use onewire from tasmota, arduino3 ready

This commit is contained in:
MichaelDvP
2023-10-03 10:53:04 +02:00
parent 4b41180785
commit ae589c745b
5 changed files with 566 additions and 637 deletions

View File

@@ -32,6 +32,17 @@ private email about OneWire).
OneWire is now very mature code. No changes other than adding
definitions for newer hardware support are anticipated.
=======
Version 2.3.3 ESP32 Stickbreaker 06MAY2019
Add a #ifdef to isolate ESP32 mods
Version 2.3.1 ESP32 everslick 30APR2018
add IRAM_ATTR attribute to write_bit/read_bit to fix icache miss delay
https://github.com/espressif/arduino-esp32/issues/1335
Version 2.3 ESP32 stickbreaker 28DEC2017
adjust to use portENTER_CRITICAL(&mux) instead of noInterrupts();
adjust to use portEXIT_CRITICAL(&mux) instead of Interrupts();
Version 2.3:
Unknown chip fallback mode, Roger Clark
Teensy-LC compatibility, Paul Stoffregen
@@ -139,82 +150,92 @@ sample code bearing this copyright.
//--------------------------------------------------------------------------
*/
#include <Arduino.h>
#include "OneWire.h"
#include "util/OneWire_direct_gpio.h"
#pragma GCC diagnostic ignored "-Wunused-variable"
#ifdef ESP32
#define t_noInterrupts() {portMUX_TYPE mux = portMUX_INITIALIZER_UNLOCKED;portENTER_CRITICAL(&mux)
#define t_interrupts() portEXIT_CRITICAL(&mux);}
#else
#define t_noInterrupts noInterrupts
#define t_interrupts interrupts
#endif
void OneWire::begin(uint8_t pin)
{
pinMode(pin, INPUT);
bitmask = PIN_TO_BITMASK(pin);
baseReg = PIN_TO_BASEREG(pin);
pinMode(pin, INPUT);
bitmask = PIN_TO_BITMASK(pin);
baseReg = PIN_TO_BASEREG(pin);
#if ONEWIRE_SEARCH
reset_search();
reset_search();
#endif
}
// Perform the onewire reset function. We will wait up to 250uS for
// the bus to come high, if it doesn't then it is broken or shorted
// and we return a 0;
//
// Returns 1 if a device asserted a presence pulse, 0 otherwise.
//
#ifdef ARDUINO_ARCH_ESP32
uint8_t IRAM_ATTR OneWire::reset(void)
#else
uint8_t OneWire::reset(void)
#endif
{
IO_REG_TYPE mask IO_REG_MASK_ATTR = bitmask;
volatile IO_REG_TYPE *reg IO_REG_BASE_ATTR = baseReg;
uint8_t r;
uint8_t retries = 125;
noInterrupts();
DIRECT_MODE_INPUT(reg, mask);
interrupts();
// wait until the wire is high... just in case
do {
if (--retries == 0) return 0;
delayMicroseconds(2);
} while ( !DIRECT_READ(reg, mask));
noInterrupts();
DIRECT_WRITE_LOW(reg, mask);
DIRECT_MODE_OUTPUT(reg, mask); // drive output low
interrupts();
delayMicroseconds(480);
noInterrupts();
DIRECT_MODE_INPUT(reg, mask); // allow it to float
delayMicroseconds(70);
r = !DIRECT_READ(reg, mask);
interrupts();
delayMicroseconds(410);
return r;
IO_REG_TYPE mask IO_REG_MASK_ATTR = bitmask;
volatile IO_REG_TYPE *reg IO_REG_BASE_ATTR = baseReg;
uint8_t r;
uint8_t retries = 125;
t_noInterrupts();
DIRECT_MODE_INPUT(reg, mask);
t_interrupts();
// wait until the wire is high... just in case
do {
if (--retries == 0) return 0;
delayMicroseconds(2);
} while ( !DIRECT_READ(reg, mask));
t_noInterrupts();
DIRECT_WRITE_LOW(reg, mask);
DIRECT_MODE_OUTPUT(reg, mask); // drive output low
delayMicroseconds(480);
DIRECT_MODE_INPUT(reg, mask); // allow it to float
delayMicroseconds(70);
r = !DIRECT_READ(reg, mask);
t_interrupts();
delayMicroseconds(410);
return r;
}
//
// Write a bit. Port and bit is used to cut lookup time and provide
// more certain timing.
//
#ifdef ARDUINO_ARCH_ESP32
void IRAM_ATTR OneWire::write_bit(uint8_t v)
#else
void OneWire::write_bit(uint8_t v)
#endif
{
IO_REG_TYPE mask IO_REG_MASK_ATTR = bitmask;
volatile IO_REG_TYPE *reg IO_REG_BASE_ATTR = baseReg;
if (v & 1) {
noInterrupts();
t_noInterrupts();
DIRECT_WRITE_LOW(reg, mask);
DIRECT_MODE_OUTPUT(reg, mask); // drive output low
delayMicroseconds(10);
DIRECT_WRITE_HIGH(reg, mask); // drive output high
interrupts();
t_interrupts();
delayMicroseconds(55);
} else {
noInterrupts();
t_noInterrupts();
DIRECT_WRITE_LOW(reg, mask);
DIRECT_MODE_OUTPUT(reg, mask); // drive output low
delayMicroseconds(65);
DIRECT_WRITE_HIGH(reg, mask); // drive output high
interrupts();
t_interrupts();
delayMicroseconds(5);
}
}
@@ -223,20 +244,24 @@ void OneWire::write_bit(uint8_t v)
// Read a bit. Port and bit is used to cut lookup time and provide
// more certain timing.
//
#ifdef ARDUINO_ARCH_ESP32
uint8_t IRAM_ATTR OneWire::read_bit(void)
#else
uint8_t OneWire::read_bit(void)
#endif
{
IO_REG_TYPE mask IO_REG_MASK_ATTR = bitmask;
volatile IO_REG_TYPE *reg IO_REG_BASE_ATTR = baseReg;
uint8_t r;
noInterrupts();
t_noInterrupts();
DIRECT_MODE_OUTPUT(reg, mask);
DIRECT_WRITE_LOW(reg, mask);
delayMicroseconds(3);
DIRECT_MODE_INPUT(reg, mask); // let pin float, pull up will raise
delayMicroseconds(10);
r = DIRECT_READ(reg, mask);
interrupts();
t_interrupts();
delayMicroseconds(53);
return r;
}
@@ -249,27 +274,27 @@ uint8_t OneWire::read_bit(void)
// other mishap.
//
void OneWire::write(uint8_t v, uint8_t power /* = 0 */) {
uint8_t bitMask;
uint8_t bitMask;
for (bitMask = 0x01; bitMask; bitMask <<= 1) {
OneWire::write_bit( (bitMask & v)?1:0);
}
if ( !power) {
noInterrupts();
DIRECT_MODE_INPUT(baseReg, bitmask);
DIRECT_WRITE_LOW(baseReg, bitmask);
interrupts();
}
for (bitMask = 0x01; bitMask; bitMask <<= 1) {
OneWire::write_bit( (bitMask & v)?1:0);
}
if ( !power) {
t_noInterrupts();
DIRECT_MODE_INPUT(baseReg, bitmask);
DIRECT_WRITE_LOW(baseReg, bitmask);
t_interrupts();
}
}
void OneWire::write_bytes(const uint8_t *buf, uint16_t count, bool power /* = 0 */) {
for (uint16_t i = 0 ; i < count ; i++)
write(buf[i]);
if (!power) {
noInterrupts();
t_noInterrupts();
DIRECT_MODE_INPUT(baseReg, bitmask);
DIRECT_WRITE_LOW(baseReg, bitmask);
interrupts();
t_interrupts();
}
}
@@ -281,7 +306,7 @@ uint8_t OneWire::read() {
uint8_t r = 0;
for (bitMask = 0x01; bitMask; bitMask <<= 1) {
if ( OneWire::read_bit()) r |= bitMask;
if ( OneWire::read_bit()) r |= bitMask;
}
return r;
}
@@ -313,9 +338,9 @@ void OneWire::skip()
void OneWire::depower()
{
noInterrupts();
DIRECT_MODE_INPUT(baseReg, bitmask);
interrupts();
t_noInterrupts();
DIRECT_MODE_INPUT(baseReg, bitmask);
t_interrupts();
}
#if ONEWIRE_SEARCH
@@ -328,7 +353,7 @@ void OneWire::reset_search()
{
// reset the search state
LastDiscrepancy = 0;
LastDeviceFlag = false;
LastDeviceFlag = FALSE;
LastFamilyDiscrepancy = 0;
for(int i = 7; ; i--) {
ROM_NO[i] = 0;
@@ -347,7 +372,7 @@ void OneWire::target_search(uint8_t family_code)
ROM_NO[i] = 0;
LastDiscrepancy = 64;
LastFamilyDiscrepancy = 0;
LastDeviceFlag = false;
LastDeviceFlag = FALSE;
}
//
@@ -366,11 +391,10 @@ void OneWire::target_search(uint8_t family_code)
// Return TRUE : device found, ROM number in ROM_NO buffer
// FALSE : device not found, end of search
//
bool OneWire::search(uint8_t *newAddr, bool search_mode /* = true */)
uint8_t OneWire::search(uint8_t *newAddr, bool search_mode /* = true */)
{
uint8_t id_bit_number;
uint8_t last_zero, rom_byte_number;
bool search_result;
uint8_t last_zero, rom_byte_number, search_result;
uint8_t id_bit, cmp_id_bit;
unsigned char rom_byte_mask, search_direction;
@@ -380,25 +404,26 @@ bool OneWire::search(uint8_t *newAddr, bool search_mode /* = true */)
last_zero = 0;
rom_byte_number = 0;
rom_byte_mask = 1;
search_result = false;
search_result = 0;
// if the last call was not the last one
if (!LastDeviceFlag) {
if (!LastDeviceFlag)
{
// 1-Wire reset
if (!reset()) {
if (!reset())
{
// reset the search
LastDiscrepancy = 0;
LastDeviceFlag = false;
LastDeviceFlag = FALSE;
LastFamilyDiscrepancy = 0;
return false;
return FALSE;
}
// issue the search command
if (search_mode == true) {
write(0xF0); // NORMAL SEARCH
} else {
write(0xEC); // CONDITIONAL SEARCH
}
}
// loop to do the search
do
@@ -406,25 +431,28 @@ bool OneWire::search(uint8_t *newAddr, bool search_mode /* = true */)
// read a bit and its complement
id_bit = read_bit();
cmp_id_bit = read_bit();
// check for no devices on 1-wire
if ((id_bit == 1) && (cmp_id_bit == 1)) {
if ((id_bit == 1) && (cmp_id_bit == 1))
break;
} else {
else
{
// all devices coupled have 0 or 1
if (id_bit != cmp_id_bit) {
if (id_bit != cmp_id_bit)
search_direction = id_bit; // bit write value for search
} else {
else
{
// if this discrepancy if before the Last Discrepancy
// on a previous next then pick the same as last time
if (id_bit_number < LastDiscrepancy) {
if (id_bit_number < LastDiscrepancy)
search_direction = ((ROM_NO[rom_byte_number] & rom_byte_mask) > 0);
} else {
else
// if equal to last pick 1, if not then pick 0
search_direction = (id_bit_number == LastDiscrepancy);
}
// if 0 was picked then record its position in LastZero
if (search_direction == 0) {
if (search_direction == 0)
{
last_zero = id_bit_number;
// check for Last discrepancy in family
@@ -449,33 +477,35 @@ bool OneWire::search(uint8_t *newAddr, bool search_mode /* = true */)
rom_byte_mask <<= 1;
// if the mask is 0 then go to new SerialNum byte rom_byte_number and reset mask
if (rom_byte_mask == 0) {
if (rom_byte_mask == 0)
{
rom_byte_number++;
rom_byte_mask = 1;
}
}
}
while(rom_byte_number < 8); // loop until through all ROM bytes 0-7
// if the search was successful then
if (!(id_bit_number < 65)) {
if (!(id_bit_number < 65))
{
// search successful so set LastDiscrepancy,LastDeviceFlag,search_result
LastDiscrepancy = last_zero;
// check for last device
if (LastDiscrepancy == 0) {
LastDeviceFlag = true;
}
search_result = true;
if (LastDiscrepancy == 0)
LastDeviceFlag = TRUE;
search_result = TRUE;
}
}
// if no device found then reset counters so next 'search' will be like a first
if (!search_result || !ROM_NO[0]) {
if (!search_result || !ROM_NO[0])
{
LastDiscrepancy = 0;
LastDeviceFlag = false;
LastDeviceFlag = FALSE;
LastFamilyDiscrepancy = 0;
search_result = false;
search_result = FALSE;
} else {
for (int i = 0; i < 8; i++) newAddr[i] = ROM_NO[i];
}
@@ -490,53 +520,65 @@ bool OneWire::search(uint8_t *newAddr, bool search_mode /* = true */)
//
#if ONEWIRE_CRC8_TABLE
// Dow-CRC using polynomial X^8 + X^5 + X^4 + X^0
// Tiny 2x16 entry CRC table created by Arjen Lentz
// See http://lentz.com.au/blog/calculating-crc-with-a-tiny-32-entry-lookup-table
static const uint8_t PROGMEM dscrc2x16_table[] = {
0x00, 0x5E, 0xBC, 0xE2, 0x61, 0x3F, 0xDD, 0x83,
0xC2, 0x9C, 0x7E, 0x20, 0xA3, 0xFD, 0x1F, 0x41,
0x00, 0x9D, 0x23, 0xBE, 0x46, 0xDB, 0x65, 0xF8,
0x8C, 0x11, 0xAF, 0x32, 0xCA, 0x57, 0xE9, 0x74
};
// This table comes from Dallas sample code where it is freely reusable,
// though Copyright (C) 2000 Dallas Semiconductor Corporation
static const uint8_t PROGMEM dscrc_table[] = {
0, 94,188,226, 97, 63,221,131,194,156,126, 32,163,253, 31, 65,
157,195, 33,127,252,162, 64, 30, 95, 1,227,189, 62, 96,130,220,
35,125,159,193, 66, 28,254,160,225,191, 93, 3,128,222, 60, 98,
190,224, 2, 92,223,129, 99, 61,124, 34,192,158, 29, 67,161,255,
70, 24,250,164, 39,121,155,197,132,218, 56,102,229,187, 89, 7,
219,133,103, 57,186,228, 6, 88, 25, 71,165,251,120, 38,196,154,
101, 59,217,135, 4, 90,184,230,167,249, 27, 69,198,152,122, 36,
248,166, 68, 26,153,199, 37,123, 58,100,134,216, 91, 5,231,185,
140,210, 48,110,237,179, 81, 15, 78, 16,242,172, 47,113,147,205,
17, 79,173,243,112, 46,204,146,211,141,111, 49,178,236, 14, 80,
175,241, 19, 77,206,144,114, 44,109, 51,209,143, 12, 82,176,238,
50,108,142,208, 83, 13,239,177,240,174, 76, 18,145,207, 45,115,
202,148,118, 40,171,245, 23, 73, 8, 86,180,234,105, 55,213,139,
87, 9,235,181, 54,104,138,212,149,203, 41,119,244,170, 72, 22,
233,183, 85, 11,136,214, 52,106, 43,117,151,201, 74, 20,246,168,
116, 42,200,150, 21, 75,169,247,182,232, 10, 84,215,137,107, 53};
//
// Compute a Dallas Semiconductor 8 bit CRC. These show up in the ROM
// and the registers. (Use tiny 2x16 entry CRC table)
// and the registers. (note: this might better be done without to
// table, it would probably be smaller and certainly fast enough
// compared to all those delayMicrosecond() calls. But I got
// confused, so I use this table from the examples.)
//
uint8_t OneWire::crc8(const uint8_t *addr, uint8_t len)
{
uint8_t crc = 0;
uint8_t crc = 0;
while (len--) {
crc = *addr++ ^ crc; // just re-using crc as intermediate
crc = pgm_read_byte(dscrc2x16_table + (crc & 0x0f)) ^
pgm_read_byte(dscrc2x16_table + 16 + ((crc >> 4) & 0x0f));
}
return crc;
while (len--) {
crc = pgm_read_byte(dscrc_table + (crc ^ *addr++));
}
return crc;
}
#else
//
// Compute a Dallas Semiconductor 8 bit CRC directly.
// this is much slower, but a little smaller, than the lookup table.
// this is much slower, but much smaller, than the lookup table.
//
uint8_t OneWire::crc8(const uint8_t *addr, uint8_t len)
{
uint8_t crc = 0;
uint8_t crc = 0;
while (len--) {
while (len--) {
#if defined(__AVR__)
crc = _crc_ibutton_update(crc, *addr++);
crc = _crc_ibutton_update(crc, *addr++);
#else
uint8_t inbyte = *addr++;
for (uint8_t i = 8; i; i--) {
uint8_t mix = (crc ^ inbyte) & 0x01;
crc >>= 1;
if (mix) crc ^= 0x8C;
inbyte >>= 1;
}
uint8_t inbyte = *addr++;
for (uint8_t i = 8; i; i--) {
uint8_t mix = (crc ^ inbyte) & 0x01;
crc >>= 1;
if (mix) crc ^= 0x8C;
inbyte >>= 1;
}
#endif
}
return crc;
}
return crc;
}
#endif
@@ -576,8 +618,4 @@ uint16_t OneWire::crc16(const uint8_t* input, uint16_t len, uint16_t crc)
return crc;
}
#endif
#endif
#pragma GCC diagnostic pop