added mqtt_nestedjson

This commit is contained in:
Paul
2020-02-22 11:37:55 +01:00
parent 97aaff07ef
commit 9eda49b46a
5 changed files with 434 additions and 394 deletions

View File

@@ -17,6 +17,7 @@ and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0
- `boiler wwonetime` command from Telnet - `boiler wwonetime` command from Telnet
- `set bus_id <ID>` to support multiple EMS-ESP circuits. Default is 0x0B to mimic a service key. - `set bus_id <ID>` to support multiple EMS-ESP circuits. Default is 0x0B to mimic a service key.
- MQTT publish messages are queued and gracefully published every second to avoid TCP blocks - MQTT publish messages are queued and gracefully published every second to avoid TCP blocks
- Added `mqtt_nestedjson` option to disable multiple data records being nested into a single JSON string
### Fixed ### Fixed
- set boiler warm water temp on Junkers/Bosch HT3 - set boiler warm water temp on Junkers/Bosch HT3
@@ -29,7 +30,7 @@ and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0
### Removed ### Removed
- `autodetect scan` - `autodetect scan`
- `mqttlog` and showing MQTT log in the web interface - no point showing history of previous mqtt publishes in ESP's precious memory. For debugging recommend using MQTT Explorer or another external tool. - `mqttlog all` and showing MQTT log in the web interface - no point showing history of previous mqtt publishes in ESP's precious memory. For debugging I recommend using MQTT Explorer or another external tool.
## [1.9.4] 15-12-2019 ## [1.9.4] 15-12-2019

View File

@@ -83,6 +83,7 @@ MyESP::MyESP() {
_mqtt_heartbeat = false; _mqtt_heartbeat = false;
_mqtt_keepalive = MQTT_KEEPALIVE; _mqtt_keepalive = MQTT_KEEPALIVE;
_mqtt_qos = MQTT_QOS; _mqtt_qos = MQTT_QOS;
_mqtt_nestedjson = false;
_mqtt_retain = MQTT_RETAIN; _mqtt_retain = MQTT_RETAIN;
_mqtt_will_topic = strdup(MQTT_WILL_TOPIC); _mqtt_will_topic = strdup(MQTT_WILL_TOPIC);
_mqtt_will_online_payload = strdup(MQTT_WILL_ONLINE_PAYLOAD); _mqtt_will_online_payload = strdup(MQTT_WILL_ONLINE_PAYLOAD);
@@ -527,9 +528,8 @@ void MyESP::_mqttPublishQueue() {
#endif #endif
if (packet_id == 0) { if (packet_id == 0) {
// it failed // it failed. if we retried n times, give up. remove from queue
// if we retried 3 times, give up. remove from queue if (element.retry_count == (MQTT_PUBLISH_MAX_RETRY - 1)) {
if (element.retry_count == 2) {
myDebug_P(PSTR("[MQTT] Failed to publish to %s with payload %s"), _mqttTopic(element.topic), element.payload); myDebug_P(PSTR("[MQTT] Failed to publish to %s with payload %s"), _mqttTopic(element.topic), element.payload);
_mqtt_publish_fails++; // increment failure counter _mqtt_publish_fails++; // increment failure counter
_mqttRemoveLastPublish(); _mqttRemoveLastPublish();
@@ -879,6 +879,7 @@ void MyESP::_printSetCommands() {
myDebug_P(PSTR(" set mqtt_qos [0-3]")); myDebug_P(PSTR(" set mqtt_qos [0-3]"));
myDebug_P(PSTR(" set mqtt_keepalive [seconds]")); myDebug_P(PSTR(" set mqtt_keepalive [seconds]"));
myDebug_P(PSTR(" set mqtt_retain [on | off]")); myDebug_P(PSTR(" set mqtt_retain [on | off]"));
myDebug_P(PSTR(" set mqtt_nestedjson [on | off]"));
myDebug_P(PSTR(" set ntp_enabled <on | off>")); myDebug_P(PSTR(" set ntp_enabled <on | off>"));
myDebug_P(PSTR(" set ntp_interval [minutes]")); myDebug_P(PSTR(" set ntp_interval [minutes]"));
myDebug_P(PSTR(" set ntp_timezone [n]")); myDebug_P(PSTR(" set ntp_timezone [n]"));
@@ -941,6 +942,7 @@ void MyESP::_printSetCommands() {
myDebug_P(PSTR(" mqtt_retain=%s"), (_mqtt_retain) ? "on" : "off"); myDebug_P(PSTR(" mqtt_retain=%s"), (_mqtt_retain) ? "on" : "off");
myDebug_P(PSTR(" mqtt_qos=%d"), _mqtt_qos); myDebug_P(PSTR(" mqtt_qos=%d"), _mqtt_qos);
myDebug_P(PSTR(" mqtt_heartbeat=%s"), (_mqtt_heartbeat) ? "on" : "off"); myDebug_P(PSTR(" mqtt_heartbeat=%s"), (_mqtt_heartbeat) ? "on" : "off");
myDebug_P(PSTR(" mqtt_nestedjson=%s"), (_mqtt_nestedjson) ? "on" : "off");
#ifdef FORCE_SERIAL #ifdef FORCE_SERIAL
myDebug_P(PSTR(" serial=%s (this is always when compiled with -DFORCE_SERIAL)"), (_general_serial) ? "on" : "off"); myDebug_P(PSTR(" serial=%s (this is always when compiled with -DFORCE_SERIAL)"), (_general_serial) ? "on" : "off");
@@ -1045,6 +1047,8 @@ bool MyESP::_changeSetting(uint8_t wc, const char * setting, const char * value)
restart = save_config; restart = save_config;
} else if (strcmp(setting, "mqtt_heartbeat") == 0) { } else if (strcmp(setting, "mqtt_heartbeat") == 0) {
save_config = fs_setSettingValue(&_mqtt_heartbeat, value, false); save_config = fs_setSettingValue(&_mqtt_heartbeat, value, false);
} else if (strcmp(setting, "mqtt_nestedjson") == 0) {
save_config = fs_setSettingValue(&_mqtt_nestedjson, value, false);
} else if (strcmp(setting, "ntp_enabled") == 0) { } else if (strcmp(setting, "ntp_enabled") == 0) {
save_config = fs_setSettingValue(&_ntp_enabled, value, false); save_config = fs_setSettingValue(&_ntp_enabled, value, false);
} else if (strcmp(setting, "ntp_interval") == 0) { } else if (strcmp(setting, "ntp_interval") == 0) {
@@ -1867,17 +1871,18 @@ bool MyESP::_fs_loadConfig() {
_general_serial = general["serial"]; _general_serial = general["serial"];
#endif #endif
JsonObject mqtt = doc["mqtt"]; JsonObject mqtt = doc["mqtt"];
_mqtt_enabled = mqtt["enabled"]; _mqtt_enabled = mqtt["enabled"];
_mqtt_heartbeat = mqtt["heartbeat"]; _mqtt_heartbeat = mqtt["heartbeat"];
_mqtt_ip = strdup(mqtt["ip"] | ""); _mqtt_ip = strdup(mqtt["ip"] | "");
_mqtt_user = strdup(mqtt["user"] | ""); _mqtt_user = strdup(mqtt["user"] | "");
_mqtt_port = mqtt["port"] | MQTT_PORT; _mqtt_port = mqtt["port"] | MQTT_PORT;
_mqtt_keepalive = mqtt["keepalive"] | MQTT_KEEPALIVE; _mqtt_keepalive = mqtt["keepalive"] | MQTT_KEEPALIVE;
_mqtt_retain = mqtt["retain"]; _mqtt_retain = mqtt["retain"];
_mqtt_qos = mqtt["qos"] | MQTT_QOS; _mqtt_qos = mqtt["qos"] | MQTT_QOS;
_mqtt_password = strdup(mqtt["password"] | ""); _mqtt_nestedjson = mqtt["nestedjson"] | true; // default to on
_mqtt_base = strdup(mqtt["base"] | MQTT_BASE_DEFAULT); _mqtt_password = strdup(mqtt["password"] | "");
_mqtt_base = strdup(mqtt["base"] | MQTT_BASE_DEFAULT);
JsonObject ntp = doc["ntp"]; JsonObject ntp = doc["ntp"];
_ntp_server = strdup(ntp["server"] | ""); _ntp_server = strdup(ntp["server"] | "");
@@ -2080,17 +2085,18 @@ bool MyESP::_fs_writeConfig() {
general["log_ip"] = _general_log_ip; general["log_ip"] = _general_log_ip;
general["version"] = _app_version; general["version"] = _app_version;
JsonObject mqtt = doc.createNestedObject("mqtt"); JsonObject mqtt = doc.createNestedObject("mqtt");
mqtt["enabled"] = _mqtt_enabled; mqtt["enabled"] = _mqtt_enabled;
mqtt["heartbeat"] = _mqtt_heartbeat; mqtt["heartbeat"] = _mqtt_heartbeat;
mqtt["ip"] = _mqtt_ip; mqtt["ip"] = _mqtt_ip;
mqtt["user"] = _mqtt_user; mqtt["user"] = _mqtt_user;
mqtt["port"] = _mqtt_port; mqtt["port"] = _mqtt_port;
mqtt["qos"] = _mqtt_qos; mqtt["qos"] = _mqtt_qos;
mqtt["keepalive"] = _mqtt_keepalive; mqtt["keepalive"] = _mqtt_keepalive;
mqtt["retain"] = _mqtt_retain; mqtt["retain"] = _mqtt_retain;
mqtt["password"] = _mqtt_password; mqtt["password"] = _mqtt_password;
mqtt["base"] = _mqtt_base; mqtt["base"] = _mqtt_base;
mqtt["nestedjson"] = _mqtt_nestedjson;
JsonObject ntp = doc.createNestedObject("ntp"); JsonObject ntp = doc.createNestedObject("ntp");
ntp["server"] = _ntp_server; ntp["server"] = _ntp_server;
@@ -2192,6 +2198,11 @@ void MyESP::_calculateLoad() {
} }
} }
// returns true if nested JSON setting is enabled
bool MyESP::mqttUseNestedJson() {
return _mqtt_nestedjson;
}
// returns true is MQTT is alive // returns true is MQTT is alive
bool MyESP::isMQTTConnected() { bool MyESP::isMQTTConnected() {
return mqttClient.connected(); return mqttClient.connected();

View File

@@ -97,9 +97,11 @@ extern struct rst_info resetInfo;
#define MQTT_WILL_TOPIC "status" // for last will & testament topic name #define MQTT_WILL_TOPIC "status" // for last will & testament topic name
#define MQTT_MAX_TOPIC_SIZE 50 // max length of MQTT topic #define MQTT_MAX_TOPIC_SIZE 50 // max length of MQTT topic
#define MQTT_MAX_PAYLOAD_SIZE 700 // max size of a JSON object. See https://arduinojson.org/v6/assistant/ #define MQTT_MAX_PAYLOAD_SIZE 700 // max size of a JSON object. See https://arduinojson.org/v6/assistant/
#define MQTT_MAX_PAYLOAD_SIZE_LARGE 2000 // max size of a large JSON object, like for sending MQTT log #define MQTT_MAX_PAYLOAD_SIZE_LARGE 2000 // max size of a large JSON object
#define MQTT_QUEUE_MAX_SIZE 20 // Size of the MQTT queue #define MQTT_MAX_PAYLOAD_SIZE_SMALL 200
#define MQTT_PUBLISH_WAIT 1000 // every 2 seconds check MQTT queue #define MQTT_QUEUE_MAX_SIZE 20 // Size of the MQTT queue
#define MQTT_PUBLISH_WAIT 1000 // every 1 second check MQTT queue
#define MQTT_PUBLISH_MAX_RETRY 4 // max retries for giving up on publishing
// Internal MQTT events // Internal MQTT events
#define MQTT_CONNECT_EVENT 0 #define MQTT_CONNECT_EVENT 0
@@ -285,6 +287,7 @@ class MyESP {
void mqttPublish(const char * topic, const char * payload); void mqttPublish(const char * topic, const char * payload);
void mqttPublish(const char * topic, const char * payload, bool retain); void mqttPublish(const char * topic, const char * payload, bool retain);
void setMQTT(mqtt_callback_f callback); void setMQTT(mqtt_callback_f callback);
bool mqttUseNestedJson();
// OTA // OTA
void setOTA(ota_callback_f OTACallback_pre, ota_callback_f OTACallback_post); void setOTA(ota_callback_f OTACallback_pre, ota_callback_f OTACallback_post);
@@ -329,7 +332,6 @@ class MyESP {
uint32_t getSystemLoadAverage(); uint32_t getSystemLoadAverage();
uint32_t getSystemResetReason(); uint32_t getSystemResetReason();
uint8_t getSystemBootStatus(); uint8_t getSystemBootStatus();
bool _have_ntp_time;
unsigned long getSystemTime(); unsigned long getSystemTime();
void heartbeatPrint(); void heartbeatPrint();
void heartbeatCheck(bool force = false); void heartbeatCheck(bool force = false);
@@ -365,6 +367,7 @@ class MyESP {
uint32_t _mqtt_last_connection; uint32_t _mqtt_last_connection;
bool _mqtt_connecting; bool _mqtt_connecting;
bool _mqtt_heartbeat; bool _mqtt_heartbeat;
bool _mqtt_nestedjson;
uint16_t _mqtt_publish_fails; uint16_t _mqtt_publish_fails;
// wifi // wifi
@@ -408,20 +411,18 @@ class MyESP {
void _syslog_setup(); void _syslog_setup();
// fs and settings // fs and settings
void _fs_setup(); void _fs_setup();
bool _fs_loadConfig(); bool _fs_loadConfig();
bool _fs_loadCustomConfig(); bool _fs_loadCustomConfig();
void _fs_eraseConfig(); void _fs_eraseConfig();
bool _fs_writeConfig(); bool _fs_writeConfig();
bool _fs_createCustomConfig(); bool _fs_createCustomConfig();
bool _fs_sendConfig(); bool _fs_sendConfig();
size_t _fs_validateConfigFile(const char * filename, size_t maxsize, JsonDocument & doc); size_t _fs_validateConfigFile(const char * filename, size_t maxsize, JsonDocument & doc);
size_t _fs_validateLogFile(const char * filename); size_t _fs_validateLogFile(const char * filename);
fs_loadsave_callback_f _fs_loadsave_callback_f; fs_loadsave_callback_f _fs_loadsave_callback_f;
fs_setlist_callback_f _fs_setlist_callback_f; fs_setlist_callback_f _fs_setlist_callback_f;
void _printSetCommands();
void _printSetCommands();
// general // general
char * _general_hostname; char * _general_hostname;
@@ -444,34 +445,27 @@ class MyESP {
void _kick(); void _kick();
// reset reason and rtcmem // reset reason and rtcmem
bool _rtcmem_status; bool _rtcmem_status;
bool _rtcmemStatus(); bool _rtcmemStatus();
bool _getRtcmemStatus(); bool _getRtcmemStatus();
void _rtcmemInit();
void _rtcmemInit(); void _rtcmemSetup();
void _rtcmemSetup(); void _deferredReset(unsigned long delay, uint8_t reason);
void _deferredReset(unsigned long delay, uint8_t reason);
uint8_t _getSystemStabilityCounter(); uint8_t _getSystemStabilityCounter();
void _setSystemStabilityCounter(uint8_t counter); void _setSystemStabilityCounter(uint8_t counter);
uint8_t _getSystemDropoutCounter(); uint8_t _getSystemDropoutCounter();
void _setSystemDropoutCounter(uint8_t counter); void _setSystemDropoutCounter(uint8_t counter);
void _increaseSystemDropoutCounter(); void _increaseSystemDropoutCounter();
void _setSystemResetReason(uint8_t reason); void _setSystemResetReason(uint8_t reason);
uint8_t _getCustomResetReason(); uint8_t _getCustomResetReason();
void _setCustomResetReason(uint8_t reason); void _setCustomResetReason(uint8_t reason);
uint8_t _getSystemResetReason(); uint8_t _getSystemResetReason();
void _setSystemBootStatus(uint8_t status);
void _setSystemBootStatus(uint8_t status); bool _systemStable;
void _bootupSequence();
bool _systemStable; bool _getSystemCheck();
void _bootupSequence(); void _systemCheckLoop();
bool _getSystemCheck(); void _setSystemCheck(bool stable);
void _systemCheckLoop();
void _setSystemCheck(bool stable);
// load average (0..100) and heap ram // load average (0..100) and heap ram
void _calculateLoad(); void _calculateLoad();
@@ -497,6 +491,7 @@ class MyESP {
uint16_t _ntp_interval; uint16_t _ntp_interval;
bool _ntp_enabled; bool _ntp_enabled;
uint8_t _ntp_timezone; uint8_t _ntp_timezone;
bool _have_ntp_time;
}; };
extern MyESP myESP; extern MyESP myESP;

View File

@@ -582,13 +582,34 @@ void publishSensorValues() {
bool hasdata = false; bool hasdata = false;
char buffer[128] = {0}; // temp string buffer char buffer[128] = {0}; // temp string buffer
// if we're not using nested JSON, send each sensor out seperately
if (!myESP.mqttUseNestedJson()) {
for (uint8_t i = 0; i < EMSESP_Settings.dallas_sensors; i++) {
float sensorValue = ds18.getValue(i);
if (sensorValue != DS18_DISCONNECTED) {
hasdata = true;
char topic[30]; // sensors{1-n}
strlcpy(topic, TOPIC_EXTERNAL_SENSORS, sizeof(topic)); // create topic
strlcat(topic, _int_to_char(buffer, i + 1), sizeof(topic));
sensors[PAYLOAD_EXTERNAL_SENSOR_ID] = ds18.getDeviceID(buffer, i); // add ID
sensors[PAYLOAD_EXTERNAL_SENSOR_TEMP] = sensorValue; // add temp value
char data[100] = {0};
serializeJson(doc, data, sizeof(data)); // convert to string
myESP.mqttPublish(topic, data); // and publish
}
}
if (hasdata) {
myDebugLog("Publishing external sensor data via MQTT");
}
return; // exit
}
// see if the sensor values have changed, if so send it on // see if the sensor values have changed, if so send it on
for (uint8_t i = 0; i < EMSESP_Settings.dallas_sensors; i++) { for (uint8_t i = 0; i < EMSESP_Settings.dallas_sensors; i++) {
float sensorValue = ds18.getValue(i); float sensorValue = ds18.getValue(i);
if (sensorValue != DS18_DISCONNECTED) { if (sensorValue != DS18_DISCONNECTED) {
hasdata = true; hasdata = true;
// create a nested object // create a nested object - https://github.com/proddy/EMS-ESP/issues/327
// https://github.com/proddy/EMS-ESP/issues/327
char sensorID[10]; // sensor{1-n} char sensorID[10]; // sensor{1-n}
strlcpy(sensorID, PAYLOAD_EXTERNAL_SENSOR_NUM, sizeof(sensorID)); strlcpy(sensorID, PAYLOAD_EXTERNAL_SENSOR_NUM, sizeof(sensorID));
strlcat(sensorID, _int_to_char(buffer, i + 1), sizeof(sensorID)); strlcat(sensorID, _int_to_char(buffer, i + 1), sizeof(sensorID));
@@ -598,343 +619,313 @@ void publishSensorValues() {
} }
} }
/* test code - https://github.com/proddy/EMS-ESP/issues/326
float sensorValue = 23.43;
hasdata = true;
char sensorID[10]; // sensor{1-n}
for (uint8_t i = 0; i < 10; i++) {
strlcpy(sensorID, PAYLOAD_EXTERNAL_SENSOR_NUM, sizeof(sensorID));
strlcat(sensorID, _int_to_char(buffer, i + 1), sizeof(sensorID));
JsonObject dataSensor = sensors.createNestedObject(sensorID);
dataSensor[PAYLOAD_EXTERNAL_SENSOR_ID] = "28D45A79A2190310";
dataSensor[PAYLOAD_EXTERNAL_SENSOR_TEMP] = sensorValue;
}
*/
if (!hasdata) {
return; // nothing to send
}
char data[DS18_MQTT_PAYLOAD_MAXSIZE] = {0}; char data[DS18_MQTT_PAYLOAD_MAXSIZE] = {0};
serializeJson(doc, data, sizeof(data)); serializeJson(doc, data, sizeof(data));
myDebugLog("Publishing external sensor data via MQTT");
myESP.mqttPublish(TOPIC_EXTERNAL_SENSORS, data); myESP.mqttPublish(TOPIC_EXTERNAL_SENSORS, data);
if (hasdata) {
myDebugLog("Publishing external sensor data via MQTT");
}
} }
// send values via MQTT // publish Boiler data via MQTT
// a json object is created for each device type void publishEMSValues_boiler() {
void publishEMSValues(bool force) {
// don't send if MQTT is not connected or EMS bus is not connected
if (!myESP.isMQTTConnected() || (!ems_getBusConnected()) || (EMSESP_Settings.publish_time == -1)) {
return;
}
char s[20] = {0}; // for formatting strings char s[20] = {0}; // for formatting strings
StaticJsonDocument<MQTT_MAX_PAYLOAD_SIZE> doc; StaticJsonDocument<MQTT_MAX_PAYLOAD_SIZE> doc;
char data[MQTT_MAX_PAYLOAD_SIZE] = {0}; char data[MQTT_MAX_PAYLOAD_SIZE] = {0};
JsonObject rootBoiler = doc.to<JsonObject>();
// do we have boiler changes? if (EMS_Boiler.wWComfort == EMS_VALUE_UBAParameterWW_wwComfort_Hot) {
if (ems_getBoilerEnabled() && (ems_Device_has_flags(EMS_DEVICE_UPDATE_FLAG_BOILER) || force)) { rootBoiler["wWComfort"] = "Hot";
JsonObject rootBoiler = doc.to<JsonObject>(); } else if (EMS_Boiler.wWComfort == EMS_VALUE_UBAParameterWW_wwComfort_Eco) {
rootBoiler["wWComfort"] = "Eco";
if (EMS_Boiler.wWComfort == EMS_VALUE_UBAParameterWW_wwComfort_Hot) { } else if (EMS_Boiler.wWComfort == EMS_VALUE_UBAParameterWW_wwComfort_Intelligent) {
rootBoiler["wWComfort"] = "Hot"; rootBoiler["wWComfort"] = "Intelligent";
} else if (EMS_Boiler.wWComfort == EMS_VALUE_UBAParameterWW_wwComfort_Eco) {
rootBoiler["wWComfort"] = "Eco";
} else if (EMS_Boiler.wWComfort == EMS_VALUE_UBAParameterWW_wwComfort_Intelligent) {
rootBoiler["wWComfort"] = "Intelligent";
}
if (EMS_Boiler.wWSelTemp != EMS_VALUE_INT_NOTSET)
rootBoiler["wWSelTemp"] = EMS_Boiler.wWSelTemp;
if (EMS_Boiler.wWDesinfectTemp != EMS_VALUE_INT_NOTSET)
rootBoiler["wWDesinfectionTemp"] = EMS_Boiler.wWDesinfectTemp;
if (EMS_Boiler.selFlowTemp != EMS_VALUE_INT_NOTSET)
rootBoiler["selFlowTemp"] = EMS_Boiler.selFlowTemp;
if (EMS_Boiler.selBurnPow != EMS_VALUE_INT_NOTSET)
rootBoiler["selBurnPow"] = EMS_Boiler.selBurnPow;
if (EMS_Boiler.curBurnPow != EMS_VALUE_INT_NOTSET)
rootBoiler["curBurnPow"] = EMS_Boiler.curBurnPow;
if (EMS_Boiler.pumpMod != EMS_VALUE_INT_NOTSET)
rootBoiler["pumpMod"] = EMS_Boiler.pumpMod;
if (EMS_Boiler.wWCircPump != EMS_VALUE_BOOL_NOTSET)
rootBoiler["wWCircPump"] = EMS_Boiler.wWCircPump;
if (EMS_Boiler.extTemp > EMS_VALUE_SHORT_NOTSET)
rootBoiler["outdoorTemp"] = (float)EMS_Boiler.extTemp / 10;
if (EMS_Boiler.wWCurTmp < EMS_VALUE_USHORT_NOTSET)
rootBoiler["wWCurTmp"] = (float)EMS_Boiler.wWCurTmp / 10;
if (EMS_Boiler.wWCurFlow != EMS_VALUE_INT_NOTSET)
rootBoiler["wWCurFlow"] = (float)EMS_Boiler.wWCurFlow / 10;
if (EMS_Boiler.curFlowTemp < EMS_VALUE_USHORT_NOTSET)
rootBoiler["curFlowTemp"] = (float)EMS_Boiler.curFlowTemp / 10;
if (EMS_Boiler.retTemp < EMS_VALUE_USHORT_NOTSET)
rootBoiler["retTemp"] = (float)EMS_Boiler.retTemp / 10;
if (EMS_Boiler.switchTemp < EMS_VALUE_USHORT_NOTSET)
rootBoiler["switchTemp"] = (float)EMS_Boiler.switchTemp / 10;
if (EMS_Boiler.sysPress != EMS_VALUE_INT_NOTSET)
rootBoiler["sysPress"] = (float)EMS_Boiler.sysPress / 10;
if (EMS_Boiler.boilTemp < EMS_VALUE_USHORT_NOTSET)
rootBoiler["boilTemp"] = (float)EMS_Boiler.boilTemp / 10;
if (EMS_Boiler.exhaustTemp < EMS_VALUE_USHORT_NOTSET)
rootBoiler["exhaustTemp"] = (float)EMS_Boiler.exhaustTemp / 10;
if (EMS_Boiler.wWActivated != EMS_VALUE_BOOL_NOTSET)
rootBoiler["wWActivated"] = _bool_to_char(s, EMS_Boiler.wWActivated);
if (EMS_Boiler.wWActivated != EMS_VALUE_BOOL_NOTSET)
rootBoiler["wWOnetime"] = _bool_to_char(s, EMS_Boiler.wWOneTime);
if (EMS_Boiler.wWCirc != EMS_VALUE_BOOL_NOTSET)
rootBoiler["wWCirc"] = _bool_to_char(s, EMS_Boiler.wWCirc);
if (EMS_Boiler.burnGas != EMS_VALUE_BOOL_NOTSET)
rootBoiler["burnGas"] = _bool_to_char(s, EMS_Boiler.burnGas);
if (EMS_Boiler.flameCurr < EMS_VALUE_USHORT_NOTSET)
rootBoiler["flameCurr"] = (float)(int16_t)EMS_Boiler.flameCurr / 10;
if (EMS_Boiler.heatPmp != EMS_VALUE_BOOL_NOTSET)
rootBoiler["heatPmp"] = _bool_to_char(s, EMS_Boiler.heatPmp);
if (EMS_Boiler.fanWork != EMS_VALUE_BOOL_NOTSET)
rootBoiler["fanWork"] = _bool_to_char(s, EMS_Boiler.fanWork);
if (EMS_Boiler.ignWork != EMS_VALUE_BOOL_NOTSET)
rootBoiler["ignWork"] = _bool_to_char(s, EMS_Boiler.ignWork);
if (EMS_Boiler.heating_temp != EMS_VALUE_INT_NOTSET)
rootBoiler["heating_temp"] = EMS_Boiler.heating_temp;
if (EMS_Boiler.pump_mod_max != EMS_VALUE_INT_NOTSET)
rootBoiler["pump_mod_max"] = EMS_Boiler.pump_mod_max;
if (EMS_Boiler.pump_mod_min != EMS_VALUE_INT_NOTSET)
rootBoiler["pump_mod_min"] = EMS_Boiler.pump_mod_min;
if (EMS_Boiler.wWHeat != EMS_VALUE_BOOL_NOTSET)
rootBoiler["wWHeat"] = _bool_to_char(s, EMS_Boiler.wWHeat);
if (abs(EMS_Boiler.wWStarts) != EMS_VALUE_LONG_NOTSET)
rootBoiler["wWStarts"] = (float)EMS_Boiler.wWStarts;
if (abs(EMS_Boiler.wWWorkM) != EMS_VALUE_LONG_NOTSET)
rootBoiler["wWWorkM"] = (float)EMS_Boiler.wWWorkM;
if (abs(EMS_Boiler.UBAuptime) != EMS_VALUE_LONG_NOTSET)
rootBoiler["UBAuptime"] = (float)EMS_Boiler.UBAuptime;
if (abs(EMS_Boiler.burnStarts) != EMS_VALUE_LONG_NOTSET)
rootBoiler["burnStarts"] = (float)EMS_Boiler.burnStarts;
if (abs(EMS_Boiler.burnWorkMin) != EMS_VALUE_LONG_NOTSET)
rootBoiler["burnWorkMin"] = (float)EMS_Boiler.burnWorkMin;
if (abs(EMS_Boiler.heatWorkMin) != EMS_VALUE_LONG_NOTSET)
rootBoiler["heatWorkMin"] = (float)EMS_Boiler.heatWorkMin;
if (EMS_Boiler.serviceCode != EMS_VALUE_USHORT_NOTSET) {
rootBoiler["ServiceCode"] = EMS_Boiler.serviceCodeChar;
rootBoiler["ServiceCodeNumber"] = EMS_Boiler.serviceCode;
}
serializeJson(doc, data, sizeof(data));
myDebugLog("Publishing boiler data via MQTT");
myESP.mqttPublish(TOPIC_BOILER_DATA, data);
// see if the heating or hot tap water has changed, if so send
// last_boilerActive stores heating in bit 1 and tap water in bit 2
static uint8_t last_boilerActive = 0xFF; // for remembering last setting of the tap water or heating on/off
if ((last_boilerActive != ((EMS_Boiler.tapwaterActive << 1) + EMS_Boiler.heatingActive)) || force) {
myDebugLog("Publishing hot water and heating states via MQTT");
myESP.mqttPublish(TOPIC_BOILER_TAPWATER_ACTIVE, EMS_Boiler.tapwaterActive == 1 ? "1" : "0");
myESP.mqttPublish(TOPIC_BOILER_HEATING_ACTIVE, EMS_Boiler.heatingActive == 1 ? "1" : "0");
last_boilerActive = ((EMS_Boiler.tapwaterActive << 1) + EMS_Boiler.heatingActive); // remember last state
}
ems_Device_remove_flags(EMS_DEVICE_UPDATE_FLAG_BOILER); // unset flag
} }
// handle the thermostat values if (EMS_Boiler.wWSelTemp != EMS_VALUE_INT_NOTSET)
if (ems_getThermostatEnabled() && (ems_Device_has_flags(EMS_DEVICE_UPDATE_FLAG_THERMOSTAT) || force)) { rootBoiler["wWSelTemp"] = EMS_Boiler.wWSelTemp;
doc.clear(); if (EMS_Boiler.wWDesinfectTemp != EMS_VALUE_INT_NOTSET)
JsonObject rootThermostat = doc.to<JsonObject>(); rootBoiler["wWDesinfectionTemp"] = EMS_Boiler.wWDesinfectTemp;
if (EMS_Boiler.selFlowTemp != EMS_VALUE_INT_NOTSET)
rootBoiler["selFlowTemp"] = EMS_Boiler.selFlowTemp;
if (EMS_Boiler.selBurnPow != EMS_VALUE_INT_NOTSET)
rootBoiler["selBurnPow"] = EMS_Boiler.selBurnPow;
if (EMS_Boiler.curBurnPow != EMS_VALUE_INT_NOTSET)
rootBoiler["curBurnPow"] = EMS_Boiler.curBurnPow;
if (EMS_Boiler.pumpMod != EMS_VALUE_INT_NOTSET)
rootBoiler["pumpMod"] = EMS_Boiler.pumpMod;
if (EMS_Boiler.wWCircPump != EMS_VALUE_BOOL_NOTSET)
rootBoiler["wWCircPump"] = EMS_Boiler.wWCircPump;
for (uint8_t hc_v = 1; hc_v <= EMS_THERMOSTAT_MAXHC; hc_v++) { if (EMS_Boiler.extTemp > EMS_VALUE_SHORT_NOTSET)
_EMS_Thermostat_HC * thermostat = &EMS_Thermostat.hc[hc_v - 1]; rootBoiler["outdoorTemp"] = (float)EMS_Boiler.extTemp / 10;
if (EMS_Boiler.wWCurTmp < EMS_VALUE_USHORT_NOTSET)
rootBoiler["wWCurTmp"] = (float)EMS_Boiler.wWCurTmp / 10;
if (EMS_Boiler.wWCurFlow != EMS_VALUE_INT_NOTSET)
rootBoiler["wWCurFlow"] = (float)EMS_Boiler.wWCurFlow / 10;
if (EMS_Boiler.curFlowTemp < EMS_VALUE_USHORT_NOTSET)
rootBoiler["curFlowTemp"] = (float)EMS_Boiler.curFlowTemp / 10;
if (EMS_Boiler.retTemp < EMS_VALUE_USHORT_NOTSET)
rootBoiler["retTemp"] = (float)EMS_Boiler.retTemp / 10;
if (EMS_Boiler.switchTemp < EMS_VALUE_USHORT_NOTSET)
rootBoiler["switchTemp"] = (float)EMS_Boiler.switchTemp / 10;
if (EMS_Boiler.sysPress != EMS_VALUE_INT_NOTSET)
rootBoiler["sysPress"] = (float)EMS_Boiler.sysPress / 10;
if (EMS_Boiler.boilTemp < EMS_VALUE_USHORT_NOTSET)
rootBoiler["boilTemp"] = (float)EMS_Boiler.boilTemp / 10;
if (EMS_Boiler.exhaustTemp < EMS_VALUE_USHORT_NOTSET)
rootBoiler["exhaustTemp"] = (float)EMS_Boiler.exhaustTemp / 10;
if (EMS_Boiler.wWActivated != EMS_VALUE_BOOL_NOTSET)
rootBoiler["wWActivated"] = _bool_to_char(s, EMS_Boiler.wWActivated);
// only send if we have an active Heating Circuit with an actual setpoint temp temperature values if (EMS_Boiler.wWActivated != EMS_VALUE_BOOL_NOTSET)
if ((thermostat->active) && (thermostat->setpoint_roomTemp > EMS_VALUE_SHORT_NOTSET)) { rootBoiler["wWOnetime"] = _bool_to_char(s, EMS_Boiler.wWOneTime);
// build new json object
char hc[10]; // hc{1-4}
strlcpy(hc, THERMOSTAT_HC, sizeof(hc));
strlcat(hc, _int_to_char(s, thermostat->hc), sizeof(hc));
JsonObject dataThermostat = rootThermostat.createNestedObject(hc);
uint8_t model = ems_getThermostatModel();
// different logic depending on thermostat types if (EMS_Boiler.wWCirc != EMS_VALUE_BOOL_NOTSET)
if (model == EMS_DEVICE_FLAG_EASY) { rootBoiler["wWCirc"] = _bool_to_char(s, EMS_Boiler.wWCirc);
if (thermostat->setpoint_roomTemp > EMS_VALUE_SHORT_NOTSET)
dataThermostat[THERMOSTAT_SELTEMP] = (float)thermostat->setpoint_roomTemp / 100;
if (thermostat->curr_roomTemp > EMS_VALUE_SHORT_NOTSET)
dataThermostat[THERMOSTAT_CURRTEMP] = (float)thermostat->curr_roomTemp / 100;
} else if (model == EMS_DEVICE_FLAG_JUNKERS) {
if (thermostat->setpoint_roomTemp > EMS_VALUE_SHORT_NOTSET)
dataThermostat[THERMOSTAT_SELTEMP] = (float)thermostat->setpoint_roomTemp / 10;
if (thermostat->curr_roomTemp > EMS_VALUE_SHORT_NOTSET)
dataThermostat[THERMOSTAT_CURRTEMP] = (float)thermostat->curr_roomTemp / 10;
} else {
if (thermostat->setpoint_roomTemp > EMS_VALUE_SHORT_NOTSET)
dataThermostat[THERMOSTAT_SELTEMP] = (float)thermostat->setpoint_roomTemp / 2;
if (thermostat->curr_roomTemp > EMS_VALUE_SHORT_NOTSET)
dataThermostat[THERMOSTAT_CURRTEMP] = (float)thermostat->curr_roomTemp / 10;
if (thermostat->daytemp != EMS_VALUE_INT_NOTSET) if (EMS_Boiler.burnGas != EMS_VALUE_BOOL_NOTSET)
dataThermostat[THERMOSTAT_DAYTEMP] = (float)thermostat->daytemp / 2; rootBoiler["burnGas"] = _bool_to_char(s, EMS_Boiler.burnGas);
if (thermostat->nighttemp != EMS_VALUE_INT_NOTSET)
dataThermostat[THERMOSTAT_NIGHTTEMP] = (float)thermostat->nighttemp / 2;
if (thermostat->holidaytemp != EMS_VALUE_INT_NOTSET)
dataThermostat[THERMOSTAT_HOLIDAYTEMP] = (float)thermostat->holidaytemp / 2;
if (thermostat->heatingtype != EMS_VALUE_INT_NOTSET) if (EMS_Boiler.flameCurr < EMS_VALUE_USHORT_NOTSET)
dataThermostat[THERMOSTAT_HEATINGTYPE] = thermostat->heatingtype; rootBoiler["flameCurr"] = (float)(int16_t)EMS_Boiler.flameCurr / 10;
if (thermostat->circuitcalctemp != EMS_VALUE_INT_NOTSET) if (EMS_Boiler.heatPmp != EMS_VALUE_BOOL_NOTSET)
dataThermostat[THERMOSTAT_CIRCUITCALCTEMP] = thermostat->circuitcalctemp; rootBoiler["heatPmp"] = _bool_to_char(s, EMS_Boiler.heatPmp);
}
// Thermostat Mode if (EMS_Boiler.fanWork != EMS_VALUE_BOOL_NOTSET)
_EMS_THERMOSTAT_MODE thermoMode = _getThermostatMode(hc_v); rootBoiler["fanWork"] = _bool_to_char(s, EMS_Boiler.fanWork);
if (thermoMode == EMS_THERMOSTAT_MODE_OFF) {
dataThermostat[THERMOSTAT_MODE] = "off"; if (EMS_Boiler.ignWork != EMS_VALUE_BOOL_NOTSET)
} else if (thermoMode == EMS_THERMOSTAT_MODE_MANUAL) { rootBoiler["ignWork"] = _bool_to_char(s, EMS_Boiler.ignWork);
dataThermostat[THERMOSTAT_MODE] = "manual";
} else if (thermoMode == EMS_THERMOSTAT_MODE_AUTO) { if (EMS_Boiler.heating_temp != EMS_VALUE_INT_NOTSET)
dataThermostat[THERMOSTAT_MODE] = "auto"; rootBoiler["heating_temp"] = EMS_Boiler.heating_temp;
} else if (thermoMode == EMS_THERMOSTAT_MODE_DAY) { if (EMS_Boiler.pump_mod_max != EMS_VALUE_INT_NOTSET)
dataThermostat[THERMOSTAT_MODE] = "day"; rootBoiler["pump_mod_max"] = EMS_Boiler.pump_mod_max;
} else if (thermoMode == EMS_THERMOSTAT_MODE_NIGHT) { if (EMS_Boiler.pump_mod_min != EMS_VALUE_INT_NOTSET)
dataThermostat[THERMOSTAT_MODE] = "night"; rootBoiler["pump_mod_min"] = EMS_Boiler.pump_mod_min;
}
if (EMS_Boiler.wWHeat != EMS_VALUE_BOOL_NOTSET)
rootBoiler["wWHeat"] = _bool_to_char(s, EMS_Boiler.wWHeat);
if (abs(EMS_Boiler.wWStarts) != EMS_VALUE_LONG_NOTSET)
rootBoiler["wWStarts"] = (float)EMS_Boiler.wWStarts;
if (abs(EMS_Boiler.wWWorkM) != EMS_VALUE_LONG_NOTSET)
rootBoiler["wWWorkM"] = (float)EMS_Boiler.wWWorkM;
if (abs(EMS_Boiler.UBAuptime) != EMS_VALUE_LONG_NOTSET)
rootBoiler["UBAuptime"] = (float)EMS_Boiler.UBAuptime;
if (abs(EMS_Boiler.burnStarts) != EMS_VALUE_LONG_NOTSET)
rootBoiler["burnStarts"] = (float)EMS_Boiler.burnStarts;
if (abs(EMS_Boiler.burnWorkMin) != EMS_VALUE_LONG_NOTSET)
rootBoiler["burnWorkMin"] = (float)EMS_Boiler.burnWorkMin;
if (abs(EMS_Boiler.heatWorkMin) != EMS_VALUE_LONG_NOTSET)
rootBoiler["heatWorkMin"] = (float)EMS_Boiler.heatWorkMin;
if (EMS_Boiler.serviceCode != EMS_VALUE_USHORT_NOTSET) {
rootBoiler["ServiceCode"] = EMS_Boiler.serviceCodeChar;
rootBoiler["ServiceCodeNumber"] = EMS_Boiler.serviceCode;
}
serializeJson(doc, data, sizeof(data));
myDebugLog("Publishing boiler data via MQTT");
myESP.mqttPublish(TOPIC_BOILER_DATA, data);
// see if the heating or hot tap water has changed, if so send
// last_boilerActive stores heating in bit 1 and tap water in bit 2
static uint8_t last_boilerActive = 0xFF; // for remembering last setting of the tap water or heating on/off
if (last_boilerActive != ((EMS_Boiler.tapwaterActive << 1) + EMS_Boiler.heatingActive)) {
myDebugLog("Publishing hot water and heating states via MQTT");
myESP.mqttPublish(TOPIC_BOILER_TAPWATER_ACTIVE, EMS_Boiler.tapwaterActive == 1 ? "1" : "0");
myESP.mqttPublish(TOPIC_BOILER_HEATING_ACTIVE, EMS_Boiler.heatingActive == 1 ? "1" : "0");
last_boilerActive = ((EMS_Boiler.tapwaterActive << 1) + EMS_Boiler.heatingActive); // remember last state
}
}
// handle the thermostat values
void publishEMSValues_thermostat() {
char s[20] = {0}; // for formatting strings
StaticJsonDocument<MQTT_MAX_PAYLOAD_SIZE> doc;
char data[MQTT_MAX_PAYLOAD_SIZE] = {0};
JsonObject rootThermostat = doc.to<JsonObject>();
for (uint8_t hc_v = 1; hc_v <= EMS_THERMOSTAT_MAXHC; hc_v++) {
_EMS_Thermostat_HC * thermostat = &EMS_Thermostat.hc[hc_v - 1];
// only send if we have an active Heating Circuit with an actual setpoint temp temperature values
if ((thermostat->active) && (thermostat->setpoint_roomTemp > EMS_VALUE_SHORT_NOTSET)) {
// build new json object
char hc[10]; // hc{1-4}
strlcpy(hc, THERMOSTAT_HC, sizeof(hc));
strlcat(hc, _int_to_char(s, thermostat->hc), sizeof(hc));
JsonObject dataThermostat = rootThermostat.createNestedObject(hc);
uint8_t model = ems_getThermostatModel();
// different logic depending on thermostat types
if (model == EMS_DEVICE_FLAG_EASY) {
if (thermostat->setpoint_roomTemp > EMS_VALUE_SHORT_NOTSET)
dataThermostat[THERMOSTAT_SELTEMP] = (float)thermostat->setpoint_roomTemp / 100;
if (thermostat->curr_roomTemp > EMS_VALUE_SHORT_NOTSET)
dataThermostat[THERMOSTAT_CURRTEMP] = (float)thermostat->curr_roomTemp / 100;
} else if (model == EMS_DEVICE_FLAG_JUNKERS) {
if (thermostat->setpoint_roomTemp > EMS_VALUE_SHORT_NOTSET)
dataThermostat[THERMOSTAT_SELTEMP] = (float)thermostat->setpoint_roomTemp / 10;
if (thermostat->curr_roomTemp > EMS_VALUE_SHORT_NOTSET)
dataThermostat[THERMOSTAT_CURRTEMP] = (float)thermostat->curr_roomTemp / 10;
} else {
if (thermostat->setpoint_roomTemp > EMS_VALUE_SHORT_NOTSET)
dataThermostat[THERMOSTAT_SELTEMP] = (float)thermostat->setpoint_roomTemp / 2;
if (thermostat->curr_roomTemp > EMS_VALUE_SHORT_NOTSET)
dataThermostat[THERMOSTAT_CURRTEMP] = (float)thermostat->curr_roomTemp / 10;
if (thermostat->daytemp != EMS_VALUE_INT_NOTSET)
dataThermostat[THERMOSTAT_DAYTEMP] = (float)thermostat->daytemp / 2;
if (thermostat->nighttemp != EMS_VALUE_INT_NOTSET)
dataThermostat[THERMOSTAT_NIGHTTEMP] = (float)thermostat->nighttemp / 2;
if (thermostat->holidaytemp != EMS_VALUE_INT_NOTSET)
dataThermostat[THERMOSTAT_HOLIDAYTEMP] = (float)thermostat->holidaytemp / 2;
if (thermostat->heatingtype != EMS_VALUE_INT_NOTSET)
dataThermostat[THERMOSTAT_HEATINGTYPE] = thermostat->heatingtype;
if (thermostat->circuitcalctemp != EMS_VALUE_INT_NOTSET)
dataThermostat[THERMOSTAT_CIRCUITCALCTEMP] = thermostat->circuitcalctemp;
}
// Thermostat Mode
_EMS_THERMOSTAT_MODE thermoMode = _getThermostatMode(hc_v);
if (thermoMode == EMS_THERMOSTAT_MODE_OFF) {
dataThermostat[THERMOSTAT_MODE] = "off";
} else if (thermoMode == EMS_THERMOSTAT_MODE_MANUAL) {
dataThermostat[THERMOSTAT_MODE] = "manual";
} else if (thermoMode == EMS_THERMOSTAT_MODE_AUTO) {
dataThermostat[THERMOSTAT_MODE] = "auto";
} else if (thermoMode == EMS_THERMOSTAT_MODE_DAY) {
dataThermostat[THERMOSTAT_MODE] = "day";
} else if (thermoMode == EMS_THERMOSTAT_MODE_NIGHT) {
dataThermostat[THERMOSTAT_MODE] = "night";
} }
} }
data[0] = '\0'; // reset data for next package
serializeJson(doc, data, sizeof(data));
myDebugLog("Publishing thermostat data via MQTT");
myESP.mqttPublish(TOPIC_THERMOSTAT_DATA, data);
ems_Device_remove_flags(EMS_DEVICE_UPDATE_FLAG_THERMOSTAT); // unset flag
} }
// handle the mixing values serializeJson(doc, data, sizeof(data));
if (ems_getMixingModuleEnabled() && (ems_Device_has_flags(EMS_DEVICE_UPDATE_FLAG_MIXING) || force)) { myDebugLog("Publishing thermostat data via MQTT");
doc.clear(); myESP.mqttPublish(TOPIC_THERMOSTAT_DATA, data);
JsonObject rootMixing = doc.to<JsonObject>(); }
for (uint8_t hc_v = 1; hc_v <= EMS_MIXING_MAXHC; hc_v++) { // publish mixing data
_EMS_MixingModule_HC * mixingHC = &EMS_MixingModule.hc[hc_v - 1]; void publishEMSValues_mixing() {
char s[20] = {0}; // for formatting strings
StaticJsonDocument<MQTT_MAX_PAYLOAD_SIZE> doc;
char data[MQTT_MAX_PAYLOAD_SIZE] = {0};
JsonObject rootMixing = doc.to<JsonObject>();
// only send if we have an active Heating Circuit with real data for (uint8_t hc_v = 1; hc_v <= EMS_MIXING_MAXHC; hc_v++) {
if (mixingHC->active) { _EMS_MixingModule_HC * mixingHC = &EMS_MixingModule.hc[hc_v - 1];
char hc[10]; // hc{1-4}
strlcpy(hc, MIXING_HC, sizeof(hc)); // only send if we have an active Heating Circuit with real data
strlcat(hc, _int_to_char(s, mixingHC->hc), sizeof(hc)); if (mixingHC->active) {
JsonObject dataMixingHC = rootMixing.createNestedObject(hc); char hc[10]; // hc{1-4}
if (mixingHC->flowTemp < EMS_VALUE_USHORT_NOTSET) strlcpy(hc, MIXING_HC, sizeof(hc));
dataMixingHC["flowTemp"] = (float)mixingHC->flowTemp / 10; strlcat(hc, _int_to_char(s, mixingHC->hc), sizeof(hc));
if (mixingHC->flowSetTemp != EMS_VALUE_INT_NOTSET) JsonObject dataMixingHC = rootMixing.createNestedObject(hc);
dataMixingHC["setflowTemp"] = mixingHC->flowSetTemp; if (mixingHC->flowTemp < EMS_VALUE_USHORT_NOTSET)
if (mixingHC->pumpMod != EMS_VALUE_INT_NOTSET) dataMixingHC["flowTemp"] = (float)mixingHC->flowTemp / 10;
dataMixingHC["pumpMod"] = mixingHC->pumpMod; if (mixingHC->flowSetTemp != EMS_VALUE_INT_NOTSET)
if (mixingHC->valveStatus != EMS_VALUE_INT_NOTSET) dataMixingHC["setflowTemp"] = mixingHC->flowSetTemp;
dataMixingHC["valveStatus"] = mixingHC->valveStatus; if (mixingHC->pumpMod != EMS_VALUE_INT_NOTSET)
} dataMixingHC["pumpMod"] = mixingHC->pumpMod;
if (mixingHC->valveStatus != EMS_VALUE_INT_NOTSET)
dataMixingHC["valveStatus"] = mixingHC->valveStatus;
} }
for (uint8_t wwc_v = 1; wwc_v <= EMS_MIXING_MAXWWC; wwc_v++) {
_EMS_MixingModule_WWC * mixingWWC = &EMS_MixingModule.wwc[wwc_v - 1];
// only send if we have an active Warm water Circuit with real data
if (mixingWWC->active) {
char wwc[10]; // wwc{1-2}
strlcpy(wwc, MIXING_WWC, sizeof(wwc));
strlcat(wwc, _int_to_char(s, mixingWWC->wwc), sizeof(wwc));
JsonObject dataMixing = rootMixing.createNestedObject(wwc);
if (mixingWWC->flowTemp < EMS_VALUE_USHORT_NOTSET)
dataMixing["wwTemp"] = (float)mixingWWC->flowTemp / 10;
if (mixingWWC->pumpMod != EMS_VALUE_INT_NOTSET)
dataMixing["pumpStatus"] = mixingWWC->pumpMod;
if (mixingWWC->tempStatus != EMS_VALUE_INT_NOTSET)
dataMixing["tempStatus"] = mixingWWC->tempStatus;
}
}
data[0] = '\0'; // reset data for next package
serializeJson(doc, data, sizeof(data));
myDebugLog("Publishing mixing data via MQTT");
myESP.mqttPublish(TOPIC_MIXING_DATA, data);
ems_Device_remove_flags(EMS_DEVICE_UPDATE_FLAG_MIXING); // unset flag
} }
// For SM10 and SM100/SM200 Solar Modules for (uint8_t wwc_v = 1; wwc_v <= EMS_MIXING_MAXWWC; wwc_v++) {
if (ems_getSolarModuleEnabled() && (ems_Device_has_flags(EMS_DEVICE_UPDATE_FLAG_SOLAR) || force)) { _EMS_MixingModule_WWC * mixingWWC = &EMS_MixingModule.wwc[wwc_v - 1];
// build new json object // only send if we have an active Warm water Circuit with real data
doc.clear(); if (mixingWWC->active) {
JsonObject rootSM = doc.to<JsonObject>(); char wwc[10]; // wwc{1-2}
strlcpy(wwc, MIXING_WWC, sizeof(wwc));
if (EMS_SolarModule.collectorTemp > EMS_VALUE_SHORT_NOTSET) strlcat(wwc, _int_to_char(s, mixingWWC->wwc), sizeof(wwc));
rootSM[SM_COLLECTORTEMP] = (float)EMS_SolarModule.collectorTemp / 10; JsonObject dataMixing = rootMixing.createNestedObject(wwc);
if (mixingWWC->flowTemp < EMS_VALUE_USHORT_NOTSET)
if (EMS_SolarModule.bottomTemp > EMS_VALUE_SHORT_NOTSET) dataMixing["wwTemp"] = (float)mixingWWC->flowTemp / 10;
rootSM[SM_BOTTOMTEMP] = (float)EMS_SolarModule.bottomTemp / 10; if (mixingWWC->pumpMod != EMS_VALUE_INT_NOTSET)
dataMixing["pumpStatus"] = mixingWWC->pumpMod;
if (EMS_SolarModule.pumpModulation != EMS_VALUE_INT_NOTSET) if (mixingWWC->tempStatus != EMS_VALUE_INT_NOTSET)
rootSM[SM_PUMPMODULATION] = EMS_SolarModule.pumpModulation; dataMixing["tempStatus"] = mixingWWC->tempStatus;
if (EMS_SolarModule.pump != EMS_VALUE_BOOL_NOTSET) {
rootSM[SM_PUMP] = _bool_to_char(s, EMS_SolarModule.pump);
} }
if (EMS_SolarModule.pumpWorkMin != EMS_VALUE_LONG_NOTSET) {
rootSM[SM_PUMPWORKMIN] = (float)EMS_SolarModule.pumpWorkMin;
}
if (EMS_SolarModule.EnergyLastHour < EMS_VALUE_USHORT_NOTSET)
rootSM[SM_ENERGYLASTHOUR] = (float)EMS_SolarModule.EnergyLastHour / 10;
if (EMS_SolarModule.EnergyToday < EMS_VALUE_USHORT_NOTSET)
rootSM[SM_ENERGYTODAY] = EMS_SolarModule.EnergyToday;
if (EMS_SolarModule.EnergyTotal < EMS_VALUE_USHORT_NOTSET)
rootSM[SM_ENERGYTOTAL] = (float)EMS_SolarModule.EnergyTotal / 10;
data[0] = '\0'; // reset data for next package
serializeJson(doc, data, sizeof(data));
myDebugLog("Publishing SM data via MQTT");
myESP.mqttPublish(TOPIC_SM_DATA, data);
ems_Device_remove_flags(EMS_DEVICE_UPDATE_FLAG_SOLAR); // unset flag
} }
// handle HeatPump serializeJson(doc, data, sizeof(data));
if (ems_getHeatPumpEnabled() && (ems_Device_has_flags(EMS_DEVICE_UPDATE_FLAG_HEATPUMP) || force)) { myDebugLog("Publishing mixing data via MQTT");
// build new json object myESP.mqttPublish(TOPIC_MIXING_DATA, data);
doc.clear(); }
JsonObject rootSM = doc.to<JsonObject>();
if (EMS_HeatPump.HPModulation != EMS_VALUE_INT_NOTSET) // For SM10 and SM100/SM200 Solar Modules
rootSM[HP_PUMPMODULATION] = EMS_HeatPump.HPModulation; void publishEMSValues_solar() {
char s[20] = {0}; // for formatting strings
StaticJsonDocument<MQTT_MAX_PAYLOAD_SIZE> doc;
char data[MQTT_MAX_PAYLOAD_SIZE] = {0};
JsonObject rootSM = doc.to<JsonObject>();
if (EMS_HeatPump.HPSpeed != EMS_VALUE_INT_NOTSET) if (EMS_SolarModule.collectorTemp > EMS_VALUE_SHORT_NOTSET)
rootSM[HP_PUMPSPEED] = EMS_HeatPump.HPSpeed; rootSM[SM_COLLECTORTEMP] = (float)EMS_SolarModule.collectorTemp / 10;
data[0] = '\0'; // reset data for next package if (EMS_SolarModule.bottomTemp > EMS_VALUE_SHORT_NOTSET)
serializeJson(doc, data, sizeof(data)); rootSM[SM_BOTTOMTEMP] = (float)EMS_SolarModule.bottomTemp / 10;
myDebugLog("Publishing HeatPump data via MQTT");
myESP.mqttPublish(TOPIC_HP_DATA, data); if (EMS_SolarModule.pumpModulation != EMS_VALUE_INT_NOTSET)
ems_Device_remove_flags(EMS_DEVICE_UPDATE_FLAG_HEATPUMP); // unset flag rootSM[SM_PUMPMODULATION] = EMS_SolarModule.pumpModulation;
if (EMS_SolarModule.pump != EMS_VALUE_BOOL_NOTSET) {
rootSM[SM_PUMP] = _bool_to_char(s, EMS_SolarModule.pump);
} }
if (EMS_SolarModule.pumpWorkMin != EMS_VALUE_LONG_NOTSET) {
rootSM[SM_PUMPWORKMIN] = (float)EMS_SolarModule.pumpWorkMin;
}
if (EMS_SolarModule.EnergyLastHour < EMS_VALUE_USHORT_NOTSET)
rootSM[SM_ENERGYLASTHOUR] = (float)EMS_SolarModule.EnergyLastHour / 10;
if (EMS_SolarModule.EnergyToday < EMS_VALUE_USHORT_NOTSET)
rootSM[SM_ENERGYTODAY] = EMS_SolarModule.EnergyToday;
if (EMS_SolarModule.EnergyTotal < EMS_VALUE_USHORT_NOTSET)
rootSM[SM_ENERGYTOTAL] = (float)EMS_SolarModule.EnergyTotal / 10;
serializeJson(doc, data, sizeof(data));
myDebugLog("Publishing SM data via MQTT");
myESP.mqttPublish(TOPIC_SM_DATA, data);
}
// handle HeatPump
void publishEMSValues_heatpump() {
StaticJsonDocument<MQTT_MAX_PAYLOAD_SIZE> doc;
char data[MQTT_MAX_PAYLOAD_SIZE] = {0};
JsonObject rootHP = doc.to<JsonObject>();
if (EMS_HeatPump.HPModulation != EMS_VALUE_INT_NOTSET)
rootHP[HP_PUMPMODULATION] = EMS_HeatPump.HPModulation;
if (EMS_HeatPump.HPSpeed != EMS_VALUE_INT_NOTSET)
rootHP[HP_PUMPSPEED] = EMS_HeatPump.HPSpeed;
serializeJson(doc, data, sizeof(data));
myDebugLog("Publishing HeatPump data via MQTT");
myESP.mqttPublish(TOPIC_HP_DATA, data);
} }
// Publish shower data // Publish shower data
void do_publishShowerData() { void do_publishShowerData() {
StaticJsonDocument<200> doc; StaticJsonDocument<MQTT_MAX_PAYLOAD_SIZE_SMALL> doc;
JsonObject rootShower = doc.to<JsonObject>(); JsonObject rootShower = doc.to<JsonObject>();
rootShower[TOPIC_SHOWER_TIMER] = EMSESP_Settings.shower_timer ? "1" : "0"; rootShower[TOPIC_SHOWER_TIMER] = EMSESP_Settings.shower_timer ? "1" : "0";
rootShower[TOPIC_SHOWER_ALERT] = EMSESP_Settings.shower_alert ? "1" : "0"; rootShower[TOPIC_SHOWER_ALERT] = EMSESP_Settings.shower_alert ? "1" : "0";
// only publish shower duration if there is a value // only publish shower duration if there is a value
char s[50] = {0}; char s[50] = {0};
@@ -956,17 +947,58 @@ void do_publishShowerData() {
myESP.mqttPublish(TOPIC_SHOWER_DATA, data, false); myESP.mqttPublish(TOPIC_SHOWER_DATA, data, false);
} }
// call PublishValues with forcing forcing // send values via MQTT
void do_publishValues() { // a json object is created for each device type
void publishEMSValues(bool force) {
// don't send if MQTT is not connected or EMS bus is not connected
if (!myESP.isMQTTConnected() || (!ems_getBusConnected()) || (EMSESP_Settings.publish_time == -1)) {
return;
}
if (ems_getBoilerEnabled() && (ems_Device_has_flags(EMS_DEVICE_UPDATE_FLAG_BOILER) || force)) {
publishEMSValues_boiler();
ems_Device_remove_flags(EMS_DEVICE_UPDATE_FLAG_BOILER); // unset flag
}
if (ems_getThermostatEnabled() && (ems_Device_has_flags(EMS_DEVICE_UPDATE_FLAG_THERMOSTAT) || force)) {
publishEMSValues_thermostat();
ems_Device_remove_flags(EMS_DEVICE_UPDATE_FLAG_THERMOSTAT); // unset flag
}
if (ems_getMixingModuleEnabled() && (ems_Device_has_flags(EMS_DEVICE_UPDATE_FLAG_MIXING) || force)) {
publishEMSValues_mixing();
ems_Device_remove_flags(EMS_DEVICE_UPDATE_FLAG_MIXING); // unset flag
}
if (ems_getSolarModuleEnabled() && (ems_Device_has_flags(EMS_DEVICE_UPDATE_FLAG_SOLAR) || force)) {
publishEMSValues_solar();
ems_Device_remove_flags(EMS_DEVICE_UPDATE_FLAG_SOLAR); // unset flag
}
if (ems_getHeatPumpEnabled() && (ems_Device_has_flags(EMS_DEVICE_UPDATE_FLAG_HEATPUMP) || force)) {
publishEMSValues_heatpump();
ems_Device_remove_flags(EMS_DEVICE_UPDATE_FLAG_HEATPUMP); // unset flag
}
}
// publishes value via MQTT
void publishValues(bool force, bool send_sensor) {
if (EMSESP_Settings.publish_time == -1) { if (EMSESP_Settings.publish_time == -1) {
myDebugLog("Publishing is disabled.");
return; return;
} }
myDebugLog("Starting scheduled MQTT publish..."); myDebugLog("Starting scheduled MQTT publish...");
publishEMSValues(false); publishEMSValues(force);
publishSensorValues(); if (send_sensor) {
myESP.heartbeatCheck(true); publishSensorValues();
}
// myESP.heartbeatCheck(true);
}
// calls publishValues fron the Ticker loop, also sending sensor data
// but not using false for force so only data that has changed will be sent
void do_publishValues() {
publishValues(false, true);
} }
// callback to light up the LED, called via Ticker every second // callback to light up the LED, called via Ticker every second
@@ -2096,6 +2128,10 @@ void initEMSESP() {
* Shower Logic * Shower Logic
*/ */
void showerCheck() { void showerCheck() {
if (!EMSESP_Settings.shower_timer) {
return;
}
uint32_t time_now = millis(); uint32_t time_now = millis();
// if already in cold mode, ignore all this logic until we're out of the cold blast // if already in cold mode, ignore all this logic until we're out of the cold blast
if (!EMSESP_Shower.doingColdShot) { if (!EMSESP_Shower.doingColdShot) {
@@ -2231,7 +2267,7 @@ void setup() {
if (EMSESP_Settings.publish_time > 0) { if (EMSESP_Settings.publish_time > 0) {
publishValuesTimer.attach(EMSESP_Settings.publish_time, do_publishValues); // post MQTT EMS values publishValuesTimer.attach(EMSESP_Settings.publish_time, do_publishValues); // post MQTT EMS values
} else if (EMSESP_Settings.publish_time == 0) { } else if (EMSESP_Settings.publish_time == 0) {
// automatic mode. use this Ticker to send out sensor values // automatic mode. use this Ticker to send out sensor values only. the EMS ones are done in the loop.
publishValuesTimer.attach(DEFAULT_SENSOR_PUBLISHTIME, publishSensorValues); publishValuesTimer.attach(DEFAULT_SENSOR_PUBLISHTIME, publishSensorValues);
} }
@@ -2256,33 +2292,30 @@ void setup() {
void loop() { void loop() {
myESP.loop(); // handle telnet, mqtt, wifi etc myESP.loop(); // handle telnet, mqtt, wifi etc
// to prevent load, only run checks every second // get Dallas Sensor readings every 2 seconds
static uint32_t last_check = 0; static uint32_t last_check = 0;
if (millis() - last_check < 1000) { uint32_t time_now = millis();
return; if (time_now - last_check > 2000) {
} last_check = time_now;
last_check = millis(); if (EMSESP_Settings.dallas_sensors) {
ds18.loop();
// get Dallas Sensor readings
if (EMSESP_Settings.dallas_sensors) {
ds18.loop();
}
// if we have an EMS bus connection go and fetch some data and MQTT publish it
if (_need_first_publish) {
publishEMSValues(false);
publishSensorValues();
_need_first_publish = false; // reset flag
} else {
// check if we're on auto mode for publishing
// then send EMS values, only if its been flagged to update
if (EMSESP_Settings.publish_time == 0) {
publishEMSValues(false);
} }
} }
// do shower logic, if enabled // if we just have an EMS bus connection go and fetch the data and MQTT publish it to get started
if (EMSESP_Settings.shower_timer) { if (_need_first_publish) {
showerCheck(); publishValues(true, true);
_need_first_publish = false;
return;
} }
// check if we're on auto mode for publishing
// then send EMS values, only if its been flagged to update.
// Don't send sensor data as this is done by the Ticker
if (EMSESP_Settings.publish_time == 0) {
publishValues(false, false);
}
// do shower logic
showerCheck();
} }

View File

@@ -1 +1 @@
#define APP_VERSION "1.9.5b38" #define APP_VERSION "1.9.5b39"