change show_info to read of json, updates to use HA MQTT Discovery

This commit is contained in:
proddy
2020-10-03 16:34:06 +02:00
parent 7020b41f55
commit eb98caa87a
9 changed files with 744 additions and 460 deletions

View File

@@ -87,7 +87,7 @@ Boiler::Boiler(uint8_t device_type, int8_t device_id, uint8_t product_id, const
void Boiler::register_mqtt_ha_config() { void Boiler::register_mqtt_ha_config() {
// Create the Master device // Create the Master device
StaticJsonDocument<EMSESP_MAX_JSON_SIZE_MEDIUM> doc; StaticJsonDocument<EMSESP_MAX_JSON_SIZE_MEDIUM> doc;
doc["name"] = F("EMS-ESP"); doc["name"] = F("Service Code");
doc["uniq_id"] = F("boiler"); doc["uniq_id"] = F("boiler");
doc["ic"] = F("mdi:home-thermometer-outline"); doc["ic"] = F("mdi:home-thermometer-outline");
doc["stat_t"] = F("ems-esp/boiler_data"); doc["stat_t"] = F("ems-esp/boiler_data");
@@ -101,39 +101,160 @@ void Boiler::register_mqtt_ha_config() {
ids.add("ems-esp-boiler"); ids.add("ems-esp-boiler");
Mqtt::publish_retain(F("homeassistant/sensor/ems-esp/boiler/config"), doc.as<JsonObject>(), true); // publish the config payload with retain flag Mqtt::publish_retain(F("homeassistant/sensor/ems-esp/boiler/config"), doc.as<JsonObject>(), true); // publish the config payload with retain flag
Mqtt::register_mqtt_ha_binary_sensor(F("Boiler DHW"), this->device_type(), "tapwater_active"); Mqtt::register_mqtt_ha_binary_sensor(F_(tapwaterActive), this->device_type(), "tapwaterActive");
Mqtt::register_mqtt_ha_binary_sensor(F("Boiler Heating"), this->device_type(), "heating_active"); Mqtt::register_mqtt_ha_binary_sensor(F_(heatingActive), this->device_type(), "heatingActive");
Mqtt::register_mqtt_ha_sensor(F("Service Code"), this->device_type(), "serviceCode", "", ""); Mqtt::register_mqtt_ha_sensor(nullptr, F_(serviceCodeNumber), this->device_type(), "serviceCodeNumber", nullptr, nullptr);
Mqtt::register_mqtt_ha_sensor(F("Service Code number"), this->device_type(), "serviceCodeNumber", "", ""); Mqtt::register_mqtt_ha_sensor(nullptr, F_(wWSelTemp), this->device_type(), "wWSelTemp", F_(degrees), F_(icontemperature));
Mqtt::register_mqtt_ha_sensor(F("Boiler WW Selected Temp"), this->device_type(), "wWSelTemp", "°C", "mdi:coolant-temperature"); Mqtt::register_mqtt_ha_sensor(nullptr, F_(wWSetTemp), this->device_type(), "wWSetTemp", F_(degrees), F_(icontemperature));
Mqtt::register_mqtt_ha_sensor(F("Selected flow temperature"), this->device_type(), "selFlowTemp", "°C", "mdi:coolant-temperature"); Mqtt::register_mqtt_ha_sensor(nullptr, F_(wWDisinfectionTemp), this->device_type(), "wWDisinfectionTemp", F_(degrees), F_(icontemperature));
Mqtt::register_mqtt_ha_sensor(F("Current flow temperature"), this->device_type(), "curFlowTemp", "°C", "mdi:coolant-temperature"); Mqtt::register_mqtt_ha_sensor(nullptr, F_(selFlowTemp), this->device_type(), "selFlowTemp", F_(degrees), F_(icontemperature));
Mqtt::register_mqtt_ha_sensor(F("Warm Water set temperature"), this->device_type(), "wWSetTemp", "°C", "mdi:coolant-temperature");
Mqtt::register_mqtt_ha_sensor(F("Warm Water current temperature (intern)"), this->device_type(), "wWCurTmp", "°C", "mdi:coolant-temperature"); Mqtt::register_mqtt_ha_sensor(nullptr, F_(selBurnPow), this->device_type(), "selBurnPow", F_(percent), nullptr);
Mqtt::register_mqtt_ha_sensor(F("Warm Water current temperature (extern)"), this->device_type(), "wWCurTmp2", "°C", "mdi:coolant-temperature"); Mqtt::register_mqtt_ha_sensor(nullptr, F_(curBurnPow), this->device_type(), "curBurnPow", F_(percent), F_(iconpercent));
Mqtt::register_mqtt_ha_sensor(F("Pump modulation"), this->device_type(), "pumpMod", "%", "mdi:sine-wave"); Mqtt::register_mqtt_ha_sensor(nullptr, F_(pumpMod), this->device_type(), "pumpMod", F_(percent), F_(iconpercent));
Mqtt::register_mqtt_ha_sensor(F("Heat Pump modulation"), this->device_type(), "pumpMod2", "%", "mdi:sine-wave"); Mqtt::register_mqtt_ha_sensor(nullptr, F_(pumpMod2), this->device_type(), "pumpMod2", F_(percent), F_(iconpercent));
Mqtt::register_mqtt_ha_sensor(F("System Pressure"), this->device_type(), "sysPress", "bar", ""); Mqtt::register_mqtt_ha_sensor(nullptr, F_(wWType), this->device_type(), "wWType", nullptr, nullptr);
Mqtt::register_mqtt_ha_sensor(nullptr, F_(wWChargeType), this->device_type(), "wWChargeType", nullptr, nullptr);
Mqtt::register_mqtt_ha_sensor(nullptr, F_(wWCircPump), this->device_type(), "wWCircPump", nullptr, nullptr);
Mqtt::register_mqtt_ha_sensor(nullptr, F_(wWCiPuMode), this->device_type(), "wWCiPuMode", nullptr, nullptr);
Mqtt::register_mqtt_ha_sensor(nullptr, F_(wWCirc), this->device_type(), "wWCirc", nullptr, nullptr);
Mqtt::register_mqtt_ha_sensor(nullptr, F_(outdoorTemp), this->device_type(), "outdoorTemp", F_(degrees), F_(icontemperature));
Mqtt::register_mqtt_ha_sensor(nullptr, F_(wWCurTmp), this->device_type(), "wWCurTmp", F_(degrees), F_(icontemperature));
Mqtt::register_mqtt_ha_sensor(nullptr, F_(wWCurTmp2), this->device_type(), "wWCurTmp2", F_(degrees), F_(icontemperature));
Mqtt::register_mqtt_ha_sensor(nullptr, F_(wWCurFlow), this->device_type(), "wWCurFlow", F("l/min"), F_(icontemperature));
Mqtt::register_mqtt_ha_sensor(nullptr, F_(curFlowTemp), this->device_type(), "curFlowTemp", F_(degrees), F_(icontemperature));
Mqtt::register_mqtt_ha_sensor(nullptr, F_(retTemp), this->device_type(), "retTemp", F_(degrees), F_(icontemperature));
Mqtt::register_mqtt_ha_sensor(nullptr, F_(switchTemp), this->device_type(), "switchTemp", F_(degrees), F_(icontemperature));
Mqtt::register_mqtt_ha_sensor(nullptr, F_(sysPress), this->device_type(), "sysPress", F_(bar), nullptr);
Mqtt::register_mqtt_ha_sensor(nullptr, F_(boilTemp), this->device_type(), "boilTemp", F_(degrees), nullptr);
// TODO add remaining values to MQTT
/*
Mqtt::register_mqtt_ha_sensor(F_(burnGas), this->device_type(), "burnGas", nullptr, nullptr);
Mqtt::register_mqtt_ha_sensor(F_(flameCurr), this->device_type(), "flameCurr", F_(uA), nullptr);
Mqtt::register_mqtt_ha_sensor(F_(heatPump), this->device_type(), "heatPump", nullptr, nullptr);
Mqtt::register_mqtt_ha_sensor(F_(fanWork), this->device_type(), "fanWork", nullptr, nullptr);
Mqtt::register_mqtt_ha_sensor(F_(ignWork), this->device_type(), "ignWork", nullptr, nullptr);
Mqtt::register_mqtt_ha_sensor(F_(wWHeat), this->device_type(), "wWHeat", nullptr, nullptr);
Mqtt::register_mqtt_ha_sensor(F_(wwStorageTemp1), this->device_type(), "wwStorageTemp1", F_(degrees), F_(icontemperature));
Mqtt::register_mqtt_ha_sensor(F_(wwStorageTemp2), this->device_type(), "wwStorageTemp2", F_(degrees), F_(icontemperature));
Mqtt::register_mqtt_ha_sensor(F_(exhaustTemp), this->device_type(), "exhaustTemp", F_(degrees), F_(icontemperature));
Mqtt::register_mqtt_ha_sensor(F_(wWActivated), this->device_type(), "wWActivated", nullptr, nullptr);
Mqtt::register_mqtt_ha_sensor(F_(wWOnetime), this->device_type(), "wWOnetime", nullptr, nullptr);
Mqtt::register_mqtt_ha_sensor(F_(wWDisinfecting), this->device_type(), "wWDisinfecting", nullptr, nullptr);
Mqtt::register_mqtt_ha_sensor(F_(wWCharge), this->device_type(), "wWCharge", nullptr, nullptr);
Mqtt::register_mqtt_ha_sensor(F_(wWRecharge), this->device_type(), "wWRecharge", nullptr, nullptr);
Mqtt::register_mqtt_ha_sensor(F_(wWTempOK), this->device_type(), "wWTempOK", nullptr, nullptr);
Mqtt::register_mqtt_ha_sensor(F_(wWActive), this->device_type(), "wWActive", nullptr, nullptr);
Mqtt::register_mqtt_ha_sensor(F_(heatingActivated), this->device_type(), "heatingActivated", nullptr, nullptr);
Mqtt::register_mqtt_ha_sensor(F_(heatingTemp), this->device_type(), "heatingTemp", F_(degrees), F_(icontemperature));
Mqtt::register_mqtt_ha_sensor(F_(pumpModMax), this->device_type(), "pumpModMax", F_(percent), F_(iconpercent));
Mqtt::register_mqtt_ha_sensor(F_(pumpModMin), this->device_type(), "pumpModMin", F_(percent), F_(iconpercent));
Mqtt::register_mqtt_ha_sensor(F_(pumpDelay), this->device_type(), "pumpDelay", F_(min), nullptr);
Mqtt::register_mqtt_ha_sensor(F_(burnMinPeriod), this->device_type(), "burnMinPeriod", F_(min), nullptr);
Mqtt::register_mqtt_ha_sensor(F_(burnMinPower), this->device_type(), "burnMinPower", F_(percent), F_(iconpercent));
Mqtt::register_mqtt_ha_sensor(F_(burnMaxPower), this->device_type(), "burnMaxPower", F_(percent), F_(iconpercent));
Mqtt::register_mqtt_ha_sensor(F_(boilHystOn), this->device_type(), "boilHystOn", F_(degrees), F_(icontemperature));
Mqtt::register_mqtt_ha_sensor(F_(boilHystOff), this->device_type(), "boilHystOff", F_(degrees), F_(icontemperature));
Mqtt::register_mqtt_ha_sensor(F_(setFlowTemp), this->device_type(), "setFlowTemp", F_(degrees), F_(icontemperature));
Mqtt::register_mqtt_ha_sensor(F_(wWSetPumpPower), this->device_type(), "wWSetPumpPower", F_(percent), F_(iconpercent));
Mqtt::register_mqtt_ha_sensor(F_(wwMixTemperature), this->device_type(), "wwMixTemperature", F_(degrees), F_(icontemperature));
Mqtt::register_mqtt_ha_sensor(F_(wwBufferBoilerTemperature), this->device_type(), "wwBufferBoilerTemperature", F_(degrees), F_(icontemperature));
Mqtt::register_mqtt_ha_sensor(F_(wWStarts), this->device_type(), "wWStarts", nullptr, nullptr);
Mqtt::register_mqtt_ha_sensor(F_(wWWorkM), this->device_type(), "wWWorkM", nullptr, nullptr);
Mqtt::register_mqtt_ha_sensor(F_(setBurnPow), this->device_type(), "setBurnPow", F_(percent), F_(iconpercent));
Mqtt::register_mqtt_ha_sensor(F_(burnStarts), this->device_type(), "burnStarts", nullptr, nullptr);
*/
} }
// send stuff to the Web UI // send stuff to the Web UI
void Boiler::device_info_web(JsonArray & root) { void Boiler::device_info_web(JsonArray & root) {
JsonObject dataElement; JsonObject dataElement;
render_value_json(root, "", F("Service code"), serviceCodeChar_, nullptr); render_value_json(root, "", F_(serviceCode), serviceCodeChar_, nullptr);
render_value_json(root, "", F("Service code number"), serviceCode_, nullptr); render_value_json(root, "", F_(serviceCodeNumber), serviceCode_, nullptr);
render_value_json(root, "", F("Hot tap water"), tap_water_active_, nullptr, EMS_VALUE_BOOL); render_value_json(root, "", F_(tapwaterActive), tap_water_active_, nullptr, EMS_VALUE_BOOL);
render_value_json(root, "", F("Central Heating"), heating_active_, nullptr, EMS_VALUE_BOOL); render_value_json(root, "", F_(heatingActive), heating_active_, nullptr, EMS_VALUE_BOOL);
render_value_json(root, "", F("Selected flow temperature"), selFlowTemp_, F_(degrees)); render_value_json(root, "", F_(selFlowTemp), selFlowTemp_, F_(degrees));
render_value_json(root, "", F("Current flow temperature"), curFlowTemp_, F_(degrees), 10); render_value_json(root, "", F_(curFlowTemp), curFlowTemp_, F_(degrees), 10);
render_value_json(root, "", F("Warm Water selected temperature"), wWSelTemp_, F_(degrees)); render_value_json(root, "", F_(wWSelTemp), wWSelTemp_, F_(degrees));
render_value_json(root, "", F("Warm Water set temperature"), wWSetTmp_, F_(degrees)); render_value_json(root, "", F_(wWSetTemp), wWSetTmp_, F_(degrees));
render_value_json(root, "", F("Warm Water current temperature (intern)"), wWCurTmp_, F_(degrees), 10); render_value_json(root, "", F_(wWCurTmp), wWCurTmp_, F_(degrees), 10);
render_value_json(root, "", F("Warm Water current temperature (extern)"), wWCurTmp2_, F_(degrees), 10); render_value_json(root, "", F_(wWCurTmp2), wWCurTmp2_, F_(degrees), 10);
render_value_json(root, "", F("Pump modulation"), pumpMod_, F_(percent)); render_value_json(root, "", F_(pumpMod), pumpMod_, F_(percent));
render_value_json(root, "", F("Heat Pump modulation"), pumpMod2_, F_(percent)); render_value_json(root, "", F_(pumpMod2), pumpMod2_, F_(percent));
render_value_json(root, "", F("System pressure"), sysPress_, F_(bar), 10); render_value_json(root, "", F_(sysPress), sysPress_, F_(bar), 10);
// TODO add remaining values to web
/*
Mqtt::register_mqtt_ha_sensor(F_(heatingActive), this->device_type(), "heatingActive", nullptr, nullptr);
Mqtt::register_mqtt_ha_sensor(F_(tapwaterActive), this->device_type(), "tapwaterActive", nullptr, nullptr);
Mqtt::register_mqtt_ha_sensor(F_(serviceCode), this->device_type(), "serviceCode", nullptr, nullptr);
Mqtt::register_mqtt_ha_sensor(F_(serviceCodeNumber), this->device_type(), "serviceCodeNumber", nullptr, nullptr);
Mqtt::register_mqtt_ha_sensor(F_(wWSelTemp), this->device_type(), "wWSelTemp", F_(degrees), F_(icontemperature));
Mqtt::register_mqtt_ha_sensor(F_(wWSetTemp), this->device_type(), "wWSetTemp", F_(degrees), F_(icontemperature));
Mqtt::register_mqtt_ha_sensor(F_(wWDisinfectionTemp), this->device_type(), "wWDisinfectionTemp", F_(degrees), F_(icontemperature));
Mqtt::register_mqtt_ha_sensor(F_(selFlowTemp), this->device_type(), "selFlowTemp", F_(degrees), F_(icontemperature));
Mqtt::register_mqtt_ha_sensor(F_(selBurnPow), this->device_type(), "selBurnPow", F_(percent), nullptr);
Mqtt::register_mqtt_ha_sensor(F_(curBurnPow), this->device_type(), "curBurnPow", F_(percent), F_(iconpercent));
Mqtt::register_mqtt_ha_sensor(F_(pumpMod), this->device_type(), "pumpMod", F_(percent), F_(iconpercent));
Mqtt::register_mqtt_ha_sensor(F_(pumpMod2), this->device_type(), "pumpMod2", F_(percent), F_(iconpercent));
Mqtt::register_mqtt_ha_sensor(F_(wWType), this->device_type(), "wWType", nullptr, nullptr);
Mqtt::register_mqtt_ha_sensor(F_(wWChargeType), this->device_type(), "wWChargeType", nullptr, nullptr);
Mqtt::register_mqtt_ha_sensor(F_(wWCircPump), this->device_type(), "wWCircPump", nullptr, nullptr);
Mqtt::register_mqtt_ha_sensor(F_(wWCiPuMode), this->device_type(), "wWCiPuMode", nullptr, nullptr);
Mqtt::register_mqtt_ha_sensor(F_(wWCirc), this->device_type(), "wWCirc", nullptr, nullptr);
Mqtt::register_mqtt_ha_sensor(F_(outdoorTemp), this->device_type(), "outdoorTemp", F_(degrees), F_(icontemperature));
Mqtt::register_mqtt_ha_sensor(F_(wWCurTmp), this->device_type(), "wWCurTmp", F_(degrees), F_(icontemperature));
Mqtt::register_mqtt_ha_sensor(F_(wWCurTmp2), this->device_type(), "wWCurTmp2", F_(degrees), F_(icontemperature));
Mqtt::register_mqtt_ha_sensor(F_(wWCurFlow), this->device_type(), "wWCurFlow", F("l/min"), F_(icontemperature));
Mqtt::register_mqtt_ha_sensor(F_(curFlowTemp), this->device_type(), "curFlowTemp", F_(degrees), F_(icontemperature));
Mqtt::register_mqtt_ha_sensor(F_(retTemp), this->device_type(), "retTemp", F_(degrees), F_(icontemperature));
Mqtt::register_mqtt_ha_sensor(F_(switchTemp), this->device_type(), "switchTemp", F_(degrees), F_(icontemperature));
Mqtt::register_mqtt_ha_sensor(F_(sysPress), this->device_type(), "sysPress", F_(bar), nullptr);
Mqtt::register_mqtt_ha_sensor(F_(boilTemp), this->device_type(), "boilTemp", F_(degrees), nullptr);
Mqtt::register_mqtt_ha_sensor(F_(wwStorageTemp1), this->device_type(), "wwStorageTemp1", F_(degrees), F_(icontemperature));
Mqtt::register_mqtt_ha_sensor(F_(wwStorageTemp2), this->device_type(), "wwStorageTemp2", F_(degrees), F_(icontemperature));
Mqtt::register_mqtt_ha_sensor(F_(exhaustTemp), this->device_type(), "exhaustTemp", F_(degrees), F_(icontemperature));
Mqtt::register_mqtt_ha_sensor(F_(wWActivated), this->device_type(), "wWActivated", nullptr, nullptr);
Mqtt::register_mqtt_ha_sensor(F_(wWOnetime), this->device_type(), "wWOnetime", nullptr, nullptr);
Mqtt::register_mqtt_ha_sensor(F_(wWDisinfecting), this->device_type(), "wWDisinfecting", nullptr, nullptr);
Mqtt::register_mqtt_ha_sensor(F_(wWCharge), this->device_type(), "wWCharge", nullptr, nullptr);
Mqtt::register_mqtt_ha_sensor(F_(wWRecharge), this->device_type(), "wWRecharge", nullptr, nullptr);
Mqtt::register_mqtt_ha_sensor(F_(wWTempOK), this->device_type(), "wWTempOK", nullptr, nullptr);
Mqtt::register_mqtt_ha_sensor(F_(wWActive), this->device_type(), "wWActive", nullptr, nullptr);
Mqtt::register_mqtt_ha_sensor(F_(burnGas), this->device_type(), "burnGas", nullptr, nullptr);
Mqtt::register_mqtt_ha_sensor(F_(flameCurr), this->device_type(), "flameCurr", F_(uA), nullptr);
Mqtt::register_mqtt_ha_sensor(F_(heatPump), this->device_type(), "heatPump", nullptr, nullptr);
Mqtt::register_mqtt_ha_sensor(F_(fanWork), this->device_type(), "fanWork", nullptr, nullptr);
Mqtt::register_mqtt_ha_sensor(F_(ignWork), this->device_type(), "ignWork", nullptr, nullptr);
Mqtt::register_mqtt_ha_sensor(F_(wWHeat), this->device_type(), "wWHeat", nullptr, nullptr);
Mqtt::register_mqtt_ha_sensor(F_(heatingActivated), this->device_type(), "heatingActivated", nullptr, nullptr);
Mqtt::register_mqtt_ha_sensor(F_(heatingTemp), this->device_type(), "heatingTemp", F_(degrees), F_(icontemperature));
Mqtt::register_mqtt_ha_sensor(F_(pumpModMax), this->device_type(), "pumpModMax", F_(percent), F_(iconpercent));
Mqtt::register_mqtt_ha_sensor(F_(pumpModMin), this->device_type(), "pumpModMin", F_(percent), F_(iconpercent));
Mqtt::register_mqtt_ha_sensor(F_(pumpDelay), this->device_type(), "pumpDelay", F_(min), nullptr);
Mqtt::register_mqtt_ha_sensor(F_(burnMinPeriod), this->device_type(), "burnMinPeriod", F_(min), nullptr);
Mqtt::register_mqtt_ha_sensor(F_(burnMinPower), this->device_type(), "burnMinPower", F_(percent), F_(iconpercent));
Mqtt::register_mqtt_ha_sensor(F_(burnMaxPower), this->device_type(), "burnMaxPower", F_(percent), F_(iconpercent));
Mqtt::register_mqtt_ha_sensor(F_(boilHystOn), this->device_type(), "boilHystOn", F_(degrees), F_(icontemperature));
Mqtt::register_mqtt_ha_sensor(F_(boilHystOff), this->device_type(), "boilHystOff", F_(degrees), F_(icontemperature));
Mqtt::register_mqtt_ha_sensor(F_(setFlowTemp), this->device_type(), "setFlowTemp", F_(degrees), F_(icontemperature));
Mqtt::register_mqtt_ha_sensor(F_(wWSetPumpPower), this->device_type(), "wWSetPumpPower", F_(percent), F_(iconpercent));
Mqtt::register_mqtt_ha_sensor(F_(wwMixTemperature), this->device_type(), "wwMixTemperature", F_(degrees), F_(icontemperature));
Mqtt::register_mqtt_ha_sensor(F_(wwBufferBoilerTemperature), this->device_type(), "wwBufferBoilerTemperature", F_(degrees), F_(icontemperature));
Mqtt::register_mqtt_ha_sensor(F_(wWStarts), this->device_type(), "wWStarts", nullptr, nullptr);
Mqtt::register_mqtt_ha_sensor(F_(wWWorkM), this->device_type(), "wWWorkM", nullptr, nullptr);
Mqtt::register_mqtt_ha_sensor(F_(setBurnPow), this->device_type(), "setBurnPow", F_(percent), F_(iconpercent));
Mqtt::register_mqtt_ha_sensor(F_(burnStarts), this->device_type(), "burnStarts", nullptr, nullptr);
*/
} }
bool Boiler::command_info(const char * value, const int8_t id, JsonObject & output) { bool Boiler::command_info(const char * value, const int8_t id, JsonObject & output) {
@@ -145,14 +266,17 @@ bool Boiler::command_info(const char * value, const int8_t id, JsonObject & outp
bool Boiler::export_values(JsonObject & output) { bool Boiler::export_values(JsonObject & output) {
char s[10]; // for formatting strings char s[10]; // for formatting strings
// Hot tap water bool
if (Helpers::hasValue(heating_active_, EMS_VALUE_BOOL)) { if (Helpers::hasValue(heating_active_, EMS_VALUE_BOOL)) {
output["heating_active"] = Helpers::render_value(s, heating_active_, EMS_VALUE_BOOL); output["heatingActive"] = Helpers::render_value(s, heating_active_, EMS_VALUE_BOOL);
} }
// Central heating bool
if (Helpers::hasValue(tap_water_active_, EMS_VALUE_BOOL)) { if (Helpers::hasValue(tap_water_active_, EMS_VALUE_BOOL)) {
output["tap_water_active"] = Helpers::render_value(s, tap_water_active_, EMS_VALUE_BOOL); output["tapwaterActive"] = Helpers::render_value(s, tap_water_active_, EMS_VALUE_BOOL);
} }
// Warm Water comfort setting
if (Helpers::hasValue(wWComfort_)) { if (Helpers::hasValue(wWComfort_)) {
if (wWComfort_ == 0x00) { if (wWComfort_ == 0x00) {
output["wWComfort"] = "Hot"; output["wWComfort"] = "Hot";
@@ -163,30 +287,47 @@ bool Boiler::export_values(JsonObject & output) {
} }
} }
// Warm Water selected temperature
if (Helpers::hasValue(wWSelTemp_)) { if (Helpers::hasValue(wWSelTemp_)) {
output["wWSelTemp"] = wWSelTemp_; output["wWSelTemp"] = wWSelTemp_;
} }
// Warm Water set temperature
if (Helpers::hasValue(wWSetTmp_)) { if (Helpers::hasValue(wWSetTmp_)) {
output["wWSetTemp"] = wWSetTmp_; output["wWSetTemp"] = wWSetTmp_;
} }
// Warm Water disinfection temperature
if (Helpers::hasValue(wWDisinfectTemp_)) { if (Helpers::hasValue(wWDisinfectTemp_)) {
output["wWDisinfectionTemp"] = wWDisinfectTemp_; output["wWDisinfectionTemp"] = wWDisinfectTemp_;
} }
// Selected flow temperature deg
if (Helpers::hasValue(selFlowTemp_)) { if (Helpers::hasValue(selFlowTemp_)) {
output["selFlowTemp"] = selFlowTemp_; output["selFlowTemp"] = selFlowTemp_;
} }
// Burner selected max power %
if (Helpers::hasValue(selBurnPow_)) { if (Helpers::hasValue(selBurnPow_)) {
output["selBurnPow"] = selBurnPow_; output["selBurnPow"] = selBurnPow_;
} }
// Burner current power %
if (Helpers::hasValue(curBurnPow_)) { if (Helpers::hasValue(curBurnPow_)) {
output["curBurnPow"] = curBurnPow_; output["curBurnPow"] = curBurnPow_;
} }
// Pump modulation %
if (Helpers::hasValue(pumpMod_)) { if (Helpers::hasValue(pumpMod_)) {
output["pumpMod"] = pumpMod_; output["pumpMod"] = pumpMod_;
} }
// Heat Pump modulation %
if (Helpers::hasValue(pumpMod2_)) { if (Helpers::hasValue(pumpMod2_)) {
output["pumpMod2"] = pumpMod2_; output["pumpMod2"] = pumpMod2_;
} }
// Warm Water type
if (wWType_ == 0) { // no output if not set if (wWType_ == 0) { // no output if not set
output["wWType"] = F("off"); output["wWType"] = F("off");
} else if (wWType_ == 1) { } else if (wWType_ == 1) {
@@ -198,147 +339,269 @@ bool Boiler::export_values(JsonObject & output) {
} else if (wWType_ == 4) { } else if (wWType_ == 4) {
output["wWType"] = F("layered buffer"); output["wWType"] = F("layered buffer");
} }
// Warm Water charging type
if (Helpers::hasValue(wWChargeType_, EMS_VALUE_BOOL)) { if (Helpers::hasValue(wWChargeType_, EMS_VALUE_BOOL)) {
output["wWChargeType"] = wWChargeType_ ? "valve" : "pump"; output["wWChargeType"] = wWChargeType_ ? "3-way valve" : "charge pump";
} }
// Warm Water circulation pump available bool
if (Helpers::hasValue(wWCircPump_, EMS_VALUE_BOOL)) { if (Helpers::hasValue(wWCircPump_, EMS_VALUE_BOOL)) {
output["wWCircPump"] = Helpers::render_value(s, wWCircPump_, EMS_VALUE_BOOL); output["wWCircPump"] = Helpers::render_value(s, wWCircPump_, EMS_VALUE_BOOL);
} }
// Warm Water circulation pump freq
if (Helpers::hasValue(wWCircPumpMode_)) { if (Helpers::hasValue(wWCircPumpMode_)) {
output["wWCiPuMode"] = wWCircPumpMode_; if (wWCircPumpMode_ == 7) {
output["wWCiPuMode"] = F("continuous");
} else {
char s[7];
char buffer[2];
buffer[0] = (wWCircPumpMode_ % 10) + '0';
buffer[1] = '\0';
strlcpy(s, buffer, 7);
strlcat(s, "x3min", 7);
output["wWCiPuMode"] = s;
} }
}
// Warm Water circulation active bool
if (Helpers::hasValue(wWCirc_, EMS_VALUE_BOOL)) { if (Helpers::hasValue(wWCirc_, EMS_VALUE_BOOL)) {
output["wWCirc"] = Helpers::render_value(s, wWCirc_, EMS_VALUE_BOOL); output["wWCirc"] = Helpers::render_value(s, wWCirc_, EMS_VALUE_BOOL);
} }
// Outside temperature
if (Helpers::hasValue(extTemp_)) { if (Helpers::hasValue(extTemp_)) {
output["outdoorTemp"] = (float)extTemp_ / 10; output["outdoorTemp"] = (float)extTemp_ / 10;
} }
// Warm Water current temperature (intern)
if (Helpers::hasValue(wWCurTmp_)) { if (Helpers::hasValue(wWCurTmp_)) {
output["wWCurTmp"] = (float)wWCurTmp_ / 10; output["wWCurTmp"] = (float)wWCurTmp_ / 10;
} }
// Warm Water current temperature (extern)
if (Helpers::hasValue(wWCurTmp2_)) { if (Helpers::hasValue(wWCurTmp2_)) {
output["wWCurTmp2"] = (float)wWCurTmp2_ / 10; output["wWCurTmp2"] = (float)wWCurTmp2_ / 10;
} }
// Warm Water current tap water flow l/min
if (Helpers::hasValue(wWCurFlow_)) { if (Helpers::hasValue(wWCurFlow_)) {
output["wWCurFlow"] = (float)wWCurFlow_ / 10; output["wWCurFlow"] = (float)wWCurFlow_ / 10;
} }
// Current flow temperature
if (Helpers::hasValue(curFlowTemp_)) { if (Helpers::hasValue(curFlowTemp_)) {
output["curFlowTemp"] = (float)curFlowTemp_ / 10; output["curFlowTemp"] = (float)curFlowTemp_ / 10;
} }
// Return temperature
if (Helpers::hasValue(retTemp_)) { if (Helpers::hasValue(retTemp_)) {
output["retTemp"] = (float)retTemp_ / 10; output["retTemp"] = (float)retTemp_ / 10;
} }
// Mixing switch temperature
if (Helpers::hasValue(switchTemp_)) { if (Helpers::hasValue(switchTemp_)) {
output["switchTemp"] = (float)switchTemp_ / 10; output["switchTemp"] = (float)switchTemp_ / 10;
} }
// System pressure
if (Helpers::hasValue(sysPress_)) { if (Helpers::hasValue(sysPress_)) {
output["sysPress"] = (float)sysPress_ / 10; output["sysPress"] = (float)sysPress_ / 10;
} }
// Max boiler temperature
if (Helpers::hasValue(boilTemp_)) { if (Helpers::hasValue(boilTemp_)) {
output["boilTemp"] = (float)boilTemp_ / 10; output["boilTemp"] = (float)boilTemp_ / 10;
} }
// Warm water storage temperature (intern)
if (Helpers::hasValue(wwStorageTemp1_)) { if (Helpers::hasValue(wwStorageTemp1_)) {
output["wwStorageTemp1"] = (float)wwStorageTemp1_ / 10; output["wwStorageTemp1"] = (float)wwStorageTemp1_ / 10;
} }
// Warm water storage temperature (extern)
if (Helpers::hasValue(wwStorageTemp2_)) { if (Helpers::hasValue(wwStorageTemp2_)) {
output["wwStorageTemp2"] = (float)wwStorageTemp2_ / 10; output["wwStorageTemp2"] = (float)wwStorageTemp2_ / 10;
} }
// Exhaust temperature
if (Helpers::hasValue(exhaustTemp_)) { if (Helpers::hasValue(exhaustTemp_)) {
output["exhaustTemp"] = (float)exhaustTemp_ / 10; output["exhaustTemp"] = (float)exhaustTemp_ / 10;
} }
// Warm Water activated bool
if (Helpers::hasValue(wWActivated_, EMS_VALUE_BOOL)) { if (Helpers::hasValue(wWActivated_, EMS_VALUE_BOOL)) {
output["wWActivated"] = Helpers::render_value(s, wWActivated_, EMS_VALUE_BOOL); output["wWActivated"] = Helpers::render_value(s, wWActivated_, EMS_VALUE_BOOL);
} }
// Warm Water one time charging bool
if (Helpers::hasValue(wWOneTime_, EMS_VALUE_BOOL)) { if (Helpers::hasValue(wWOneTime_, EMS_VALUE_BOOL)) {
output["wWOnetime"] = Helpers::render_value(s, wWOneTime_, EMS_VALUE_BOOL); output["wWOnetime"] = Helpers::render_value(s, wWOneTime_, EMS_VALUE_BOOL);
} }
// Warm Water disinfecting bool
if (Helpers::hasValue(wWDisinfecting_, EMS_VALUE_BOOL)) { if (Helpers::hasValue(wWDisinfecting_, EMS_VALUE_BOOL)) {
output["wWDisinfecting"] = Helpers::render_value(s, wWDisinfecting_, EMS_VALUE_BOOL); output["wWDisinfecting"] = Helpers::render_value(s, wWDisinfecting_, EMS_VALUE_BOOL);
} }
// Warm water charging bool
if (Helpers::hasValue(wWCharging_, EMS_VALUE_BOOL)) { if (Helpers::hasValue(wWCharging_, EMS_VALUE_BOOL)) {
output["wWCharge"] = Helpers::render_value(s, wWCharging_, EMS_VALUE_BOOL); output["wWCharge"] = Helpers::render_value(s, wWCharging_, EMS_VALUE_BOOL);
} }
// Warm water recharge bool
if (Helpers::hasValue(wWRecharging_, EMS_VALUE_BOOL)) { if (Helpers::hasValue(wWRecharging_, EMS_VALUE_BOOL)) {
output["wWRecharge"] = Helpers::render_value(s, wWRecharging_, EMS_VALUE_BOOL); output["wWRecharge"] = Helpers::render_value(s, wWRecharging_, EMS_VALUE_BOOL);
} }
// Warm water temperature ok bool
if (Helpers::hasValue(wWTemperatureOK_, EMS_VALUE_BOOL)) { if (Helpers::hasValue(wWTemperatureOK_, EMS_VALUE_BOOL)) {
output["wWTempOK"] = Helpers::render_value(s, wWTemperatureOK_, EMS_VALUE_BOOL); output["wWTempOK"] = Helpers::render_value(s, wWTemperatureOK_, EMS_VALUE_BOOL);
} }
// Warm water active bool
if (Helpers::hasValue(wWActive_, EMS_VALUE_BOOL)) { if (Helpers::hasValue(wWActive_, EMS_VALUE_BOOL)) {
output["wWActive"] = Helpers::render_value(s, wWActive_, EMS_VALUE_BOOL); output["wWActive"] = Helpers::render_value(s, wWActive_, EMS_VALUE_BOOL);
} }
// Gas bool
if (Helpers::hasValue(burnGas_, EMS_VALUE_BOOL)) { if (Helpers::hasValue(burnGas_, EMS_VALUE_BOOL)) {
output["burnGas"] = Helpers::render_value(s, burnGas_, EMS_VALUE_BOOL); output["burnGas"] = Helpers::render_value(s, burnGas_, EMS_VALUE_BOOL);
} }
// Flame current uA
if (Helpers::hasValue(flameCurr_)) { if (Helpers::hasValue(flameCurr_)) {
output["flameCurr"] = (float)(int16_t)flameCurr_ / 10; output["flameCurr"] = (float)(int16_t)flameCurr_ / 10;
} }
// Boiler pump bool
if (Helpers::hasValue(heatPmp_, EMS_VALUE_BOOL)) { if (Helpers::hasValue(heatPmp_, EMS_VALUE_BOOL)) {
output["heatPump"] = Helpers::render_value(s, heatPmp_, EMS_VALUE_BOOL); output["heatPump"] = Helpers::render_value(s, heatPmp_, EMS_VALUE_BOOL);
} }
// Fan bool
if (Helpers::hasValue(fanWork_, EMS_VALUE_BOOL)) { if (Helpers::hasValue(fanWork_, EMS_VALUE_BOOL)) {
output["fanWork"] = Helpers::render_value(s, fanWork_, EMS_VALUE_BOOL); output["fanWork"] = Helpers::render_value(s, fanWork_, EMS_VALUE_BOOL);
} }
// Ignition bool
if (Helpers::hasValue(ignWork_, EMS_VALUE_BOOL)) { if (Helpers::hasValue(ignWork_, EMS_VALUE_BOOL)) {
output["ignWork"] = Helpers::render_value(s, ignWork_, EMS_VALUE_BOOL); output["ignWork"] = Helpers::render_value(s, ignWork_, EMS_VALUE_BOOL);
} }
// Warm Water charging bool
if (Helpers::hasValue(wWHeat_, EMS_VALUE_BOOL)) { if (Helpers::hasValue(wWHeat_, EMS_VALUE_BOOL)) {
output["wWHeat"] = Helpers::render_value(s, wWHeat_, EMS_VALUE_BOOL); output["wWHeat"] = Helpers::render_value(s, wWHeat_, EMS_VALUE_BOOL);
} }
// heating activated bool
if (Helpers::hasValue(heating_activated_, EMS_VALUE_BOOL)) { if (Helpers::hasValue(heating_activated_, EMS_VALUE_BOOL)) {
output["heatingActivated"] = Helpers::render_value(s, heating_activated_, EMS_VALUE_BOOL); output["heatingActivated"] = Helpers::render_value(s, heating_activated_, EMS_VALUE_BOOL);
} }
// Heating temperature setting on the boiler
if (Helpers::hasValue(heating_temp_)) { if (Helpers::hasValue(heating_temp_)) {
output["heatingTemp"] = heating_temp_; output["heatingTemp"] = heating_temp_;
} }
// Boiler circuit pump modulation max power %
if (Helpers::hasValue(pump_mod_max_)) { if (Helpers::hasValue(pump_mod_max_)) {
output["pumpModMax"] = pump_mod_max_; output["pumpModMax"] = pump_mod_max_;
} }
// Boiler circuit pump modulation min power %
if (Helpers::hasValue(pump_mod_min_)) { if (Helpers::hasValue(pump_mod_min_)) {
output["pumpModMin"] = pump_mod_min_; output["pumpModMin"] = pump_mod_min_;
} }
// Boiler circuit pump delay time min
if (Helpers::hasValue(pumpDelay_)) { if (Helpers::hasValue(pumpDelay_)) {
output["pumpDelay"] = pumpDelay_; output["pumpDelay"] = pumpDelay_;
} }
// Boiler burner min period min
if (Helpers::hasValue(burnPeriod_)) { if (Helpers::hasValue(burnPeriod_)) {
output["burnMinPeriod"] = burnPeriod_; output["burnMinPeriod"] = burnPeriod_;
} }
// Boiler burner min power %
if (Helpers::hasValue(burnPowermin_)) { if (Helpers::hasValue(burnPowermin_)) {
output["burnMinPower"] = burnPowermin_; output["burnMinPower"] = burnPowermin_;
} }
// Boiler burner max power %
if (Helpers::hasValue(burnPowermax_)) { if (Helpers::hasValue(burnPowermax_)) {
output["burnMaxPower"] = burnPowermax_; output["burnMaxPower"] = burnPowermax_;
} }
// Boiler temp hysteresis on degrees
if (Helpers::hasValue(boilTemp_on_)) { if (Helpers::hasValue(boilTemp_on_)) {
output["boilHystOn"] = boilTemp_on_; output["boilHystOn"] = boilTemp_on_;
} }
// Boiler temp hysteresis off degrees
if (Helpers::hasValue(boilTemp_off_)) { if (Helpers::hasValue(boilTemp_off_)) {
output["boilHystOff"] = boilTemp_off_; output["boilHystOff"] = boilTemp_off_;
} }
// Set Flow temperature
if (Helpers::hasValue(setFlowTemp_)) { if (Helpers::hasValue(setFlowTemp_)) {
output["setFlowTemp"] = setFlowTemp_; output["setFlowTemp"] = setFlowTemp_;
} }
// Warm Water pump set power %
if (Helpers::hasValue(setWWPumpPow_)) { if (Helpers::hasValue(setWWPumpPow_)) {
output["wWSetPumpPower"] = setWWPumpPow_; output["wWSetPumpPower"] = setWWPumpPow_;
} }
// Warm water mix temperature
if (Helpers::hasValue(wwMixTemperature_)) {
output["wwMixTemperature"] = wwMixTemperature_;
}
// Warm water buffer boiler temperature
if (Helpers::hasValue(wwBufferBoilerTemperature_)) {
output["wwBufferBoilerTemperature"] = wwBufferBoilerTemperature_;
}
// Warm Water # starts
if (Helpers::hasValue(wWStarts_)) { if (Helpers::hasValue(wWStarts_)) {
output["wWStarts"] = wWStarts_; output["wWStarts"] = wWStarts_;
} }
// Warm Water active time
if (Helpers::hasValue(wWWorkM_)) { if (Helpers::hasValue(wWWorkM_)) {
output["wWWorkM"] = wWWorkM_; output["wWWorkM"] = wWWorkM_;
} }
// Total UBA working time
if (Helpers::hasValue(UBAuptime_)) { if (Helpers::hasValue(UBAuptime_)) {
output["UBAuptime"] = UBAuptime_; output["UBAuptime"] = UBAuptime_;
} }
// Boiler burner set power %
if (Helpers::hasValue(setBurnPow_)) {
output["setBurnPow_"] = setBurnPow_;
}
// Burner # starts
if (Helpers::hasValue(burnStarts_)) { if (Helpers::hasValue(burnStarts_)) {
output["burnStarts"] = burnStarts_; output["burnStarts"] = burnStarts_;
} }
// Total burner operating time
if (Helpers::hasValue(burnWorkMin_)) { if (Helpers::hasValue(burnWorkMin_)) {
output["burnWorkMin"] = burnWorkMin_; output["burnWorkMin"] = burnWorkMin_;
} }
// Total heat operating time
if (Helpers::hasValue(heatWorkMin_)) { if (Helpers::hasValue(heatWorkMin_)) {
output["heatWorkMin"] = heatWorkMin_; output["heatWorkMin"] = heatWorkMin_;
} }
// Service Code
// Service Code Number
if (Helpers::hasValue(serviceCode_)) { if (Helpers::hasValue(serviceCode_)) {
output["serviceCode"] = serviceCodeChar_; output["serviceCode"] = serviceCodeChar_;
output["serviceCodeNumber"] = serviceCode_; output["serviceCodeNumber"] = serviceCode_;
@@ -372,113 +635,78 @@ bool Boiler::updated_values() {
void Boiler::show_values(uuid::console::Shell & shell) { void Boiler::show_values(uuid::console::Shell & shell) {
EMSdevice::show_values(shell); // for showing the header EMSdevice::show_values(shell); // for showing the header
print_value(shell, 2, F("Hot tap water"), tap_water_active_, nullptr, EMS_VALUE_BOOL); // fetch the values into a JSON document
print_value(shell, 2, F("Central heating"), heating_active_, nullptr, EMS_VALUE_BOOL); StaticJsonDocument<EMSESP_MAX_JSON_SIZE_LARGE> doc;
JsonObject output = doc.to<JsonObject>();
print_value(shell, 2, F("Warm Water activated"), wWActivated_, nullptr, EMS_VALUE_BOOL); if (!export_values(output)) {
if (wWType_ == 0) { return; // empty
print_value(shell, 2, F("Warm Water type"), F("off"));
} else if (wWType_ == 1) {
print_value(shell, 2, F("Warm Water type"), F("flow"));
} else if (wWType_ == 2) {
print_value(shell, 2, F("Warm Water type"), F("buffered flow"));
} else if (wWType_ == 3) {
print_value(shell, 2, F("Warm Water type"), F("buffer"));
} else if (wWType_ == 4) {
print_value(shell, 2, F("Warm Water type"), F("layered buffer"));
} }
if (Helpers::hasValue(wWChargeType_, EMS_VALUE_BOOL)) { print_value_json(shell, F("heatingActive"), F_(heatingActive), nullptr, output);
print_value(shell, 2, F("Warm Water charging type"), wWChargeType_ ? F("3-way valve") : F("charge pump")); print_value_json(shell, F("tapwaterActive"), F_(tapwaterActive), nullptr, output);
} print_value_json(shell, F("serviceCode"), F_(serviceCode), nullptr, output);
print_value_json(shell, F("serviceCodeNumber"), F_(serviceCodeNumber), nullptr, output);
print_value_json(shell, F("wWSelTemp"), F_(wWSelTemp), F_(degrees), output);
print_value_json(shell, F("wWSetTemp"), F_(wWSetTemp), F_(degrees), output);
print_value_json(shell, F("wWDisinfectionTemp"), F_(wWDisinfectionTemp), F_(degrees), output);
print_value_json(shell, F("selFlowTemp"), F_(selFlowTemp), F_(degrees), output);
print_value_json(shell, F("selBurnPow"), F_(selBurnPow), F_(percent), output);
print_value_json(shell, F("curBurnPow"), F_(curBurnPow), F_(percent), output);
print_value_json(shell, F("pumpMod"), F_(pumpMod), F_(percent), output);
print_value_json(shell, F("pumpMod2"), F_(pumpMod2), F_(percent), output);
print_value_json(shell, F("wWType"), F_(wWType), nullptr, output);
print_value_json(shell, F("wWChargeType"), F_(wWChargeType), nullptr, output);
print_value_json(shell, F("wWCircPump"), F_(wWCircPump), nullptr, output);
print_value_json(shell, F("wWCiPuMode"), F_(wWCiPuMode), nullptr, output);
print_value_json(shell, F("wWCirc"), F_(wWCirc), nullptr, output);
print_value_json(shell, F("outdoorTemp"), F_(outdoorTemp), F_(degrees), output);
print_value_json(shell, F("wWCurTmp"), F_(wWCurTmp), F_(degrees), output);
print_value_json(shell, F("wWCurTmp2"), F_(wWCurTmp2), F_(degrees), output);
print_value_json(shell, F("wWCurFlow"), F_(wWCurFlow), F("l/min"), output);
print_value_json(shell, F("curFlowTemp"), F_(curFlowTemp), F_(degrees), output);
print_value_json(shell, F("retTemp"), F_(retTemp), F_(degrees), output);
print_value_json(shell, F("switchTemp"), F_(switchTemp), F_(degrees), output);
print_value_json(shell, F("sysPress"), F_(sysPress), nullptr, output);
print_value_json(shell, F("boilTemp"), F_(boilTemp), F_(degrees), output);
print_value_json(shell, F("wwStorageTemp1"), F_(wwStorageTemp1), F_(degrees), output);
print_value_json(shell, F("wwStorageTemp2"), F_(wwStorageTemp2), F_(degrees), output);
print_value_json(shell, F("exhaustTemp"), F_(exhaustTemp), F_(degrees), output);
print_value_json(shell, F("wWActivated"), F_(wWActivated), nullptr, output);
print_value_json(shell, F("wWOnetime"), F_(wWOnetime), nullptr, output);
print_value_json(shell, F("wWDisinfecting"), F_(wWDisinfecting), nullptr, output);
print_value_json(shell, F("wWCharge"), F_(wWCharge), nullptr, output);
print_value_json(shell, F("wWRecharge"), F_(wWRecharge), nullptr, output);
print_value_json(shell, F("wWTempOK"), F_(wWTempOK), nullptr, output);
print_value_json(shell, F("wWActive"), F_(wWActive), nullptr, output);
print_value_json(shell, F("burnGas"), F_(burnGas), nullptr, output);
print_value_json(shell, F("flameCurr"), F_(flameCurr), F_(uA), output);
print_value_json(shell, F("heatPump"), F_(heatPump), nullptr, output);
print_value_json(shell, F("fanWork"), F_(fanWork), nullptr, output);
print_value_json(shell, F("ignWork"), F_(ignWork), nullptr, output);
print_value_json(shell, F("wWHeat"), F_(wWHeat), nullptr, output);
print_value_json(shell, F("heatingActivated"), F_(heatingActivated), nullptr, output);
print_value_json(shell, F("heatingTemp"), F_(heatingTemp), F_(degrees), output);
print_value_json(shell, F("pumpModMax"), F_(pumpModMax), F_(percent), output);
print_value_json(shell, F("pumpModMin"), F_(pumpModMin), F_(percent), output);
print_value_json(shell, F("pumpDelay"), F_(pumpDelay), F_(min), output);
print_value_json(shell, F("burnMinPeriod"), F_(burnMinPeriod), F_(min), output);
print_value_json(shell, F("burnMinPower"), F_(burnMinPower), F_(percent), output);
print_value_json(shell, F("burnMaxPower"), F_(burnMaxPower), F_(percent), output);
print_value_json(shell, F("boilHystOn"), F_(boilHystOn), F_(degrees), output);
print_value_json(shell, F("boilHystOff"), F_(boilHystOff), F_(degrees), output);
print_value_json(shell, F("setFlowTemp"), F_(setFlowTemp), F_(degrees), output);
print_value_json(shell, F("wWSetPumpPower"), F_(wWSetPumpPower), F_(percent), output);
print_value_json(shell, F("wwMixTemperature"), F_(wwMixTemperature), F_(degrees), output);
print_value_json(shell, F("wwBufferBoilerTemperature"), F_(wwBufferBoilerTemperature), F_(degrees), output);
print_value_json(shell, F("wWStarts"), F_(wWStarts), nullptr, output);
print_value_json(shell, F("wWWorkM"), F_(wWWorkM), nullptr, output);
print_value_json(shell, F("setBurnPow"), F_(setBurnPow), F_(percent), output);
print_value_json(shell, F("burnStarts"), F_(burnStarts), nullptr, output);
print_value(shell, 2, F("Warm Water circulation pump available"), wWCircPump_, nullptr, EMS_VALUE_BOOL);
if (Helpers::hasValue(wWCircPumpMode_)) {
if (wWCircPumpMode_ == 7) {
print_value(shell, 2, F("Warm Water circulation pump freq"), F("continuous"));
} else {
char s[7];
char buffer[2];
buffer[0] = (wWCircPumpMode_ % 10) + '0';
buffer[1] = '\0';
strlcpy(s, buffer, 7);
strlcat(s, "x3min", 7);
print_value(shell, 2, F("Warm Water circulation pump freq"), s);
}
}
print_value(shell, 2, F("Warm Water circulation active"), wWCirc_, nullptr, EMS_VALUE_BOOL);
if (wWComfort_ == 0x00) {
print_value(shell, 2, F("Warm Water comfort setting"), F("Hot"));
} else if (wWComfort_ == 0xD8) {
print_value(shell, 2, F("Warm Water comfort setting"), F("Eco"));
} else if (wWComfort_ == 0xEC) {
print_value(shell, 2, F("Warm Water comfort setting"), F("Intelligent"));
}
print_value(shell, 2, F("Warm water mix temperature"), wwMixTemperature_, F_(degrees), 10);
print_value(shell, 2, F("Warm water buffer boiler temperature"), wwBufferBoilerTemperature_, F_(degrees), 10);
print_value(shell, 2, F("Warm Water disinfection temperature"), wWDisinfectTemp_, F_(degrees));
print_value(shell, 2, F("Warm Water selected temperature"), wWSelTemp_, F_(degrees));
print_value(shell, 2, F("Warm Water set temperature"), wWSetTmp_, F_(degrees));
print_value(shell, 2, F("Warm Water current temperature (intern)"), wWCurTmp_, F_(degrees), 10);
print_value(shell, 2, F("Warm water storage temperature (intern)"), wwStorageTemp1_, F_(degrees), 10);
print_value(shell, 2, F("Warm Water current temperature (extern)"), wWCurTmp2_, F_(degrees), 10);
print_value(shell, 2, F("Warm water storage temperature (extern)"), wwStorageTemp2_, F_(degrees), 10);
print_value(shell, 2, F("Warm Water current tap water flow"), wWCurFlow_, F("l/min"), 10);
print_value(shell, 2, F("Warm Water # starts"), wWStarts_, nullptr);
if (Helpers::hasValue(wWWorkM_)) { if (Helpers::hasValue(wWWorkM_)) {
shell.printfln(F(" Warm Water active time: %d days %d hours %d minutes"), wWWorkM_ / 1440, (wWWorkM_ % 1440) / 60, wWWorkM_ % 60); shell.printfln(F(" Warm Water active time: %d days %d hours %d minutes"), wWWorkM_ / 1440, (wWWorkM_ % 1440) / 60, wWWorkM_ % 60);
} }
print_value(shell, 2, F("Warm Water one time charging"), wWOneTime_, nullptr, EMS_VALUE_BOOL);
print_value(shell, 2, F("Warm Water charging"), wWHeat_, nullptr, EMS_VALUE_BOOL);
print_value(shell, 2, F("Warm Water disinfecting"), wWDisinfecting_, nullptr, EMS_VALUE_BOOL);
print_value(shell, 2, F("Selected flow temperature"), selFlowTemp_, F_(degrees));
print_value(shell, 2, F("Current flow temperature"), curFlowTemp_, F_(degrees), 10);
print_value(shell, 2, F("Max boiler temperature"), boilTemp_, F_(degrees), 10);
print_value(shell, 2, F("Return temperature"), retTemp_, F_(degrees), 10);
print_value(shell, 2, F("Gas"), burnGas_, nullptr, EMS_VALUE_BOOL);
print_value(shell, 2, F("Boiler pump"), heatPmp_, nullptr, EMS_VALUE_BOOL);
print_value(shell, 2, F("Fan"), fanWork_, nullptr, EMS_VALUE_BOOL);
print_value(shell, 2, F("Ignition"), ignWork_, nullptr, EMS_VALUE_BOOL);
print_value(shell, 2, F("Burner selected max power"), selBurnPow_, F_(percent));
print_value(shell, 2, F("Burner current power"), curBurnPow_, F_(percent));
print_value(shell, 2, F("Flame current"), flameCurr_, F_(uA), 10);
print_value(shell, 2, F("System pressure"), sysPress_, F_(bar), 10);
if (Helpers::hasValue(serviceCode_)) {
shell.printfln(F(" System service code: %s (%d)"), serviceCodeChar_, serviceCode_);
} else if (serviceCodeChar_[0] != '\0') {
print_value(shell, 2, F("System service code"), serviceCodeChar_);
}
// UBAParameters
print_value(shell, 2, F("Heating activated"), heating_activated_, nullptr, EMS_VALUE_BOOL);
print_value(shell, 2, F("Heating temperature setting on the boiler"), heating_temp_, F_(degrees));
print_value(shell, 2, F("Boiler circuit pump modulation max power"), pump_mod_max_, F_(percent));
print_value(shell, 2, F("Boiler circuit pump modulation min power"), pump_mod_min_, F_(percent));
print_value(shell, 2, F("Boiler circuit pump delay time"), pumpDelay_, F_(min));
print_value(shell, 2, F("Boiler temp hysteresis on"), boilTemp_on_, F_(degrees));
print_value(shell, 2, F("Boiler temp hysteresis off"), boilTemp_off_, F_(degrees));
print_value(shell, 2, F("Boiler burner min period"), burnPeriod_, F_(min));
print_value(shell, 2, F("Boiler burner min power"), burnPowermin_, F_(percent));
print_value(shell, 2, F("Boiler burner max power"), burnPowermax_, F_(percent));
// UBASetPoint - these may differ from the above
print_value(shell, 2, F("Set Flow temperature"), setFlowTemp_, F_(degrees));
print_value(shell, 2, F("Boiler burner set power"), setBurnPow_, F_(percent));
print_value(shell, 2, F("Warm Water pump set power"), setWWPumpPow_, F_(percent));
// UBAMonitorSlow
if (Helpers::hasValue(extTemp_)) {
print_value(shell, 2, F("Outside temperature"), extTemp_, F_(degrees), 10);
}
print_value(shell, 2, F("Exhaust temperature"), exhaustTemp_, F_(degrees), 10);
print_value(shell, 2, F("Pump modulation"), pumpMod_, F_(percent));
print_value(shell, 2, F("Heat Pump modulation"), pumpMod2_, F_(percent));
print_value(shell, 2, F("Burner # starts"), burnStarts_, nullptr);
if (Helpers::hasValue(burnWorkMin_)) { if (Helpers::hasValue(burnWorkMin_)) {
shell.printfln(F(" Total burner operating time: %d days %d hours %d minutes"), burnWorkMin_ / 1440, (burnWorkMin_ % 1440) / 60, burnWorkMin_ % 60); shell.printfln(F(" Total burner operating time: %d days %d hours %d minutes"), burnWorkMin_ / 1440, (burnWorkMin_ % 1440) / 60, burnWorkMin_ % 60);
} }

View File

@@ -47,11 +47,11 @@ class Boiler : public EMSdevice {
static uuid::log::Logger logger_; static uuid::log::Logger logger_;
void register_mqtt_ha_config(); void register_mqtt_ha_config();
void register_mqtt_ha_binary_sensor(const __FlashStringHelper * name, const char * entity);
void register_mqtt_ha_sensor(const __FlashStringHelper * name, const char * entity, const char * uom, const char * icon);
void check_active(); void check_active();
bool export_values(JsonObject & doc); bool export_values(JsonObject & doc);
void print_value2(uuid::console::Shell & shell, const char * param, const __FlashStringHelper * name, const __FlashStringHelper * suffix, JsonObject & json);
uint8_t last_boilerState = 0xFF; // remember last state of heating and warm water on/off uint8_t last_boilerState = 0xFF; // remember last state of heating and warm water on/off
bool changed_ = false; bool changed_ = false;

View File

@@ -98,17 +98,24 @@ void Mixing::show_values(uuid::console::Shell & shell) {
return; // don't have any values yet return; // don't have any values yet
} }
// fetch the values into a JSON document
StaticJsonDocument<EMSESP_MAX_JSON_SIZE_MEDIUM> doc;
JsonObject output = doc.to<JsonObject>();
if (!export_values(output)) {
return; // empty
}
if (type() == Type::WWC) { if (type() == Type::WWC) {
print_value(shell, 2, F("Warm Water Circuit"), hc_, nullptr); shell.println(F_(ww_hc));
print_value(shell, 4, F("Current warm water temperature"), flowTemp_, F_(degrees), 10); print_value_json(shell, F("wwTemp"), F_(wwTemp), F_(degrees), output);
print_value(shell, 4, F("Current pump status"), pump_, nullptr, EMS_VALUE_BOOL); print_value_json(shell, F("pumpStatus"), F_(pumpStatus), nullptr, output);
print_value(shell, 4, F("Current temperature status"), status_, nullptr); print_value_json(shell, F("tempStatus"), F_(tempStatus), nullptr, output);
} else { } else {
print_value(shell, 2, F("Heating Circuit"), hc_, nullptr); shell.println(F_(hc));
print_value(shell, 4, F("Current flow temperature"), flowTemp_, F_(degrees), 10); print_value_json(shell, F("flowTemp"), F_(flowTemp), F_(degrees), output);
print_value(shell, 4, F("Setpoint flow temperature"), flowSetTemp_, F_(degrees)); print_value_json(shell, F("flowSetTemp"), F_(flowSetTemp), F_(degrees), output);
print_value(shell, 4, F("Current pump status"), pump_, nullptr, EMS_VALUE_BOOL); print_value_json(shell, F("pumpStatus"), F_(pumpStatus), nullptr, output);
print_value(shell, 4, F("Current valve status"), status_, F_(percent)); print_value_json(shell, F("valveStatus"), F_(valveStatus), F_(percent), output);
} }
shell.println(); shell.println();
@@ -119,7 +126,7 @@ bool Mixing::command_info(const char * value, const int8_t id, JsonObject & outp
} }
// publish values via MQTT // publish values via MQTT
// ideally we should group up all the mixing units together into a nested JSON but for now we'll send them individually // topic is mixing_data<id>
void Mixing::publish_values() { void Mixing::publish_values() {
StaticJsonDocument<EMSESP_MAX_JSON_SIZE_SMALL> doc; StaticJsonDocument<EMSESP_MAX_JSON_SIZE_SMALL> doc;
JsonObject output = doc.to<JsonObject>(); JsonObject output = doc.to<JsonObject>();
@@ -127,24 +134,28 @@ void Mixing::publish_values() {
char topic[30]; char topic[30];
char s[5]; char s[5];
strlcpy(topic, "mixing_data", 30); strlcpy(topic, "mixing_data", 30);
strlcat(topic, Helpers::itoa(s, device_id() - 0x20 + 1), 30); // append hc to topic strlcat(topic, Helpers::itoa(s, device_id() - 0x20 + 1), 30); // append device_id to topic
Mqtt::publish(topic, doc.as<JsonObject>()); Mqtt::publish(topic, doc.as<JsonObject>());
// if we're using Home Assistant and haven't created the MQTT Discovery topics, do it now // if we're using Home Assistant and haven't created the MQTT Discovery topics, do it now
if ((Mqtt::mqtt_format() == Mqtt::Format::HA) && (!ha_created_)) { if ((Mqtt::mqtt_format() == Mqtt::Format::HA) && (!ha_created_)) {
register_mqtt_ha_config(); register_mqtt_ha_config(topic);
} }
} }
} }
// publish config topic for HA MQTT Discovery // publish config topic for HA MQTT Discovery
void Mixing::register_mqtt_ha_config() { void Mixing::register_mqtt_ha_config(const char * topic) {
// Create the Master device // Create the Master device
StaticJsonDocument<EMSESP_MAX_JSON_SIZE_MEDIUM> doc; StaticJsonDocument<EMSESP_MAX_JSON_SIZE_MEDIUM> doc;
doc["name"] = F("EMS-ESP"); doc["name"] = F("EMS-ESP");
doc["uniq_id"] = F("mixing"); doc["uniq_id"] = F("mixing");
doc["ic"] = F("mdi:home-thermometer-outline"); doc["ic"] = F("mdi:home-thermometer-outline");
doc["stat_t"] = F("ems-esp/mixing_data");
std::string stat_t(50, '\0');
snprintf_P(&stat_t[0], stat_t.capacity() + 1, PSTR("%s/%s"), System::hostname().c_str(), topic);
doc["stat_t"] = stat_t;
doc["val_tpl"] = F("{{value_json.pumpStatus}}"); doc["val_tpl"] = F("{{value_json.pumpStatus}}");
JsonObject dev = doc.createNestedObject("dev"); JsonObject dev = doc.createNestedObject("dev");
dev["name"] = F("EMS-ESP Mixing"); dev["name"] = F("EMS-ESP Mixing");
@@ -156,15 +167,15 @@ void Mixing::register_mqtt_ha_config() {
Mqtt::publish_retain(F("homeassistant/sensor/ems-esp/mixing/config"), doc.as<JsonObject>(), true); // publish the config payload with retain flag Mqtt::publish_retain(F("homeassistant/sensor/ems-esp/mixing/config"), doc.as<JsonObject>(), true); // publish the config payload with retain flag
if (this->type() == Type::HC) { if (this->type() == Type::HC) {
Mqtt::register_mqtt_ha_sensor(F("Current flow temperature"), this->device_type(), "flowTemp", "°C", ""); Mqtt::register_mqtt_ha_sensor(nullptr, F_(flowTemp), this->device_type(), "flowTemp", F_(degrees), nullptr);
Mqtt::register_mqtt_ha_sensor(F("Setpoint flow temperature"), this->device_type(), "flowSetTemp", "°C", ""); Mqtt::register_mqtt_ha_sensor(nullptr, F_(flowSetTemp), this->device_type(), "flowSetTemp", F_(degrees), nullptr);
Mqtt::register_mqtt_ha_sensor(F("Current pump status"), this->device_type(), "pumpStatus", "", ""); Mqtt::register_mqtt_ha_sensor(nullptr, F_(pumpStatus), this->device_type(), "pumpStatus", nullptr, nullptr);
Mqtt::register_mqtt_ha_sensor(F("Current valve status"), this->device_type(), "valveStatus", "", ""); Mqtt::register_mqtt_ha_sensor(nullptr, F_(valveStatus), this->device_type(), "valveStatus", nullptr, nullptr);
} else { } else {
// WWC // WWC
Mqtt::register_mqtt_ha_sensor(F("Current flow temperature"), this->device_type(), "wwTemp", "°C", ""); Mqtt::register_mqtt_ha_sensor(nullptr, F_(wwTemp), this->device_type(), "wwTemp", F_(degrees), nullptr);
Mqtt::register_mqtt_ha_sensor(F("Current pump status"), this->device_type(), "pumpStatus", "", ""); Mqtt::register_mqtt_ha_sensor(nullptr, F_(pumpStatus), this->device_type(), "pumpStatus", nullptr, nullptr);
Mqtt::register_mqtt_ha_sensor(F("Current temperature status"), this->device_type(), "tempStatus", "", ""); Mqtt::register_mqtt_ha_sensor(nullptr, F_(tempStatus), this->device_type(), "tempStatus", nullptr, nullptr);
} }
ha_created_ = true; ha_created_ = true;
} }

View File

@@ -45,7 +45,7 @@ class Mixing : public EMSdevice {
static uuid::log::Logger logger_; static uuid::log::Logger logger_;
bool export_values(JsonObject & doc); bool export_values(JsonObject & doc);
void register_mqtt_ha_config(); void register_mqtt_ha_config(const char * topic);
bool command_info(const char * value, const int8_t id, JsonObject & output); bool command_info(const char * value, const int8_t id, JsonObject & output);
void process_MMPLUSStatusMessage_HC(std::shared_ptr<const Telegram> telegram); void process_MMPLUSStatusMessage_HC(std::shared_ptr<const Telegram> telegram);

View File

@@ -90,25 +90,30 @@ void Solar::device_info_web(JsonArray & root) {
void Solar::show_values(uuid::console::Shell & shell) { void Solar::show_values(uuid::console::Shell & shell) {
EMSdevice::show_values(shell); // always call this to show header EMSdevice::show_values(shell); // always call this to show header
print_value(shell, 2, F("Collector temperature (TS1)"), collectorTemp_, F_(degrees), 10); // fetch the values into a JSON document
print_value(shell, 2, F("Bottom temperature (TS2)"), tankBottomTemp_, F_(degrees), 10); StaticJsonDocument<EMSESP_MAX_JSON_SIZE_MEDIUM> doc;
print_value(shell, 2, F("Bottom temperature (TS5)"), tankBottomTemp2_, F_(degrees), 10); JsonObject output = doc.to<JsonObject>();
print_value(shell, 2, F("Heat exchanger temperature (TS6)"), heatExchangerTemp_, F_(degrees), 10); if (!export_values(output)) {
print_value(shell, 2, F("Solar pump modulation (PS1)"), solarPumpModulation_, F_(percent)); return; // empty
print_value(shell, 2, F("Cylinder pump modulation (PS5)"), cylinderPumpModulation_, F_(percent)); }
print_value(shell, 2, F("Valve (VS2) status"), valveStatus_, nullptr, EMS_VALUE_BOOL);
print_value(shell, 2, F("Solar Pump (PS1) active"), solarPump_, nullptr, EMS_VALUE_BOOL); print_value_json(shell, F("collectorTemp"), F_(collectorTemp), F_(degrees), output);
print_value_json(shell, F("tankBottomTemp"), F_(tankBottomTemp), F_(degrees), output);
print_value_json(shell, F("tankBottomTemp2"), F_(tankBottomTemp2), F_(degrees), output);
print_value_json(shell, F("heatExchangerTemp"), F_(heatExchangerTemp), F_(degrees), output);
print_value_json(shell, F("solarPumpModulation"), F_(solarPumpModulation), F_(percent), output);
print_value_json(shell, F("cylinderPumpModulation"), F_(cylinderPumpModulation), F_(percent), output);
print_value_json(shell, F("valveStatus"), F_(valveStatus), nullptr, output);
print_value_json(shell, F("solarPump"), F_(solarPump), nullptr, output);
print_value_json(shell, F("tankHeated"), F_(tankHeated), nullptr, output);
print_value_json(shell, F("collectorShutdown"), F_(collectorShutdown), nullptr, output);
print_value_json(shell, F("energyLastHour"), F_(energyLastHour), F_(wh), output);
print_value_json(shell, F("energyToday"), F_(energyToday), F_(wh), output);
print_value_json(shell, F("energyTotal"), F_(energyTotal), F_(kwh), output);
if (Helpers::hasValue(pumpWorkMin_)) { if (Helpers::hasValue(pumpWorkMin_)) {
shell.printfln(F(" Pump working time: %d days %d hours %d minutes"), pumpWorkMin_ / 1440, (pumpWorkMin_ % 1440) / 60, pumpWorkMin_ % 60); shell.printfln(F(" Pump working time: %d days %d hours %d minutes"), pumpWorkMin_ / 1440, (pumpWorkMin_ % 1440) / 60, pumpWorkMin_ % 60);
} }
print_value(shell, 2, F("Tank Heated"), tankHeated_, nullptr, EMS_VALUE_BOOL);
print_value(shell, 2, F("Collector shutdown"), collectorShutdown_, nullptr, EMS_VALUE_BOOL);
print_value(shell, 2, F("Energy last hour"), energyLastHour_, F_(wh), 10);
print_value(shell, 2, F("Energy today"), energyToday_, F_(wh));
print_value(shell, 2, F("Energy total"), energyTotal_, F_(kwh), 10);
} }
// publish values via MQTT // publish values via MQTT
@@ -143,20 +148,20 @@ void Solar::register_mqtt_ha_config() {
ids.add("ems-esp-solar"); ids.add("ems-esp-solar");
Mqtt::publish_retain(F("homeassistant/sensor/ems-esp/solar/config"), doc.as<JsonObject>(), true); // publish the config payload with retain flag Mqtt::publish_retain(F("homeassistant/sensor/ems-esp/solar/config"), doc.as<JsonObject>(), true); // publish the config payload with retain flag
Mqtt::register_mqtt_ha_sensor(F("Collector temperature (TS1)"), this->device_type(), "collectorTemp", "°C", ""); Mqtt::register_mqtt_ha_sensor(nullptr, F_(collectorTemp), this->device_type(), "collectorTemp", F_(degrees), nullptr);
Mqtt::register_mqtt_ha_sensor(F("Bottom temperature (TS2)"), this->device_type(), "tankBottomTemp", "°C", ""); Mqtt::register_mqtt_ha_sensor(nullptr, F_(tankBottomTemp), this->device_type(), "tankBottomTemp", F_(degrees), nullptr);
Mqtt::register_mqtt_ha_sensor(F("Bottom temperature (TS5)"), this->device_type(), "tankBottomTemp2", "°C", ""); Mqtt::register_mqtt_ha_sensor(nullptr, F_(tankBottomTemp2), this->device_type(), "tankBottomTemp2", F_(degrees), nullptr);
Mqtt::register_mqtt_ha_sensor(F("Heat exchanger temperature (TS6)"), this->device_type(), "heatExchangerTemp", "°C", ""); Mqtt::register_mqtt_ha_sensor(nullptr, F_(heatExchangerTemp), this->device_type(), "heatExchangerTemp", F_(degrees), nullptr);
Mqtt::register_mqtt_ha_sensor(F("Solar pump modulation (PS1)"), this->device_type(), "solarPumpModulation", "%", ""); Mqtt::register_mqtt_ha_sensor(nullptr, F_(solarPumpModulation), this->device_type(), "solarPumpModulation", F_(percent), nullptr);
Mqtt::register_mqtt_ha_sensor(F("Cylinder pump modulation (PS5)"), this->device_type(), "cylinderPumpModulation", "%", ""); Mqtt::register_mqtt_ha_sensor(nullptr, F_(cylinderPumpModulation), this->device_type(), "cylinderPumpModulation", F_(percent), nullptr);
Mqtt::register_mqtt_ha_sensor(F("Pump working time"), this->device_type(), "pumpWorkMin", "", ""); Mqtt::register_mqtt_ha_sensor(nullptr, F_(pumpWorkMin), this->device_type(), "pumpWorkMin", nullptr, nullptr);
Mqtt::register_mqtt_ha_sensor(F("Energy last hour"), this->device_type(), "energyLastHour", "", ""); Mqtt::register_mqtt_ha_sensor(nullptr, F_(energyLastHour), this->device_type(), "energyLastHour", nullptr, nullptr);
Mqtt::register_mqtt_ha_sensor(F("Energy today"), this->device_type(), "energyToday", "", ""); Mqtt::register_mqtt_ha_sensor(nullptr, F_(energyToday), this->device_type(), "energyToday", nullptr, nullptr);
Mqtt::register_mqtt_ha_sensor(F("Energy total"), this->device_type(), "energyTotal", "", ""); Mqtt::register_mqtt_ha_sensor(nullptr, F_(energyTotal), this->device_type(), "energyTotal", nullptr, nullptr);
Mqtt::register_mqtt_ha_sensor(F("Solar Pump (PS1) active"), this->device_type(), "solarPump", "", ""); Mqtt::register_mqtt_ha_sensor(nullptr, F_(solarPump), this->device_type(), "solarPump", nullptr, nullptr);
Mqtt::register_mqtt_ha_sensor(F("Valve (VS2) status"), this->device_type(), "valveStatus", "", ""); Mqtt::register_mqtt_ha_sensor(nullptr, F_(valveStatus), this->device_type(), "valveStatus", nullptr, nullptr);
Mqtt::register_mqtt_ha_sensor(F("Tank Heated"), this->device_type(), "tankHeated", "", ""); Mqtt::register_mqtt_ha_sensor(nullptr, F_(tankHeated), this->device_type(), "tankHeated", nullptr, nullptr);
Mqtt::register_mqtt_ha_sensor(F("Collector shutdown"), this->device_type(), "collectorShutdown", "", ""); Mqtt::register_mqtt_ha_sensor(nullptr, F_(collectorShutdown), this->device_type(), "collectorShutdown", nullptr, nullptr);
ha_created_ = true; ha_created_ = true;
} }

View File

@@ -194,14 +194,16 @@ void Thermostat::device_info_web(JsonArray & root) {
std::string hc_str(5, '\0'); std::string hc_str(5, '\0');
snprintf_P(&hc_str[0], hc_str.capacity() + 1, PSTR("hc%d: "), hc->hc_num()); snprintf_P(&hc_str[0], hc_str.capacity() + 1, PSTR("hc%d: "), hc->hc_num());
render_value_json(root, hc_str, F("Current room temperature"), hc->curr_roomTemp, F_(degrees), format_curr); render_value_json(root, hc_str, F_(currtemp), hc->curr_roomTemp, F_(degrees), format_curr);
render_value_json(root, hc_str, F("Setpoint room temperature"), hc->setpoint_roomTemp, F_(degrees), format_setpoint); render_value_json(root, hc_str, F_(seltemp), hc->setpoint_roomTemp, F_(degrees), format_setpoint);
if (Helpers::hasValue(hc->mode)) { if (Helpers::hasValue(hc->mode)) {
JsonObject dataElement; JsonObject dataElement;
dataElement = root.createNestedObject(); dataElement = root.createNestedObject();
std::string mode_str(15, '\0'); std::string mode_str(15, '\0');
snprintf_P(&mode_str[0], mode_str.capacity() + 1, PSTR("%sMode"), hc_str.c_str()); snprintf_P(&mode_str[0], mode_str.capacity() + 1, PSTR("%sMode"), hc_str.c_str());
dataElement["name"] = mode_str; dataElement["name"] = mode_str;
std::string modetype_str(20, '\0'); std::string modetype_str(20, '\0');
if (Helpers::hasValue(hc->summer_mode) && hc->summer_mode) { if (Helpers::hasValue(hc->summer_mode) && hc->summer_mode) {
snprintf_P(&modetype_str[0], modetype_str.capacity() + 1, PSTR("%s - summer"), mode_tostring(hc->get_mode(flags)).c_str()); snprintf_P(&modetype_str[0], modetype_str.capacity() + 1, PSTR("%s - summer"), mode_tostring(hc->get_mode(flags)).c_str());
@@ -238,7 +240,66 @@ bool Thermostat::updated_values() {
// info API command // info API command
// returns the same MQTT publish payload in Nested format // returns the same MQTT publish payload in Nested format
bool Thermostat::command_info(const char * value, const int8_t id, JsonObject & output) { bool Thermostat::command_info(const char * value, const int8_t id, JsonObject & output) {
return (export_values(Mqtt::Format::NESTED, output)); return (export_values_hc(Mqtt::Format::NESTED, output));
}
// display all thermostat values into the shell console
void Thermostat::show_values(uuid::console::Shell & shell) {
EMSdevice::show_values(shell); // always call this to show header
StaticJsonDocument<EMSESP_MAX_JSON_SIZE_SMALL> doc_main;
JsonObject output_main = doc_main.to<JsonObject>();
if (export_values_main(output_main)) {
print_value_json(shell, F("display"), F_(display), nullptr, output_main);
print_value_json(shell, F("language"), F_(language), nullptr, output_main);
print_value_json(shell, F("offsetclock"), F_(offsetclock), nullptr, output_main);
print_value_json(shell, F("dampedtemp"), F_(dampedtemp), F_(degrees), output_main);
print_value_json(shell, F("inttemp1"), F_(inttemp1), F_(degrees), output_main);
print_value_json(shell, F("inttemp2"), F_(inttemp2), F_(degrees), output_main);
print_value_json(shell, F("intoffset"), F_(intoffset), nullptr, output_main);
print_value_json(shell, F("minexttemp"), F_(minexttemp), F_(degrees), output_main);
print_value_json(shell, F("building"), F_(building), nullptr, output_main);
print_value_json(shell, F("wwmode"), F_(wwmode), nullptr, output_main);
print_value_json(shell, F("wwcircmode"), F_(wwcircmode), nullptr, output_main);
}
StaticJsonDocument<EMSESP_MAX_JSON_SIZE_MEDIUM> doc_hc;
JsonObject output_hc = doc_hc.to<JsonObject>();
// e.g. {"hc1":{"seltemp":849.4,"currtemp":819.2,"mode":"unknown","modetype":"day"},"hc2":{"seltemp":875.1,"currtemp":409.6,"mode":"unknown","modetype":"day"},"hc3":{"seltemp":0,"currtemp":0,"mode":"unknown","modetype":"day"}}
if (export_values_hc(Mqtt::Format::NESTED, output_hc)) {
// display for each active heating circuit
for (const auto & hc : heating_circuits_) {
if (hc->is_active()) {
shell.printfln("Heating Circuit %d:", hc->hc_num());
char hc_name[10]; // hc{1-4}
strlcpy(hc_name, "hc", 10);
char s[3];
strlcat(hc_name, Helpers::itoa(s, hc->hc_num()), 10);
JsonObject output = output_hc[hc_name];
print_value_json(shell, F("seltemp"), F_(seltemp), F_(degrees), output);
print_value_json(shell, F("currtemp"), F_(currtemp), F_(degrees), output);
print_value_json(shell, F("heattemp"), F_(heattemp), F_(degrees), output);
print_value_json(shell, F("comforttemp"), F_(comforttemp), F_(degrees), output);
print_value_json(shell, F("daytemp"), F_(daytemp), F_(degrees), output);
print_value_json(shell, F("ecotemp"), F_(ecotemp), F_(degrees), output);
print_value_json(shell, F("nighttemp"), F_(nighttemp), F_(degrees), output);
print_value_json(shell, F("manualtemp"), F_(manualtemp), F_(degrees), output);
print_value_json(shell, F("holidaytemp"), F_(holidaytemp), F_(degrees), output);
print_value_json(shell, F("nofrosttemp"), F_(nofrosttemp), F_(degrees), output);
print_value_json(shell, F("targetflowtemp"), F_(targetflowtemp), F_(degrees), output);
print_value_json(shell, F("offsettemp"), F_(offsettemp), F_(degrees), output);
print_value_json(shell, F("designtemp"), F_(designtemp), F_(degrees), output);
print_value_json(shell, F("summertemp"), F_(summertemp), F_(degrees), output);
print_value_json(shell, F("mode"), F_(mode), nullptr, output);
print_value_json(shell, F("modetype"), F_(modetype), nullptr, output);
shell.println();
}
}
}
} }
// publish values via MQTT // publish values via MQTT
@@ -247,52 +308,108 @@ void Thermostat::publish_values() {
return; return;
} }
StaticJsonDocument<EMSESP_MAX_JSON_SIZE_MEDIUM> doc; StaticJsonDocument<EMSESP_MAX_JSON_SIZE_SMALL> doc_main;
JsonObject output = doc.to<JsonObject>(); JsonObject output_main = doc_main.to<JsonObject>();
if (export_values_main(output_main)) {
export_values(Mqtt::mqtt_format(), output); Mqtt::publish(F("thermostat_system_data"), output_main);
}
StaticJsonDocument<EMSESP_MAX_JSON_SIZE_MEDIUM> doc_hc;
JsonObject output_hc = doc_hc.to<JsonObject>();
if (export_values_hc(Mqtt::mqtt_format(), output_hc)) {
// if we're in SINGLE mode the MQTT would have been published on the export_values() function for each hc // if we're in SINGLE mode the MQTT would have been published on the export_values() function for each hc
if (Mqtt::mqtt_format() != Mqtt::Format::SINGLE) { if (Mqtt::mqtt_format() != Mqtt::Format::SINGLE) {
Mqtt::publish(F("thermostat_data"), output); Mqtt::publish(F("thermostat_data"), output_hc);
}
} }
} }
// creates JSON doc from values // creates JSON doc from values
// returns false if empty // returns false if empty
bool Thermostat::export_values(uint8_t mqtt_format, JsonObject & rootThermostat) { bool Thermostat::export_values_main(JsonObject & rootThermostat) {
uint8_t flags = this->model(); // Clock time
JsonObject dataThermostat;
// add external temp and other stuff specific to the RC30 and RC35
if (flags == EMS_DEVICE_FLAG_RC35 || flags == EMS_DEVICE_FLAG_RC30_1) {
if (datetime_.size()) { if (datetime_.size()) {
rootThermostat["time"] = datetime_.c_str(); rootThermostat["time"] = datetime_.c_str();
} }
// Display
if (Helpers::hasValue(ibaMainDisplay_)) {
if (ibaMainDisplay_ == 0) {
rootThermostat["display"] = F("internal temperature");
} else if (ibaMainDisplay_ == 1) {
rootThermostat["display"] = F("internal setpoint");
} else if (ibaMainDisplay_ == 2) {
rootThermostat["display"] = F("external temperature");
} else if (ibaMainDisplay_ == 3) {
rootThermostat["display"] = F("burner temperature");
} else if (ibaMainDisplay_ == 4) {
rootThermostat["display"] = F("WW temperature");
} else if (ibaMainDisplay_ == 5) {
rootThermostat["display"] = F("functioning mode");
} else if (ibaMainDisplay_ == 6) {
rootThermostat["display"] = F("time");
} else if (ibaMainDisplay_ == 7) {
rootThermostat["display"] = F("date");
} else if (ibaMainDisplay_ == 8) {
rootThermostat["display"] = F("smoke temperature");
}
}
// Language
if (Helpers::hasValue(ibaLanguage_)) {
if (ibaLanguage_ == 0) {
rootThermostat["language"] = F("German");
} else if (ibaLanguage_ == 1) {
rootThermostat["language"] = F("Dutch");
} else if (ibaLanguage_ == 2) {
rootThermostat["language"] = F("French");
} else if (ibaLanguage_ == 3) {
rootThermostat["language"] = F("Italian");
}
}
// Offset clock
if (Helpers::hasValue(ibaClockOffset_)) {
rootThermostat["offsetclock"] = ibaClockOffset_; // offset (in sec) to clock, 0xff=-1s, 0x02=2s
}
// Damped outdoor temperature
if (Helpers::hasValue(dampedoutdoortemp_)) { if (Helpers::hasValue(dampedoutdoortemp_)) {
rootThermostat["dampedtemp"] = dampedoutdoortemp_; rootThermostat["dampedtemp"] = dampedoutdoortemp_;
} }
// Temp sensor 1
if (Helpers::hasValue(tempsensor1_)) { if (Helpers::hasValue(tempsensor1_)) {
rootThermostat["inttemp1"] = (float)tempsensor1_ / 10; rootThermostat["inttemp1"] = (float)tempsensor1_ / 10;
} }
// Temp sensor 2
if (Helpers::hasValue(tempsensor2_)) { if (Helpers::hasValue(tempsensor2_)) {
rootThermostat["inttemp2"] = (float)tempsensor2_ / 10; rootThermostat["inttemp2"] = (float)tempsensor2_ / 10;
} }
// Offset int. temperature
if (Helpers::hasValue(ibaCalIntTemperature_)) { if (Helpers::hasValue(ibaCalIntTemperature_)) {
rootThermostat["intoffset"] = (float)ibaCalIntTemperature_ / 2; rootThermostat["intoffset"] = (float)ibaCalIntTemperature_ / 2;
} }
// Min ext. temperature
if (Helpers::hasValue(ibaMinExtTemperature_)) { if (Helpers::hasValue(ibaMinExtTemperature_)) {
rootThermostat["minexttemp"] = (float)ibaMinExtTemperature_; // min ext temp for heating curve, in deg. rootThermostat["minexttemp"] = (float)ibaMinExtTemperature_; // min ext temp for heating curve, in deg.
} }
// Building
if (Helpers::hasValue(ibaBuildingType_)) { if (Helpers::hasValue(ibaBuildingType_)) {
if (ibaBuildingType_ == 0) { if (ibaBuildingType_ == 0) {
rootThermostat["building"] = "light"; rootThermostat["building"] = F("light");
} else if (ibaBuildingType_ == 1) { } else if (ibaBuildingType_ == 1) {
rootThermostat["building"] = "medium"; rootThermostat["building"] = F("medium");
} else if (ibaBuildingType_ == 2) { } else if (ibaBuildingType_ == 2) {
rootThermostat["building"] = "heavy"; rootThermostat["building"] = F("heavy");
} }
} }
// Warm water mode
if (Helpers::hasValue(wwMode_)) { if (Helpers::hasValue(wwMode_)) {
if (wwMode_ == 2) { if (wwMode_ == 2) {
rootThermostat["wwmode"] = "auto"; rootThermostat["wwmode"] = "auto";
@@ -302,6 +419,7 @@ bool Thermostat::export_values(uint8_t mqtt_format, JsonObject & rootThermostat)
} }
} }
// Warm Water circulation mode
if (Helpers::hasValue(wwCircMode_)) { if (Helpers::hasValue(wwCircMode_)) {
if (wwCircMode_ == 2) { if (wwCircMode_ == 2) {
rootThermostat["wwcircmode"] = "auto"; rootThermostat["wwcircmode"] = "auto";
@@ -311,12 +429,15 @@ bool Thermostat::export_values(uint8_t mqtt_format, JsonObject & rootThermostat)
} }
} }
// send this specific data using the thermostat_data topic return (rootThermostat.size());
if (mqtt_format != Mqtt::Format::NESTED) { }
Mqtt::publish(F("thermostat_data"), rootThermostat);
rootThermostat.clear(); // clear object // creates JSON doc from values, for each heating circuit
} // if the mqtt_format is 0 then it will not perform the MQTT publish
} // returns false if empty
bool Thermostat::export_values_hc(uint8_t mqtt_format, JsonObject & rootThermostat) {
uint8_t flags = this->model();
JsonObject dataThermostat;
// go through all the heating circuits // go through all the heating circuits
bool has_data = false; bool has_data = false;
@@ -349,64 +470,80 @@ bool Thermostat::export_values(uint8_t mqtt_format, JsonObject & rootThermostat)
curr_temp_divider = 10; curr_temp_divider = 10;
} }
// Setpoint room temperature
if (Helpers::hasValue(hc->setpoint_roomTemp)) { if (Helpers::hasValue(hc->setpoint_roomTemp)) {
dataThermostat["seltemp"] = Helpers::round2((float)hc->setpoint_roomTemp / setpoint_temp_divider); dataThermostat["seltemp"] = Helpers::round2((float)hc->setpoint_roomTemp / setpoint_temp_divider);
} }
// Current room temperature
if (Helpers::hasValue(hc->curr_roomTemp)) { if (Helpers::hasValue(hc->curr_roomTemp)) {
dataThermostat["currtemp"] = Helpers::round2((float)hc->curr_roomTemp / curr_temp_divider); dataThermostat["currtemp"] = Helpers::round2((float)hc->curr_roomTemp / curr_temp_divider);
} }
if (Helpers::hasValue(hc->daytemp)) { if (Helpers::hasValue(hc->daytemp)) {
if (flags == EMSdevice::EMS_DEVICE_FLAG_JUNKERS) { if (flags == EMSdevice::EMS_DEVICE_FLAG_JUNKERS) {
// Heat temperature
dataThermostat["heattemp"] = (float)hc->daytemp / 2; dataThermostat["heattemp"] = (float)hc->daytemp / 2;
} else if (flags == EMSdevice::EMS_DEVICE_FLAG_RC300 || flags == EMSdevice::EMS_DEVICE_FLAG_RC100) { } else if (flags == EMSdevice::EMS_DEVICE_FLAG_RC300 || flags == EMSdevice::EMS_DEVICE_FLAG_RC100) {
// Comfort temperature
dataThermostat["comforttemp"] = (float)hc->daytemp / 2; dataThermostat["comforttemp"] = (float)hc->daytemp / 2;
} else { } else {
// Day temperature
dataThermostat["daytemp"] = (float)hc->daytemp / 2; dataThermostat["daytemp"] = (float)hc->daytemp / 2;
} }
} }
if (Helpers::hasValue(hc->nighttemp)) { if (Helpers::hasValue(hc->nighttemp)) {
if (flags == EMSdevice::EMS_DEVICE_FLAG_JUNKERS || flags == EMSdevice::EMS_DEVICE_FLAG_RC300 || flags == EMSdevice::EMS_DEVICE_FLAG_RC100) { if (flags == EMSdevice::EMS_DEVICE_FLAG_JUNKERS || flags == EMSdevice::EMS_DEVICE_FLAG_RC300 || flags == EMSdevice::EMS_DEVICE_FLAG_RC100) {
// Eco temperature
dataThermostat["ecotemp"] = (float)hc->nighttemp / 2; dataThermostat["ecotemp"] = (float)hc->nighttemp / 2;
} else { } else {
// Night temperature
dataThermostat["nighttemp"] = (float)hc->nighttemp / 2; dataThermostat["nighttemp"] = (float)hc->nighttemp / 2;
} }
} }
// Manual temperature
if (Helpers::hasValue(hc->manualtemp)) { if (Helpers::hasValue(hc->manualtemp)) {
dataThermostat["manualtemp"] = (float)hc->manualtemp / 2; dataThermostat["manualtemp"] = (float)hc->manualtemp / 2;
} }
// Holiday temperature
if (Helpers::hasValue(hc->holidaytemp)) { if (Helpers::hasValue(hc->holidaytemp)) {
dataThermostat["holidaytemp"] = (float)hc->holidaytemp / 2; dataThermostat["holidaytemp"] = (float)hc->holidaytemp / 2;
} }
// Nofrost temperature
if (Helpers::hasValue(hc->nofrosttemp)) { if (Helpers::hasValue(hc->nofrosttemp)) {
dataThermostat["nofrosttemp"] = (float)hc->nofrosttemp / 2; dataThermostat["nofrosttemp"] = (float)hc->nofrosttemp / 2;
} }
// Heating Type
if (Helpers::hasValue(hc->heatingtype)) { if (Helpers::hasValue(hc->heatingtype)) {
dataThermostat["heatingtype"] = hc->heatingtype; dataThermostat["heatingtype"] = hc->heatingtype;
} }
// Target flow temperature
if (Helpers::hasValue(hc->targetflowtemp)) { if (Helpers::hasValue(hc->targetflowtemp)) {
dataThermostat["targetflowtemp"] = hc->targetflowtemp; dataThermostat["targetflowtemp"] = hc->targetflowtemp;
} }
// Offset temperature
if (Helpers::hasValue(hc->offsettemp)) { if (Helpers::hasValue(hc->offsettemp)) {
dataThermostat["offsettemp"] = hc->offsettemp / 2; dataThermostat["offsettemp"] = hc->offsettemp / 2;
} }
// Design temperature
if (Helpers::hasValue(hc->designtemp)) { if (Helpers::hasValue(hc->designtemp)) {
dataThermostat["designtemp"] = hc->designtemp; dataThermostat["designtemp"] = hc->designtemp;
} }
// Summer temperature
if (Helpers::hasValue(hc->summertemp)) { if (Helpers::hasValue(hc->summertemp)) {
dataThermostat["summertemp"] = hc->summertemp; dataThermostat["summertemp"] = hc->summertemp;
} }
// Summer mode
if (Helpers::hasValue(hc->summer_setmode)) { if (Helpers::hasValue(hc->summer_setmode)) {
if (hc->summer_setmode == 1) { if (hc->summer_setmode == 1) {
dataThermostat["summermode"] = "auto"; dataThermostat["summermode"] = "auto";
@@ -429,11 +566,13 @@ bool Thermostat::export_values(uint8_t mqtt_format, JsonObject & rootThermostat)
hc_mode = HeatingCircuit::Mode::AUTO; hc_mode = HeatingCircuit::Mode::AUTO;
} }
} }
// Mode
dataThermostat["mode"] = mode_tostring(hc_mode); dataThermostat["mode"] = mode_tostring(hc_mode);
} }
// special handling of mode type, for the RC35 replace with summer/holiday if set // special handling of mode type, for the RC35 replace with summer/holiday if set
// https://github.com/proddy/EMS-ESP/issues/373#issuecomment-619810209 // https://github.com/proddy/EMS-ESP/issues/373#issuecomment-619810209
// Mode Type
if (Helpers::hasValue(hc->summer_mode) && hc->summer_mode) { if (Helpers::hasValue(hc->summer_mode) && hc->summer_mode) {
dataThermostat["modetype"] = F("summer"); dataThermostat["modetype"] = F("summer");
} else if (Helpers::hasValue(hc->holiday_mode) && hc->holiday_mode) { } else if (Helpers::hasValue(hc->holiday_mode) && hc->holiday_mode) {
@@ -444,7 +583,7 @@ bool Thermostat::export_values(uint8_t mqtt_format, JsonObject & rootThermostat)
// if format is single, send immediately and clear object for next hc // if format is single, send immediately and clear object for next hc
// the topic will have the hc number appended // the topic will have the hc number appended
if ((mqtt_format == Mqtt::Format::SINGLE) || (mqtt_format == Mqtt::Format::CUSTOM)) { if (mqtt_format == Mqtt::Format::SINGLE) {
char topic[30]; char topic[30];
char s[3]; char s[3];
strlcpy(topic, "thermostat_data", 30); strlcpy(topic, "thermostat_data", 30);
@@ -633,6 +772,45 @@ void Thermostat::register_mqtt_ha_config(uint8_t hc_num) {
// enable the thermostat topic to take both mode strings and floats // enable the thermostat topic to take both mode strings and floats
register_mqtt_topic("thermostat", [&](const char * m) { return thermostat_ha_cmd(m); }); register_mqtt_topic("thermostat", [&](const char * m) { return thermostat_ha_cmd(m); });
char hc_name[10]; // hc{1-4}
strlcpy(hc_name, "hc", 10);
char s[3];
strlcat(hc_name, Helpers::itoa(s, hc_num), 10);
Mqtt::register_mqtt_ha_sensor(hc_name, F_(mode), this->device_type(), "mode", nullptr, nullptr);
uint8_t model = this->model();
switch (model) {
case EMS_DEVICE_FLAG_RC100:
case EMS_DEVICE_FLAG_RC300:
Mqtt::register_mqtt_ha_sensor(hc_name, F_(modetype), this->device_type(), "modetype", nullptr, nullptr);
Mqtt::register_mqtt_ha_sensor(hc_name, F_(ecotemp), this->device_type(), "ecotemp", F_(degrees), F_(icontemperature));
Mqtt::register_mqtt_ha_sensor(hc_name, F_(manualtemp), this->device_type(), "manualtemp", F_(degrees), F_(icontemperature));
Mqtt::register_mqtt_ha_sensor(hc_name, F_(comforttemp), this->device_type(), "comforttemp", F_(degrees), F_(icontemperature));
Mqtt::register_mqtt_ha_sensor(hc_name, F_(summertemp), this->device_type(), "summertemp", F_(degrees), F_(icontemperature));
break;
case EMS_DEVICE_FLAG_RC20_2:
case EMS_DEVICE_FLAG_RC35:
Mqtt::register_mqtt_ha_sensor(hc_name, F_(modetype), this->device_type(), "modetype", nullptr, nullptr);
Mqtt::register_mqtt_ha_sensor(hc_name, F_(nighttemp), this->device_type(), "nighttemp", F_(degrees), F_(icontemperature));
Mqtt::register_mqtt_ha_sensor(hc_name, F_(daytemp), this->device_type(), "daytemp", F_(degrees), F_(icontemperature));
Mqtt::register_mqtt_ha_sensor(hc_name, F_(designtemp), this->device_type(), "designtemp", F_(degrees), F_(icontemperature));
Mqtt::register_mqtt_ha_sensor(hc_name, F_(offsettemp), this->device_type(), "offsettemp", F_(degrees), F_(icontemperature));
Mqtt::register_mqtt_ha_sensor(hc_name, F_(holidaytemp), this->device_type(), "holidaytemp", F_(degrees), F_(icontemperature));
Mqtt::register_mqtt_ha_sensor(hc_name, F_(targetflowtemp), this->device_type(), "targetflowtemp", F_(degrees), F_(icontemperature));
Mqtt::register_mqtt_ha_sensor(hc_name, F_(summertemp), this->device_type(), "summertemp", F_(degrees), F_(icontemperature));
Mqtt::register_mqtt_ha_sensor(hc_name, F_(nofrosttemp), this->device_type(), "nofrosttemp", F_(degrees), F_(icontemperature));
break;
case EMS_DEVICE_FLAG_JUNKERS:
Mqtt::register_mqtt_ha_sensor(hc_name, F_(modetype), this->device_type(), "modetype", nullptr, nullptr);
Mqtt::register_mqtt_ha_sensor(hc_name, F_(heattemp), this->device_type(), "heattemp", F_(degrees), F_(icontemperature));
Mqtt::register_mqtt_ha_sensor(hc_name, F_(ecotemp), this->device_type(), "ecotemp", F_(degrees), F_(icontemperature));
Mqtt::register_mqtt_ha_sensor(hc_name, F_(nofrosttemp), this->device_type(), "nofrosttemp", F_(degrees), F_(icontemperature));
break;
default:
break;
}
} }
// for HA specifically when receiving over MQTT in the thermostat topic // for HA specifically when receiving over MQTT in the thermostat topic
@@ -780,187 +958,6 @@ std::string Thermostat::mode_tostring(uint8_t mode) {
} }
} }
// display all thermostat values into the shell console
void Thermostat::show_values(uuid::console::Shell & shell) {
EMSdevice::show_values(shell); // always call this to show header
uint8_t flags = this->model();
if (datetime_.size()) {
shell.printfln(F(" Clock: %s"), datetime_.c_str());
if (Helpers::hasValue(ibaClockOffset_) && flags == EMS_DEVICE_FLAG_RC30_1) {
print_value(shell, 2, F("Offset clock"), ibaClockOffset_, nullptr); // offset (in sec) to clock, 0xff = -1 s, 0x02 = 2 s
}
}
if (Helpers::hasValue(wwMode_)) {
if (wwMode_ == 2) {
print_value(shell, 2, F("Warm Water mode"), F("auto"));
} else {
print_value(shell, 2, F("Warm Water mode"), wwMode_, nullptr, EMS_VALUE_BOOL);
}
}
if (Helpers::hasValue(wwCircMode_)) {
if (wwCircMode_ == 2) {
print_value(shell, 2, F("Warm Water circulation mode"), F("auto"));
} else {
print_value(shell, 2, F("Warm Water circulation mode"), wwCircMode_, nullptr, EMS_VALUE_BOOL);
}
}
if (flags == EMS_DEVICE_FLAG_RC35) {
print_value(shell, 2, F("Damped Outdoor temperature"), dampedoutdoortemp_, F_(degrees));
print_value(shell, 2, F("Temp sensor 1"), tempsensor1_, F_(degrees), 10);
print_value(shell, 2, F("Temp sensor 2"), tempsensor2_, F_(degrees), 10);
}
if (flags == EMS_DEVICE_FLAG_RC30_1) {
// settings parameters
if (Helpers::hasValue(ibaMainDisplay_)) {
if (ibaMainDisplay_ == 0) {
shell.printfln(F(" Display: internal temperature"));
} else if (ibaMainDisplay_ == 1) {
shell.printfln(F(" Display: internal setpoint"));
} else if (ibaMainDisplay_ == 2) {
shell.printfln(F(" Display: external temperature"));
} else if (ibaMainDisplay_ == 3) {
shell.printfln(F(" Display: burner temperature"));
} else if (ibaMainDisplay_ == 4) {
shell.printfln(F(" Display: WW temperature"));
} else if (ibaMainDisplay_ == 5) {
shell.printfln(F(" Display: functioning mode"));
} else if (ibaMainDisplay_ == 6) {
shell.printfln(F(" Display: time"));
} else if (ibaMainDisplay_ == 7) {
shell.printfln(F(" Display: date"));
} else if (ibaMainDisplay_ == 8) {
shell.printfln(F(" Display: smoke temperature"));
}
}
if (Helpers::hasValue(ibaLanguage_)) {
if (ibaLanguage_ == 0) {
shell.printfln(F(" Language: German"));
} else if (ibaLanguage_ == 1) {
shell.printfln(F(" Language: Dutch"));
} else if (ibaLanguage_ == 2) {
shell.printfln(F(" Language: French"));
} else if (ibaLanguage_ == 3) {
shell.printfln(F(" Language: Italian"));
}
}
}
if (flags == EMS_DEVICE_FLAG_RC35 || flags == EMS_DEVICE_FLAG_RC30_1) {
if (Helpers::hasValue(ibaCalIntTemperature_)) {
print_value(shell, 2, F("Offset int. temperature"), ibaCalIntTemperature_, F_(degrees), 2);
}
if (Helpers::hasValue(ibaMinExtTemperature_)) {
print_value(shell, 2, F("Min ext. temperature"), ibaMinExtTemperature_, F_(degrees)); // min ext temp for heating curve, in deg.
}
if (Helpers::hasValue(ibaBuildingType_)) {
if (ibaBuildingType_ == 0) {
shell.printfln(F(" Building: light"));
} else if (ibaBuildingType_ == 1) {
shell.printfln(F(" Building: medium"));
} else if (ibaBuildingType_ == 2) {
shell.printfln(F(" Building: heavy"));
}
}
}
for (const auto & hc : heating_circuits_) {
if (!hc->is_active()) {
break; // skip this HC
}
shell.printfln(F(" Heating Circuit %d:"), hc->hc_num());
// different thermostat types store their temperature values differently
uint8_t format_setpoint, format_curr;
switch (flags) {
case EMS_DEVICE_FLAG_EASY:
format_setpoint = 100; // *100
format_curr = 100; // *100
break;
case EMS_DEVICE_FLAG_JUNKERS:
format_setpoint = 10; // *10
format_curr = 10; // *10
break;
default: // RC30, RC35 etc...
format_setpoint = 2; // *2
format_curr = 10; // *10
break;
}
print_value(shell, 4, F("Current room temperature"), hc->curr_roomTemp, F_(degrees), format_curr);
print_value(shell, 4, F("Setpoint room temperature"), hc->setpoint_roomTemp, F_(degrees), format_setpoint);
if (Helpers::hasValue(hc->mode)) {
print_value(shell, 4, F("Mode"), mode_tostring(hc->get_mode(flags)).c_str());
}
if (Helpers::hasValue(hc->mode_type)) {
print_value(shell, 4, F("Mode Type"), mode_tostring(hc->get_mode_type(flags)).c_str());
}
if (Helpers::hasValue(hc->summer_mode) && hc->summer_mode) {
shell.printfln(F(" Program is set to Summer mode"));
} else if (Helpers::hasValue(hc->holiday_mode) && hc->holiday_mode) {
shell.printfln(F(" Program is set to Holiday mode"));
}
if (Helpers::hasValue(hc->daytemp)) {
if (flags == EMSdevice::EMS_DEVICE_FLAG_JUNKERS) {
print_value(shell, 4, F("Heat temperature"), hc->daytemp, F_(degrees), 2);
} else if (flags == EMSdevice::EMS_DEVICE_FLAG_RC300 || flags == EMSdevice::EMS_DEVICE_FLAG_RC100) {
print_value(shell, 4, F("Comfort temperature"), hc->daytemp, F_(degrees), 2);
} else {
print_value(shell, 4, F("Day temperature"), hc->daytemp, F_(degrees), 2);
}
}
if (Helpers::hasValue(hc->nighttemp)) {
if (flags == EMSdevice::EMS_DEVICE_FLAG_JUNKERS || flags == EMSdevice::EMS_DEVICE_FLAG_RC300 || flags == EMSdevice::EMS_DEVICE_FLAG_RC100) {
print_value(shell, 4, F("Eco temperature"), hc->nighttemp, F_(degrees), 2);
} else {
print_value(shell, 4, F("Night temperature"), hc->nighttemp, F_(degrees), 2);
}
}
if (Helpers::hasValue(hc->manualtemp)) {
print_value(shell, 4, F("Manual temperature"), hc->manualtemp, F_(degrees), 2);
}
if (Helpers::hasValue(hc->nofrosttemp)) {
print_value(shell, 4, F("Nofrost temperature"), hc->nofrosttemp, F_(degrees), 2);
}
if (Helpers::hasValue(hc->holidaytemp)) {
print_value(shell, 4, F("Holiday temperature"), hc->holidaytemp, F_(degrees), 2);
}
if (Helpers::hasValue(hc->offsettemp)) {
print_value(shell, 4, F("Offset temperature"), hc->offsettemp, F_(degrees), 2);
}
if (Helpers::hasValue(hc->designtemp)) {
print_value(shell, 4, F("Design temperature"), hc->designtemp, F_(degrees));
}
if (Helpers::hasValue(hc->summertemp)) {
print_value(shell, 4, F("Summer temperature"), hc->summertemp, F_(degrees));
}
if (Helpers::hasValue(hc->summer_setmode)) {
if (hc->summer_setmode == 1) {
print_value(shell, 4, F("Summer mode"), F("auto"));
} else {
char s[7];
print_value(shell, 4, F("Summer mode"), Helpers::render_boolean(s, (hc->summer_setmode == 0)));
}
}
if (Helpers::hasValue(hc->targetflowtemp)) {
print_value(shell, 4, F("Target flow temperature"), hc->targetflowtemp, F_(degrees));
}
}
shell.println();
}
// 0xA8 - for reading the mode from the RC20 thermostat (0x17) // 0xA8 - for reading the mode from the RC20 thermostat (0x17)
void Thermostat::process_RC20Set(std::shared_ptr<const Telegram> telegram) { void Thermostat::process_RC20Set(std::shared_ptr<const Telegram> telegram) {
std::shared_ptr<Thermostat::HeatingCircuit> hc = heating_circuit(telegram); std::shared_ptr<Thermostat::HeatingCircuit> hc = heating_circuit(telegram);
@@ -1026,6 +1023,9 @@ void Thermostat::process_JunkersSet2(std::shared_ptr<const Telegram> telegram) {
// type 0xA3 - for external temp settings from the the RC* thermostats (e.g. RC35) // type 0xA3 - for external temp settings from the the RC* thermostats (e.g. RC35)
void Thermostat::process_RCOutdoorTemp(std::shared_ptr<const Telegram> telegram) { void Thermostat::process_RCOutdoorTemp(std::shared_ptr<const Telegram> telegram) {
changed_ |= telegram->read_value(dampedoutdoortemp_, 0); changed_ |= telegram->read_value(dampedoutdoortemp_, 0);
if (dampedoutdoortemp_ == 0) {
dampedoutdoortemp_ = EMS_VALUE_INT_NOTSET; // special case for RC20's where the value is always 0
}
changed_ |= telegram->read_value(tempsensor1_, 3); // sensor 1 - is * 10 changed_ |= telegram->read_value(tempsensor1_, 3); // sensor 1 - is * 10
changed_ |= telegram->read_value(tempsensor2_, 5); // sensor 2 - is * 10 changed_ |= telegram->read_value(tempsensor2_, 5); // sensor 2 - is * 10
} }

View File

@@ -107,7 +107,8 @@ class Thermostat : public EMSdevice {
static uuid::log::Logger logger_; static uuid::log::Logger logger_;
void add_commands(); void add_commands();
bool export_values(uint8_t mqtt_format, JsonObject & doc); bool export_values_main(JsonObject & doc);
bool export_values_hc(uint8_t mqtt_format, JsonObject & doc);
// specific thermostat characteristics, stripping the option bits at pos 6 and 7 // specific thermostat characteristics, stripping the option bits at pos 6 and 7
inline uint8_t model() const { inline uint8_t model() const {

View File

@@ -35,6 +35,7 @@ uint32_t Mqtt::publish_time_mixing_;
uint32_t Mqtt::publish_time_other_; uint32_t Mqtt::publish_time_other_;
uint32_t Mqtt::publish_time_sensor_; uint32_t Mqtt::publish_time_sensor_;
uint8_t Mqtt::mqtt_format_; uint8_t Mqtt::mqtt_format_;
bool Mqtt::mqtt_enabled_;
std::vector<Mqtt::MQTTSubFunction> Mqtt::mqtt_subfunctions_; std::vector<Mqtt::MQTTSubFunction> Mqtt::mqtt_subfunctions_;
@@ -49,6 +50,10 @@ uuid::log::Logger Mqtt::logger_{F_(mqtt), uuid::log::Facility::DAEMON};
// subscribe to an MQTT topic, and store the associated callback function // subscribe to an MQTT topic, and store the associated callback function
// only if it already hasn't been added // only if it already hasn't been added
void Mqtt::subscribe(const uint8_t device_type, const std::string & topic, mqtt_subfunction_p cb) { void Mqtt::subscribe(const uint8_t device_type, const std::string & topic, mqtt_subfunction_p cb) {
if (!enabled()) {
return;
}
// check if we already have the topic subscribed, if so don't add it again // check if we already have the topic subscribed, if so don't add it again
if (!mqtt_subfunctions_.empty()) { if (!mqtt_subfunctions_.empty()) {
for (auto & mqtt_subfunction : mqtt_subfunctions_) { for (auto & mqtt_subfunction : mqtt_subfunctions_) {
@@ -159,8 +164,6 @@ void Mqtt::loop() {
void Mqtt::show_mqtt(uuid::console::Shell & shell) { void Mqtt::show_mqtt(uuid::console::Shell & shell) {
shell.printfln(F("MQTT is %s"), connected() ? uuid::read_flash_string(F_(connected)).c_str() : uuid::read_flash_string(F_(disconnected)).c_str()); shell.printfln(F("MQTT is %s"), connected() ? uuid::read_flash_string(F_(connected)).c_str() : uuid::read_flash_string(F_(disconnected)).c_str());
EMSESP::esp8266React.getMqttSettingsService()->read([&](MqttSettings & settings) { shell.printfln(F_(mqtt_format_fmt), settings.mqtt_format); });
shell.printfln(F("MQTT publish fails count: %lu"), mqtt_publish_fails_); shell.printfln(F("MQTT publish fails count: %lu"), mqtt_publish_fails_);
shell.println(); shell.println();
@@ -352,6 +355,7 @@ void Mqtt::start() {
mqtt_qos_ = mqttSettings.mqtt_qos; mqtt_qos_ = mqttSettings.mqtt_qos;
mqtt_retain_ = mqttSettings.mqtt_retain; mqtt_retain_ = mqttSettings.mqtt_retain;
mqtt_format_ = mqttSettings.mqtt_format; mqtt_format_ = mqttSettings.mqtt_format;
mqtt_enabled_ = mqttSettings.enabled;
}); });
mqttClient_->onConnect([this](bool sessionPresent) { on_connect(); }); mqttClient_->onConnect([this](bool sessionPresent) { on_connect(); });
@@ -476,6 +480,7 @@ void Mqtt::on_connect() {
// Home Assistant Discovery - the main master Device // Home Assistant Discovery - the main master Device
// homeassistant/sensor/ems-esp/status/config // homeassistant/sensor/ems-esp/status/config
// all the values from the heartbeat payload will be added as attributes to the entity state
void Mqtt::ha_status() { void Mqtt::ha_status() {
StaticJsonDocument<EMSESP_MAX_JSON_SIZE_MEDIUM> doc; StaticJsonDocument<EMSESP_MAX_JSON_SIZE_MEDIUM> doc;
doc["name"] = F("EMS-ESP status"); doc["name"] = F("EMS-ESP status");
@@ -500,7 +505,7 @@ void Mqtt::ha_status() {
// add sub or pub task to the queue. // add sub or pub task to the queue.
// a fully-qualified topic is created by prefixing the hostname, unless it's HA // a fully-qualified topic is created by prefixing the hostname, unless it's HA
// returns a pointer to the message created // returns a pointer to the message created
std::shared_ptr<const MqttMessage> Mqtt::queue_message(const uint8_t operation, const std::string & topic, const std::string & payload, const bool retain) { std::shared_ptr<const MqttMessage> Mqtt::queue_message(const uint8_t operation, const std::string & topic, const std::string & payload, bool retain) {
if (topic.empty()) { if (topic.empty()) {
return nullptr; return nullptr;
} }
@@ -509,16 +514,14 @@ std::shared_ptr<const MqttMessage> Mqtt::queue_message(const uint8_t operation,
std::shared_ptr<MqttMessage> message; std::shared_ptr<MqttMessage> message;
if ((strncmp(topic.c_str(), "homeassistant/", 13) == 0)) { if ((strncmp(topic.c_str(), "homeassistant/", 13) == 0)) {
// leave topic as it is // leave topic as it is
// message = std::make_shared<MqttMessage>(operation, topic, std::move(payload), retain);
message = std::make_shared<MqttMessage>(operation, topic, std::move(payload), retain); message = std::make_shared<MqttMessage>(operation, topic, std::move(payload), retain);
} else { } else {
// prefix the hostname // prefix the hostname
std::string full_topic(100, '\0'); std::string full_topic(100, '\0');
snprintf_P(&full_topic[0], full_topic.capacity() + 1, PSTR("%s/%s"), hostname_.c_str(), topic.c_str()); snprintf_P(&full_topic[0], full_topic.capacity() + 1, PSTR("%s/%s"), hostname_.c_str(), topic.c_str());
// message = std::make_shared<MqttMessage>(operation, full_topic, std::move(payload), retain);
message = std::make_shared<MqttMessage>(operation, full_topic, std::move(payload), retain); message = std::make_shared<MqttMessage>(operation, full_topic, std::move(payload), retain);
} }
// TODO use && and resize() to fix mem defrag issues
// if the queue is full, make room but removing the last one // if the queue is full, make room but removing the last one
if (mqtt_messages_.size() >= maximum_mqtt_messages_) { if (mqtt_messages_.size() >= maximum_mqtt_messages_) {
@@ -530,7 +533,10 @@ std::shared_ptr<const MqttMessage> Mqtt::queue_message(const uint8_t operation,
} }
// add MQTT message to queue, payload is a string // add MQTT message to queue, payload is a string
std::shared_ptr<const MqttMessage> Mqtt::queue_publish_message(const std::string & topic, const std::string & payload, const bool retain) { std::shared_ptr<const MqttMessage> Mqtt::queue_publish_message(const std::string & topic, const std::string & payload, bool retain) {
if (!enabled()) {
return nullptr;
};
return queue_message(Operation::PUBLISH, topic, payload, retain); return queue_message(Operation::PUBLISH, topic, payload, retain);
} }
@@ -549,7 +555,6 @@ void Mqtt::publish(const __FlashStringHelper * topic, const char * payload) {
queue_publish_message(uuid::read_flash_string(topic), payload, mqtt_retain_); queue_publish_message(uuid::read_flash_string(topic), payload, mqtt_retain_);
} }
// MQTT Publish, using a specific retain flag, topic is a flash string // MQTT Publish, using a specific retain flag, topic is a flash string
void Mqtt::publish(const __FlashStringHelper * topic, const std::string & payload) { void Mqtt::publish(const __FlashStringHelper * topic, const std::string & payload) {
queue_publish_message(uuid::read_flash_string(topic), payload, mqtt_retain_); queue_publish_message(uuid::read_flash_string(topic), payload, mqtt_retain_);
@@ -561,7 +566,7 @@ void Mqtt::publish(const __FlashStringHelper * topic, const JsonObject & payload
// publish json doc, only if its not empty // publish json doc, only if its not empty
void Mqtt::publish(const std::string & topic, const JsonObject & payload) { void Mqtt::publish(const std::string & topic, const JsonObject & payload) {
if (payload.size()) { if (enabled() && payload.size()) {
std::string payload_text; std::string payload_text;
serializeJson(payload, payload_text); // convert json to string serializeJson(payload, payload_text); // convert json to string
queue_publish_message(topic, payload_text, mqtt_retain_); queue_publish_message(topic, payload_text, mqtt_retain_);
@@ -569,11 +574,11 @@ void Mqtt::publish(const std::string & topic, const JsonObject & payload) {
} }
// for booleans, which get converted to string values 1 and 0 // for booleans, which get converted to string values 1 and 0
void Mqtt::publish(const std::string & topic, const bool value) { void Mqtt::publish(const std::string & topic, bool value) {
queue_publish_message(topic, value ? "1" : "0", false); queue_publish_message(topic, value ? "1" : "0", false);
} }
void Mqtt::publish(const __FlashStringHelper * topic, const bool value) { void Mqtt::publish(const __FlashStringHelper * topic, bool value) {
queue_publish_message(uuid::read_flash_string(topic), value ? "1" : "0", false); queue_publish_message(uuid::read_flash_string(topic), value ? "1" : "0", false);
} }
@@ -589,7 +594,7 @@ void Mqtt::publish_retain(const __FlashStringHelper * topic, const std::string &
// publish json doc, only if its not empty, using the retain flag // publish json doc, only if its not empty, using the retain flag
void Mqtt::publish_retain(const std::string & topic, const JsonObject & payload, bool retain) { void Mqtt::publish_retain(const std::string & topic, const JsonObject & payload, bool retain) {
if (payload.size()) { if (enabled() && payload.size()) {
std::string payload_text; std::string payload_text;
serializeJson(payload, payload_text); // convert json to string serializeJson(payload, payload_text); // convert json to string
queue_publish_message(topic, payload_text, retain); queue_publish_message(topic, payload_text, retain);
@@ -721,41 +726,61 @@ void Mqtt::register_mqtt_ha_binary_sensor(const __FlashStringHelper * name, cons
} }
// HA config for a normal 'sensor' type // HA config for a normal 'sensor' type
void Mqtt::register_mqtt_ha_sensor(const __FlashStringHelper * name, const uint8_t device_type, const char * entity, const char * uom, const char * icon) { // entity must match the key/value pair in the _data topic
void Mqtt::register_mqtt_ha_sensor(const char * prefix,
const __FlashStringHelper * name,
const uint8_t device_type,
const char * entity,
const __FlashStringHelper * uom,
const __FlashStringHelper * icon) {
if (mqtt_format() != Format::HA) { if (mqtt_format() != Format::HA) {
return; return;
} }
StaticJsonDocument<EMSESP_MAX_JSON_SIZE_MEDIUM> doc; StaticJsonDocument<EMSESP_MAX_JSON_SIZE_MEDIUM> doc;
std::string device_name = EMSdevice::device_type_2_device_name(device_type);
char new_entity[20];
// add prefix to entity if its specified
if (prefix != nullptr) {
snprintf_P(&new_entity[0], 20, PSTR("%s.%s"), prefix, entity);
} else {
strcpy(new_entity, entity);
}
doc["name"] = name; doc["name"] = name;
// build unique identifier, replacing all . with _ as not to break HA
std::string uniq(50, '\0'); std::string uniq(50, '\0');
snprintf_P(&uniq[0], uniq.capacity() + 1, PSTR("%s"), entity); snprintf_P(&uniq[0], uniq.capacity() + 1, PSTR("%s_%s"), device_name.c_str(), new_entity);
std::replace(uniq.begin(), uniq.end(), '.', '_');
doc["uniq_id"] = uniq; doc["uniq_id"] = uniq;
if (uom != nullptr) {
doc["unit_of_meas"] = uom; doc["unit_of_meas"] = uom;
}
std::string state_t(50, '\0'); std::string state_t(50, '\0');
snprintf_P(&state_t[0], state_t.capacity() + 1, PSTR("%s/%s_data"), hostname_.c_str(), EMSdevice::device_type_2_device_name(device_type).c_str()); snprintf_P(&state_t[0], state_t.capacity() + 1, PSTR("%s/%s_data"), hostname_.c_str(), device_name.c_str());
doc["stat_t"] = state_t; doc["stat_t"] = state_t;
std::string tpl(50, '\0'); std::string tpl(50, '\0');
snprintf_P(&tpl[0], tpl.capacity() + 1, PSTR("{{value_json.%s}}"), entity); snprintf_P(&tpl[0], tpl.capacity() + 1, PSTR("{{value_json.%s}}"), new_entity);
doc["val_tpl"] = tpl; doc["val_tpl"] = tpl;
if (strlen(icon)) { if (icon != nullptr) {
doc["ic"] = icon; doc["ic"] = icon;
} }
JsonObject dev = doc.createNestedObject(F("dev")); JsonObject dev = doc.createNestedObject(F("dev"));
JsonArray ids = dev.createNestedArray(F("ids")); JsonArray ids = dev.createNestedArray(F("ids"));
std::string ha_device(40, '\0'); std::string ha_device(40, '\0');
snprintf_P(&ha_device[0], ha_device.capacity() + 1, PSTR("ems-esp-%s"), EMSdevice::device_type_2_device_name(device_type).c_str()); snprintf_P(&ha_device[0], ha_device.capacity() + 1, PSTR("ems-esp-%s"), device_name.c_str());
ids.add(ha_device); ids.add(ha_device);
std::string topic(100, '\0'); std::string topic(100, '\0');
snprintf_P(&topic[0], topic.capacity() + 1, PSTR("homeassistant/sensor/ems-esp/%s/config"), entity); snprintf_P(&topic[0], topic.capacity() + 1, PSTR("homeassistant/sensor/ems-esp/%s/config"), uniq.c_str());
Mqtt::publish_retain(topic, doc.as<JsonObject>(), true); // publish the config payload with retain flag Mqtt::publish_retain(topic, doc.as<JsonObject>(), true); // publish the config payload with retain flag
} }

View File

@@ -81,7 +81,7 @@ class Mqtt {
enum Operation { PUBLISH, SUBSCRIBE }; enum Operation { PUBLISH, SUBSCRIBE };
enum Format : uint8_t { SINGLE = 1, NESTED, HA, CUSTOM }; enum Format : uint8_t { NONE = 0, SINGLE, NESTED, HA };
static constexpr uint8_t MQTT_TOPIC_MAX_SIZE = 100; static constexpr uint8_t MQTT_TOPIC_MAX_SIZE = 100;
@@ -96,8 +96,8 @@ class Mqtt {
static void publish(const std::string & topic, const JsonObject & payload); static void publish(const std::string & topic, const JsonObject & payload);
static void publish(const __FlashStringHelper * topic, const JsonObject & payload); static void publish(const __FlashStringHelper * topic, const JsonObject & payload);
static void publish(const __FlashStringHelper * topic, const std::string & payload); static void publish(const __FlashStringHelper * topic, const std::string & payload);
static void publish(const std::string & topic, const bool value); static void publish(const std::string & topic, bool value);
static void publish(const __FlashStringHelper * topi, const bool value); static void publish(const __FlashStringHelper * topic, bool value);
static void publish(const std::string & topic); static void publish(const std::string & topic);
static void publish_retain(const std::string & topic, const JsonObject & payload, bool retain); static void publish_retain(const std::string & topic, const JsonObject & payload, bool retain);
@@ -105,7 +105,12 @@ class Mqtt {
static void publish_retain(const __FlashStringHelper * topic, const JsonObject & payload, bool retain); static void publish_retain(const __FlashStringHelper * topic, const JsonObject & payload, bool retain);
static void register_mqtt_ha_binary_sensor(const __FlashStringHelper * name, const uint8_t device_type, const char * entity); static void register_mqtt_ha_binary_sensor(const __FlashStringHelper * name, const uint8_t device_type, const char * entity);
static void register_mqtt_ha_sensor(const __FlashStringHelper * name, const uint8_t device_type, const char * entity, const char * uom, const char * icon); static void register_mqtt_ha_sensor(const char * prefix,
const __FlashStringHelper * name,
const uint8_t device_type,
const char * entity,
const __FlashStringHelper * uom,
const __FlashStringHelper * icon);
static void show_topic_handlers(uuid::console::Shell & shell, const uint8_t device_type); static void show_topic_handlers(uuid::console::Shell & shell, const uint8_t device_type);
static void show_mqtt(uuid::console::Shell & shell); static void show_mqtt(uuid::console::Shell & shell);
@@ -122,7 +127,15 @@ class Mqtt {
#endif #endif
static bool connected() { static bool connected() {
#if defined(EMSESP_STANDALONE)
return true;
#else
return mqttClient_->connected(); return mqttClient_->connected();
#endif
}
static bool enabled() {
return mqtt_enabled_;
} }
static uint32_t publish_fails() { static uint32_t publish_fails() {
@@ -163,11 +176,11 @@ class Mqtt {
static uint16_t mqtt_message_id_; static uint16_t mqtt_message_id_;
static constexpr size_t MAX_MQTT_MESSAGES = 70; // size of queue static constexpr size_t MAX_MQTT_MESSAGES = 70; // size of queue
static constexpr uint32_t MQTT_PUBLISH_WAIT = 200; // delay between sending publishes, to account for large payloads static constexpr uint32_t MQTT_PUBLISH_WAIT = 100; // delay between sending publishes, to account for large payloads
static constexpr uint8_t MQTT_PUBLISH_MAX_RETRY = 3; // max retries for giving up on publishing static constexpr uint8_t MQTT_PUBLISH_MAX_RETRY = 3; // max retries for giving up on publishing
static std::shared_ptr<const MqttMessage> queue_message(const uint8_t operation, const std::string & topic, const std::string & payload, const bool retain); static std::shared_ptr<const MqttMessage> queue_message(const uint8_t operation, const std::string & topic, const std::string & payload, bool retain);
static std::shared_ptr<const MqttMessage> queue_publish_message(const std::string & topic, const std::string & payload, const bool retain); static std::shared_ptr<const MqttMessage> queue_publish_message(const std::string & topic, const std::string & payload, bool retain);
static std::shared_ptr<const MqttMessage> queue_subscribe_message(const std::string & topic); static std::shared_ptr<const MqttMessage> queue_subscribe_message(const std::string & topic);
void on_publish(uint16_t packetId); void on_publish(uint16_t packetId);
@@ -213,6 +226,7 @@ class Mqtt {
static uint32_t publish_time_other_; static uint32_t publish_time_other_;
static uint32_t publish_time_sensor_; static uint32_t publish_time_sensor_;
static uint8_t mqtt_format_; static uint8_t mqtt_format_;
static bool mqtt_enabled_;
}; };
} // namespace emsesp } // namespace emsesp