOOL_NOTSET) { if (EMS_SolarModule.pump != EMS_VALUE_BOOL_NOTSET) {
char s[20] = {0}; // for formatting strings char s[20];
rootSM[SM_PUMP] = _bool_to_char(s, EMS_SolarModule.pump); rootSM[SM_PUMP] = _bool_to_char(s, EMS_SolarModule.pump);
} }
if (EMS_SolarModule.pumpWorkMin != EMS_VALUE_LONG_NOTSET) { if (EMS_SolarModule.pumpWorkMin != EMS_VALUE_LONG_NOTSET) {
rootSM[SM_PUMPWORKMIN] = (float)EMS_SolarModule.pumpWorkMin; rootSM[SM_PUMPWORKMIN] = (float)EMS_SolarModule.pumpWorkMin;
} }
if (EMS_SolarModule.EnergyLastHour < EMS_VALUE_USHORT_NOTSET) {
if (EMS_SolarModule.EnergyLastHour < EMS_VALUE_USHORT_NOTSET)
rootSM[SM_ENERGYLASTHOUR] = (float)EMS_SolarModule.EnergyLastHour / 10; rootSM[SM_ENERGYLASTHOUR] = (float)EMS_SolarModule.EnergyLastHour / 10;
}
if (EMS_SolarModule.EnergyToday < EMS_VALUE_USHORT_NOTSET) if (EMS_SolarModule.EnergyToday < EMS_VALUE_USHORT_NOTSET) {
rootSM[SM_ENERGYTODAY] = EMS_SolarModule.EnergyToday; rootSM[SM_ENERGYTODAY] = EMS_SolarModule.EnergyToday;
}
if (EMS_SolarModule.EnergyTotal < EMS_VALUE_USHORT_NOTSET) if (EMS_SolarModule.EnergyTotal < EMS_VALUE_USHORT_NOTSET) {
rootSM[SM_ENERGYTOTAL] = (float)EMS_SolarModule.EnergyTotal / 10; rootSM[SM_ENERGYTOTAL] = (float)EMS_SolarModule.EnergyTotal / 10;
}
serializeJson(doc, data, sizeof(data)); myDebugLog("Publishing solar module data via MQTT");
myDebugLog("Publishing SM data via MQTT"); myESP.mqttPublish(TOPIC_SM_DATA, doc);
myESP.mqttPublish(TOPIC_SM_DATA, data);
} }
// handle HeatPump // handle HeatPump
void publishEMSValues_heatpump() { void publishEMSValues_heatpump() {
StaticJsonDocument<MQTT_MAX_PAYLOAD_SIZE> doc; StaticJsonDocument<MYESP_JSON_MAXSIZE_SMALL> doc;
char data[MQTT_MAX_PAYLOAD_SIZE] = {0}; JsonObject rootHP = doc.to<JsonObject>();
JsonObject rootHP = doc.to<JsonObject>();
if (EMS_HeatPump.HPModulation != EMS_VALUE_INT_NOTSET) if (EMS_HeatPump.HPModulation != EMS_VALUE_INT_NOTSET) {
rootHP[HP_PUMPMODULATION] = EMS_HeatPump.HPModulation; rootHP[HP_PUMPMODULATION] = EMS_HeatPump.HPModulation;
}
if (EMS_HeatPump.HPSpeed != EMS_VALUE_INT_NOTSET) if (EMS_HeatPump.HPSpeed != EMS_VALUE_INT_NOTSET) {
rootHP[HP_PUMPSPEED] = EMS_HeatPump.HPSpeed; rootHP[HP_PUMPSPEED] = EMS_HeatPump.HPSpeed;
}
serializeJson(doc, data, sizeof(data)); myDebugLog("Publishing peat pump data via MQTT");
myDebugLog("Publishing HeatPump data via MQTT"); myESP.mqttPublish(TOPIC_HP_DATA, doc);
myESP.mqttPublish(TOPIC_HP_DATA, data);
} }
// Publish shower data // Publish shower data
void do_publishShowerData() { void do_publishShowerData() {
StaticJsonDocument<MQTT_MAX_PAYLOAD_SIZE_SMALL> doc; StaticJsonDocument<MYESP_JSON_MAXSIZE_SMALL> doc;
JsonObject rootShower = doc.to<JsonObject>(); JsonObject rootShower = doc.to<JsonObject>();
rootShower[TOPIC_SHOWER_TIMER] = EMSESP_Settings.shower_timer ? "1" : "0"; rootShower[TOPIC_SHOWER_TIMER] = EMSESP_Settings.shower_timer ? "1" : "0";
rootShower[TOPIC_SHOWER_ALERT] = EMSESP_Settings.shower_alert ? "1" : "0"; rootShower[TOPIC_SHOWER_ALERT] = EMSESP_Settings.shower_alert ? "1" : "0";
// only publish shower duration if there is a value // only publish shower duration if there is a value
char s[50] = {0}; char s[50] = {0};
@@ -938,13 +983,8 @@ void do_publishShowerData() {
rootShower[TOPIC_SHOWER_DURATION] = s; rootShower[TOPIC_SHOWER_DURATION] = s;
} }
char data[300] = {0};
serializeJson(doc, data, sizeof(data));
myDebugLog("Publishing shower data via MQTT"); myDebugLog("Publishing shower data via MQTT");
myESP.mqttPublish(TOPIC_SHOWER_DATA, doc, false); // Publish MQTT forcing retain to be off
// Publish MQTT forcing retain to be off
myESP.mqttPublish(TOPIC_SHOWER_DATA, data, false);
} }
// send values via MQTT // send values via MQTT
@@ -955,16 +995,18 @@ void publishEMSValues(bool force) {
return; return;
} }
if (ems_getBoilerEnabled() && (ems_Device_has_flags(EMS_DEVICE_UPDATE_FLAG_BOILER) || force)) {
publishEMSValues_boiler();
ems_Device_remove_flags(EMS_DEVICE_UPDATE_FLAG_BOILER); // unset flag
}
if (ems_getThermostatEnabled() && (ems_Device_has_flags(EMS_DEVICE_UPDATE_FLAG_THERMOSTAT) || force)) { if (ems_getThermostatEnabled() && (ems_Device_has_flags(EMS_DEVICE_UPDATE_FLAG_THERMOSTAT) || force)) {
publishEMSValues_thermostat(); publishEMSValues_thermostat();
ems_Device_remove_flags(EMS_DEVICE_UPDATE_FLAG_THERMOSTAT); // unset flag ems_Device_remove_flags(EMS_DEVICE_UPDATE_FLAG_THERMOSTAT); // unset flag
} }
return; // XXX
if (ems_getBoilerEnabled() && (ems_Device_has_flags(EMS_DEVICE_UPDATE_FLAG_BOILER) || force)) {
publishEMSValues_boiler();
ems_Device_remove_flags(EMS_DEVICE_UPDATE_FLAG_BOILER); // unset flag
}
if (ems_getMixingModuleEnabled() && (ems_Device_has_flags(EMS_DEVICE_UPDATE_FLAG_MIXING) || force)) { if (ems_getMixingModuleEnabled() && (ems_Device_has_flags(EMS_DEVICE_UPDATE_FLAG_MIXING) || force)) {
publishEMSValues_mixing(); publishEMSValues_mixing();
ems_Device_remove_flags(EMS_DEVICE_UPDATE_FLAG_MIXING); // unset flag ems_Device_remove_flags(EMS_DEVICE_UPDATE_FLAG_MIXING); // unset flag
@@ -1073,8 +1115,6 @@ bool LoadSaveCallback(MYESP_FSACTION_t action, JsonObject settings) {
return false; return false;
} }
// serializeJsonPretty(settings, Serial); // for debugging
EMSESP_Settings.led = settings["led"]; EMSESP_Settings.led = settings["led"];
EMSESP_Settings.led_gpio = settings["led_gpio"] | EMSESP_LED_GPIO; EMSESP_Settings.led_gpio = settings["led_gpio"] | EMSESP_LED_GPIO;
EMSESP_Settings.dallas_gpio = settings["dallas_gpio"] | EMSESP_DALLAS_GPIO; EMSESP_Settings.dallas_gpio = settings["dallas_gpio"] | EMSESP_DALLAS_GPIO;
@@ -1372,7 +1412,7 @@ void saveEMSDevices() {
strlcpy(EMSESP_Settings.known_devices, s, sizeof(s)); strlcpy(EMSESP_Settings.known_devices, s, sizeof(s));
myDebug("The device IDs %s%s%swill be automatically scanned when EMS-ESP boots up.", COLOR_BOLD_ON, EMSESP_Settings.known_devices, COLOR_BOLD_OFF); myDebug_P(PSTR("The device IDs %s%s%swill be automatically scanned when EMS-ESP boots up."), COLOR_BOLD_ON, EMSESP_Settings.known_devices, COLOR_BOLD_OFF);
myESP.saveSettings(); myESP.saveSettings();
} }

View File

@@ -1 +1 @@
#define APP_VERSION "1.9.5b39" #define APP_VERSION "1.9.5b40"