/*
* EMS-ESP - https://github.com/emsesp/EMS-ESP
* Copyright 2020-2024 emsesp.org - proddy, MichaelDvP
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see .
*/
#include "system.h"
#include "emsesp.h" // for send_raw_telegram() command
#ifndef EMSESP_STANDALONE
#include "esp_ota_ops.h"
#endif
#include
#if defined(EMSESP_TEST)
#include "test/test.h"
#endif
#ifndef EMSESP_STANDALONE
#ifdef ESP_IDF_VERSION_MAJOR // IDF 4+
#if CONFIG_IDF_TARGET_ESP32 // ESP32/PICO-D4
#include "../esp32/rom/rtc.h"
#elif CONFIG_IDF_TARGET_ESP32S2
#include "../esp32s2/rom/rtc.h"
#elif CONFIG_IDF_TARGET_ESP32C3
#include "../esp32c3/rom/rtc.h"
#elif CONFIG_IDF_TARGET_ESP32S3
#include "../esp32s3/rom/rtc.h"
#else
#error Target CONFIG_IDF_TARGET is not supported
#endif
#else // ESP32 Before IDF 4.0
#include "../rom/rtc.h"
#endif
#include
#endif
#include
namespace emsesp {
// Languages supported. Note: the order is important and must match locale_translations.h
#if defined(EMSESP_TEST) || defined(EMSESP_EN_ONLY)
// in Debug mode use one language (en) to save flash memory needed for the tests
const char * const languages[] = {EMSESP_LOCALE_EN};
#elif defined(EMSESP_DE_ONLY)
const char * const languages[] = {EMSESP_LOCALE_DE};
#else
const char * const languages[] = {EMSESP_LOCALE_EN,
EMSESP_LOCALE_DE,
EMSESP_LOCALE_NL,
EMSESP_LOCALE_SV,
EMSESP_LOCALE_PL,
EMSESP_LOCALE_NO,
EMSESP_LOCALE_FR,
EMSESP_LOCALE_TR,
EMSESP_LOCALE_IT,
EMSESP_LOCALE_SK};
#endif
static constexpr uint8_t NUM_LANGUAGES = sizeof(languages) / sizeof(const char *);
uuid::log::Logger System::logger_{F_(system), uuid::log::Facility::KERN};
// init statics
PButton System::myPButton_;
bool System::restart_requested_ = false;
bool System::restart_pending_ = false;
bool System::test_set_all_active_ = false;
uint32_t System::max_alloc_mem_;
uint32_t System::heap_mem_;
// find the index of the language
// 0 = EN, 1 = DE, etc...
uint8_t System::language_index() {
for (uint8_t i = 0; i < NUM_LANGUAGES; i++) {
if (languages[i] == locale()) {
return i;
}
}
return 0; // EN
}
// send raw to ems
bool System::command_send(const char * value, const int8_t id) {
return EMSESP::txservice_.send_raw(value); // ignore id
}
bool System::command_response(const char * value, const int8_t id, JsonObject output) {
JsonDocument doc;
if (DeserializationError::Ok == deserializeJson(doc, Mqtt::get_response())) {
for (JsonPair p : doc.as()) {
output[p.key()] = p.value();
}
} else {
output["response"] = Mqtt::get_response();
}
return true;
}
// output all the devices and the values
// not system info
bool System::command_allvalues(const char * value, const int8_t id, JsonObject output) {
JsonDocument doc;
JsonObject device_output;
// default to values
if (value == nullptr || strlen(value) == 0) {
value = F_(values);
}
// System Entities
// device_output = output["System"].to();
// get_value_info(device_output, value);
// EMS-Device Entities
for (const auto & emsdevice : EMSESP::emsdevices) {
std::string title = emsdevice->device_type_2_device_name_translated() + std::string(" ") + emsdevice->to_string();
device_output = output[title].to();
emsdevice->get_value_info(device_output, value, DeviceValueTAG::TAG_NONE);
}
// Custom Entities
device_output = output["Custom Entities"].to();
EMSESP::webCustomEntityService.get_value_info(device_output, value);
// Scheduler
device_output = output["Scheduler"].to();
EMSESP::webSchedulerService.get_value_info(device_output, value);
// Sensors
device_output = output["Analog Sensors"].to();
EMSESP::analogsensor_.get_value_info(device_output, value);
device_output = output["Temperature Sensors"].to();
EMSESP::temperaturesensor_.get_value_info(device_output, value);
return true;
}
// fetch device values
bool System::command_fetch(const char * value, const int8_t id) {
std::string value_s;
if (Helpers::value2string(value, value_s)) {
if (value_s == "all") {
LOG_INFO("Requesting data from EMS devices");
EMSESP::fetch_device_values();
} else if (value_s == (F_(boiler))) {
EMSESP::fetch_device_values_type(EMSdevice::DeviceType::BOILER);
} else if (value_s == (F_(thermostat))) {
EMSESP::fetch_device_values_type(EMSdevice::DeviceType::THERMOSTAT);
} else if (value_s == (F_(solar))) {
EMSESP::fetch_device_values_type(EMSdevice::DeviceType::SOLAR);
} else if (value_s == (F_(mixer))) {
EMSESP::fetch_device_values_type(EMSdevice::DeviceType::MIXER);
}
} else {
EMSESP::fetch_device_values(); // default if no name or id is given
}
return true; // always true
}
// mqtt publish
bool System::command_publish(const char * value, const int8_t id) {
std::string value_s;
if (Helpers::value2string(value, value_s)) {
if (value_s == "ha") {
EMSESP::publish_all(true); // includes HA
LOG_INFO("Publishing all data to MQTT, including HA configs");
return true;
} else if (value_s == (F_(boiler))) {
EMSESP::publish_device_values(EMSdevice::DeviceType::BOILER);
return true;
} else if (value_s == (F_(thermostat))) {
EMSESP::publish_device_values(EMSdevice::DeviceType::THERMOSTAT);
return true;
} else if (value_s == (F_(solar))) {
EMSESP::publish_device_values(EMSdevice::DeviceType::SOLAR);
return true;
} else if (value_s == (F_(mixer))) {
EMSESP::publish_device_values(EMSdevice::DeviceType::MIXER);
return true;
} else if (value_s == (F_(water))) {
EMSESP::publish_device_values(EMSdevice::DeviceType::WATER);
return true;
} else if (value_s == "other") {
EMSESP::publish_other_values(); // switch and heat pump
return true;
} else if ((value_s == (F_(temperaturesensor))) || (value_s == (F_(analogsensor)))) {
EMSESP::publish_sensor_values(true);
return true;
}
}
LOG_INFO("Publishing all data to MQTT");
EMSESP::publish_all();
return true;
}
// syslog level
// commenting this out - don't see the point on having an API service to change the syslog level
/*
bool System::command_syslog_level(const char * value, const int8_t id) {
uint8_t s = 0xff;
if (Helpers::value2enum(value, s, FL_(list_syslog_level))) {
bool changed = false;
EMSESP::webSettingsService.update(
[&](WebSettings & settings) {
if (settings.syslog_level != (int8_t)s - 1) {
settings.syslog_level = (int8_t)s - 1;
changed = true;
}
return StateUpdateResult::CHANGED;
});
if (changed) {
EMSESP::system_.syslog_init();
}
return true;
}
return false;
}
*/
// send message - to log and MQTT
bool System::command_message(const char * value, const int8_t id) {
if (value == nullptr || value[0] == '\0') {
return false; // must have a string value
}
LOG_INFO("Message: %s", value);
Mqtt::queue_publish(F_(message), value);
return true;
}
// watch
bool System::command_watch(const char * value, const int8_t id) {
uint8_t w = 0xff;
uint16_t i = Helpers::hextoint(value);
if (Helpers::value2enum(value, w, FL_(list_watch))) {
if (w == 0 || EMSESP::watch() == EMSESP::Watch::WATCH_OFF) {
EMSESP::watch_id(0);
}
if (Mqtt::publish_single() && w != EMSESP::watch()) {
if (Mqtt::publish_single2cmd()) {
Mqtt::queue_publish("system/watch", EMSESP::system_.enum_format() == ENUM_FORMAT_INDEX ? Helpers::itoa(w) : (FL_(list_watch)[w]));
} else {
Mqtt::queue_publish("system_data/watch", EMSESP::system_.enum_format() == ENUM_FORMAT_INDEX ? Helpers::itoa(w) : (FL_(list_watch)[w]));
}
}
EMSESP::watch(w);
return true;
} else if (i) {
if (Mqtt::publish_single() && i != EMSESP::watch_id()) {
if (Mqtt::publish_single2cmd()) {
Mqtt::queue_publish("system/watch", Helpers::hextoa(i));
} else {
Mqtt::queue_publish("system_data/watch", Helpers::hextoa(i));
}
}
EMSESP::watch_id(i);
if (EMSESP::watch() == EMSESP::Watch::WATCH_OFF) {
EMSESP::watch(EMSESP::Watch::WATCH_ON);
}
return true;
}
return false;
}
void System::store_nvs_values() {
if (Command::find_command(EMSdevice::DeviceType::BOILER, 0, "nompower", 0) != nullptr) {
Command::call(EMSdevice::DeviceType::BOILER, "nompower", "-1"); // trigger a write
}
EMSESP::analogsensor_.store_counters();
EMSESP::nvs_.end();
}
// restart EMS-ESP
// app0 or app1
// on 16MB we have the additional boot and factory partitions
void System::system_restart(const char * partitionname) {
#ifndef EMSESP_STANDALONE
// see if we are forcing a partition to use
if (partitionname != nullptr) {
// Factory partition - label will be "factory"
const esp_partition_t * partition = esp_partition_find_first(ESP_PARTITION_TYPE_APP, ESP_PARTITION_SUBTYPE_APP_FACTORY, NULL);
if (partition && strcmp(partition->label, partitionname) == 0) {
esp_ota_set_boot_partition(partition);
} else
// try and find the partition by name
if (strcmp(esp_ota_get_running_partition()->label, partitionname) != 0) {
partition = esp_ota_get_next_update_partition(nullptr);
if (!partition) {
LOG_ERROR("Partition '%s' not found", partitionname);
return;
}
if (strcmp(partition->label, partitionname) != 0 && strcmp(partitionname, "boot") != 0) {
partition = esp_ota_get_next_update_partition(partition);
if (!partition || strcmp(partition->label, partitionname)) {
LOG_ERROR("Partition '%s' not found", partitionname);
return;
}
}
// check if partition is empty
uint64_t buffer;
esp_partition_read(partition, 0, &buffer, 8);
if (buffer == 0xFFFFFFFFFFFFFFFF) {
LOG_ERROR("Partition '%s' is empty, not bootable", partition->label);
return;
}
// set the boot partition
esp_ota_set_boot_partition(partition);
}
LOG_INFO("Restarting EMS-ESP from %s partition", partitionname);
} else {
LOG_INFO("Restarting EMS-ESP...");
}
// make sure it's only executed once
restart_requested(false);
restart_pending(false);
store_nvs_values(); // save any NVS values
Shell::loop_all(); // flush log to output
delay(1000); // wait 1 second
ESP.restart();
#else
if (partitionname != nullptr) {
LOG_INFO("Restarting EMS-ESP from %s partition", partitionname);
} else {
LOG_INFO("Restarting EMS-ESP...");
}
#endif
}
// saves all settings
void System::wifi_reconnect() {
EMSESP::esp8266React.getNetworkSettingsService()->read(
[](NetworkSettings & networkSettings) { LOG_INFO("WiFi reconnecting to SSID '%s'...", networkSettings.ssid.c_str()); });
Shell::loop_all();
delay(1000); // wait a second
EMSESP::webSettingsService.save(); // save local settings
EMSESP::esp8266React.getNetworkSettingsService()->callUpdateHandlers(); // in case we've changed ssid or password
}
void System::syslog_init() {
EMSESP::webSettingsService.read([&](WebSettings & settings) {
syslog_enabled_ = settings.syslog_enabled;
syslog_level_ = settings.syslog_level;
syslog_mark_interval_ = settings.syslog_mark_interval;
syslog_host_ = settings.syslog_host;
syslog_port_ = settings.syslog_port;
});
#ifndef EMSESP_STANDALONE
if (syslog_enabled_) {
// start & configure syslog
EMSESP::logger().info("Starting Syslog service");
syslog_.start();
syslog_.log_level((uuid::log::Level)syslog_level_);
syslog_.mark_interval(syslog_mark_interval_);
syslog_.destination(syslog_host_.c_str(), syslog_port_);
syslog_.hostname(hostname().c_str());
// removed in 3.6.0
// Command::add(EMSdevice::DeviceType::SYSTEM, F_(syslog), System::command_syslog_level, FL_(changeloglevel_cmd), CommandFlag::ADMIN_ONLY);
} else if (syslog_.started()) {
// in case service is still running, this flushes the queue
// https://github.com/emsesp/EMS-ESP/issues/496
EMSESP::logger().info("Stopping Syslog");
syslog_.log_level((uuid::log::Level)-1); // stop server
syslog_.mark_interval(0);
syslog_.destination("");
}
if (Mqtt::publish_single()) {
if (Mqtt::publish_single2cmd()) {
Mqtt::queue_publish("system/syslog", syslog_enabled_ ? (FL_(list_syslog_level)[syslog_level_ + 1]) : "off");
if (EMSESP::watch_id() == 0 || EMSESP::watch() == 0) {
Mqtt::queue_publish("system/watch",
EMSESP::system_.enum_format() == ENUM_FORMAT_INDEX ? Helpers::itoa(EMSESP::watch()) : (FL_(list_watch)[EMSESP::watch()]));
} else {
Mqtt::queue_publish("system/watch", Helpers::hextoa(EMSESP::watch_id()));
}
} else {
Mqtt::queue_publish("system_data/syslog", syslog_enabled_ ? (FL_(list_syslog_level)[syslog_level_ + 1]) : "off");
if (EMSESP::watch_id() == 0 || EMSESP::watch() == 0) {
Mqtt::queue_publish("system_data/watch",
EMSESP::system_.enum_format() == ENUM_FORMAT_INDEX ? Helpers::itoa(EMSESP::watch()) : (FL_(list_watch)[EMSESP::watch()]));
} else {
Mqtt::queue_publish("system_data/watch", Helpers::hextoa(EMSESP::watch_id()));
}
}
}
#endif
}
// read some specific system settings to store locally for faster access
void System::reload_settings() {
EMSESP::webSettingsService.read([&](WebSettings & settings) {
version_ = settings.version;
pbutton_gpio_ = settings.pbutton_gpio;
analog_enabled_ = settings.analog_enabled;
low_clock_ = settings.low_clock;
hide_led_ = settings.hide_led;
led_gpio_ = settings.led_gpio;
board_profile_ = settings.board_profile;
telnet_enabled_ = settings.telnet_enabled;
modbus_enabled_ = settings.modbus_enabled;
modbus_port_ = settings.modbus_port;
modbus_max_clients_ = settings.modbus_max_clients;
modbus_timeout_ = settings.modbus_timeout;
rx_gpio_ = settings.rx_gpio;
tx_gpio_ = settings.tx_gpio;
dallas_gpio_ = settings.dallas_gpio;
syslog_enabled_ = settings.syslog_enabled;
syslog_level_ = settings.syslog_level;
syslog_mark_interval_ = settings.syslog_mark_interval;
syslog_host_ = settings.syslog_host;
syslog_port_ = settings.syslog_port;
fahrenheit_ = settings.fahrenheit;
bool_format_ = settings.bool_format;
bool_dashboard_ = settings.bool_dashboard;
enum_format_ = settings.enum_format;
readonly_mode_ = settings.readonly_mode;
phy_type_ = settings.phy_type;
eth_power_ = settings.eth_power;
eth_phy_addr_ = settings.eth_phy_addr;
eth_clock_mode_ = settings.eth_clock_mode;
locale_ = settings.locale;
});
}
// check for valid ESP32 pins. This is very dependent on which ESP32 board is being used.
// Typically you can't use 1, 6-11, 20, 24, 28-31 and 40+
// we allow 0 as it has a special function on the NodeMCU apparently
// See https://diyprojects.io/esp32-how-to-use-gpio-digital-io-arduino-code/#.YFpVEq9KhjG
// and https://nodemcu.readthedocs.io/en/dev-esp32/modules/gpio/
bool System::is_valid_gpio(uint8_t pin, bool has_psram) {
#if CONFIG_IDF_TARGET_ESP32 || EMSESP_STANDALONE
if ((pin == 1) || (pin >= 6 && pin <= 11) || (pin == 20) || (pin == 24) || (pin >= 28 && pin <= 31) || (pin > 40)
|| ((EMSESP::system_.PSram() > 0 || has_psram) && pin >= 16 && pin <= 17)) {
#elif CONFIG_IDF_TARGET_ESP32S2
if ((pin >= 19 && pin <= 20) || (pin >= 22 && pin <= 32) || (pin > 40)) {
#elif CONFIG_IDF_TARGET_ESP32C3
// https://www.wemos.cc/en/latest/c3/c3_mini.html
if ((pin >= 11 && pin <= 19) || (pin > 21)) {
#elif CONFIG_IDF_TARGET_ESP32S3
if ((pin >= 19 && pin <= 20) || (pin >= 22 && pin <= 37) || (pin >= 39 && pin <= 42) || (pin > 48)) {
#endif
return false; // bad pin
}
// extra check for pins 21 and 22 (I2C) when ethernet is onboard
if ((EMSESP::system_.ethernet_connected() || EMSESP::system_.phy_type_ != PHY_type::PHY_TYPE_NONE) && (pin >= 21 && pin <= 22)) {
return false; // bad pin
}
return true;
}
// Starts up the UART Serial bridge
void System::start() {
#ifndef EMSESP_STANDALONE
// disable bluetooth module
// periph_module_disable(PERIPH_BT_MODULE);
if (low_clock_) {
#if CONFIG_IDF_TARGET_ESP32C3
setCpuFrequencyMhz(80);
#else
setCpuFrequencyMhz(160);
#endif
}
// get current memory values
fstotal_ = LittleFS.totalBytes() / 1024; // read only once, it takes 500 ms to read
appused_ = ESP.getSketchSize() / 1024;
appfree_ = esp_ota_get_running_partition()->size / 1024 - appused_;
refreshHeapMem(); // refresh free heap and max alloc heap
#endif
EMSESP::esp8266React.getNetworkSettingsService()->read([&](NetworkSettings & networkSettings) {
hostname(networkSettings.hostname.c_str()); // sets the hostname
});
commands_init(); // console & api commands
led_init(false); // init LED
button_init(false); // the special button
network_init(false); // network
EMSESP::uart_init(); // start UART
syslog_init(); // start syslog
}
// button single click
void System::button_OnClick(PButton & b) {
LOG_NOTICE("Button pressed - single click");
#if defined(EMSESP_TEST)
#ifndef EMSESP_STANDALONE
// show filesystem
Test::listDir(LittleFS, "/", 3);
#endif
#endif
}
// button double click
void System::button_OnDblClick(PButton & b) {
LOG_NOTICE("Button pressed - double click - wifi reconnect");
EMSESP::system_.wifi_reconnect();
}
// button long press
void System::button_OnLongPress(PButton & b) {
LOG_NOTICE("Button pressed - long press - restart from factory/boot partition");
EMSESP::system_.system_restart("boot"); // this is default when first installed. it may contain the bootloader code.
}
// button indefinite press - do nothing for now
void System::button_OnVLongPress(PButton & b) {
LOG_NOTICE("Button pressed - very long press");
}
// push button
void System::button_init(bool refresh) {
if (refresh) {
reload_settings();
}
#ifndef EMSESP_STANDALONE
if (!is_valid_gpio(pbutton_gpio_)) {
LOG_WARNING("Invalid button GPIO. Check config.");
myPButton_.init(255, HIGH); // disable
return;
}
if (!myPButton_.init(pbutton_gpio_, HIGH)) {
LOG_WARNING("Multi-functional button not detected");
return;
}
LOG_DEBUG("Multi-functional button enabled");
myPButton_.onClick(BUTTON_Debounce, button_OnClick);
myPButton_.onDblClick(BUTTON_DblClickDelay, button_OnDblClick);
myPButton_.onLongPress(BUTTON_LongPressDelay, button_OnLongPress);
myPButton_.onVLongPress(BUTTON_VLongPressDelay, button_OnVLongPress);
#endif
}
// set the LED to on or off when in normal operating mode
void System::led_init(bool refresh) {
if (refresh) {
reload_settings();
}
if ((led_gpio_ != 0) && is_valid_gpio(led_gpio_)) {
#if defined(ARDUINO_LOLIN_C3_MINI) && !defined(BOARD_C3_MINI_V1)
// rgb LED WS2812B, use Adafruit Neopixel
neopixelWrite(led_gpio_, 0, 0, 0);
#else
pinMode(led_gpio_, OUTPUT); // 0 means disabled
digitalWrite(led_gpio_, !LED_ON); // start with LED off
#endif
}
}
// returns true if OTA is uploading
bool System::upload_isrunning() {
#if defined(EMSESP_STANDALONE)
return false;
#else
return upload_isrunning_ || Update.isRunning();
#endif
}
void System::upload_isrunning(bool in_progress) {
// if we've just started an upload
if (!upload_isrunning_ && in_progress) {
EMSuart::stop();
}
upload_isrunning_ = in_progress;
}
// checks system health and handles LED flashing wizardry
void System::loop() {
// check if we're supposed to do a reset/restart
if (restart_requested()) {
system_restart();
}
#ifndef EMSESP_STANDALONE
myPButton_.check(); // check button press
// syslog
if (syslog_enabled_) {
syslog_.loop();
}
led_monitor(); // check status and report back using the LED
system_check(); // check system health
send_info_mqtt();
#endif
}
// send MQTT info topic appended with the version information as JSON, as a retained flag
void System::send_info_mqtt() {
static uint8_t _connection = 0;
uint8_t connection = (ethernet_connected() ? 1 : 0) + ((WiFi.status() == WL_CONNECTED) ? 2 : 0) + (ntp_connected_ ? 4 : 0) + (has_ipv6_ ? 8 : 0);
// check if connection status has changed
if (!Mqtt::connected() || connection == _connection) {
return;
}
_connection = connection;
JsonDocument doc;
// doc["event"] = "connected";
doc["version"] = EMSESP_APP_VERSION;
// if NTP is enabled send the boot_time in local time in ISO 8601 format (eg: 2022-11-15 20:46:38)
// https://github.com/emsesp/EMS-ESP32/issues/751
if (ntp_connected_) {
char time_string[25];
time_t now = time(nullptr) - uuid::get_uptime_sec();
strftime(time_string, 25, "%FT%T%z", localtime(&now));
doc["boot time"] = time_string;
}
#ifndef EMSESP_STANDALONE
if (EMSESP::system_.ethernet_connected()) {
doc["network"] = "ethernet";
doc["hostname"] = ETH.getHostname();
/*
doc["MAC"] = ETH.macAddress();
doc["IPv4 address"] = uuid::printable_to_string(ETH.localIP()) + "/" + uuid::printable_to_string(ETH.subnetMask());
doc["IPv4 gateway"] = uuid::printable_to_string(ETH.gatewayIP());
doc["IPv4 nameserver"] = uuid::printable_to_string(ETH.dnsIP());
if (ETH.localIPv6().toString() != "0000:0000:0000:0000:0000:0000:0000:0000" && ETH.localIPv6().toString() != "::") {
doc["IPv6 address"] = uuid::printable_to_string(ETH.localIPv6());
}
*/
} else if (WiFi.status() == WL_CONNECTED) {
doc["network"] = "wifi";
doc["hostname"] = WiFi.getHostname();
doc["SSID"] = WiFi.SSID();
doc["BSSID"] = WiFi.BSSIDstr();
doc["MAC"] = WiFi.macAddress();
doc["IPv4 address"] = uuid::printable_to_string(WiFi.localIP()) + "/" + uuid::printable_to_string(WiFi.subnetMask());
doc["IPv4 gateway"] = uuid::printable_to_string(WiFi.gatewayIP());
doc["IPv4 nameserver"] = uuid::printable_to_string(WiFi.dnsIP());
#if ESP_IDF_VERSION_MAJOR < 5
if (WiFi.localIPv6().toString() != "0000:0000:0000:0000:0000:0000:0000:0000" && WiFi.localIPv6().toString() != "::") {
doc["IPv6 address"] = uuid::printable_to_string(WiFi.localIPv6());
}
#else
if (WiFi.linkLocalIPv6().toString() != "0000:0000:0000:0000:0000:0000:0000:0000" && WiFi.linkLocalIPv6().toString() != "::") {
doc["IPv6 address"] = uuid::printable_to_string(WiFi.linkLocalIPv6());
}
#endif
}
#endif
Mqtt::queue_publish_retain(F_(info), doc.as(), true); // topic called "info" and it's Retained
}
// create the json for heartbeat
void System::heartbeat_json(JsonObject output) {
switch (EMSESP::bus_status()) {
case EMSESP::BUS_STATUS_OFFLINE:
output["bus_status"] = "connecting"; // EMS-ESP is booting...
break;
case EMSESP::BUS_STATUS_TX_ERRORS:
output["bus_status"] = "txerror";
break;
case EMSESP::BUS_STATUS_CONNECTED:
output["bus_status"] = "connected";
break;
default:
output["bus_status"] = "disconnected";
break;
}
output["uptime"] = uuid::log::format_timestamp_ms(uuid::get_uptime_ms(), 3);
output["uptime_sec"] = uuid::get_uptime_sec();
bool value_b = ntp_connected();
if (EMSESP::system_.bool_format() == BOOL_FORMAT_TRUEFALSE) {
output["ntp_status"] = value_b;
} else if (EMSESP::system_.bool_format() == BOOL_FORMAT_10) {
output["ntp_status"] = value_b ? 1 : 0;
} else {
char s[12];
output["ntp_status"] = Helpers::render_boolean(s, value_b);
}
output["rxreceived"] = EMSESP::rxservice_.telegram_count();
output["rxfails"] = EMSESP::rxservice_.telegram_error_count();
output["txreads"] = EMSESP::txservice_.telegram_read_count();
output["txwrites"] = EMSESP::txservice_.telegram_write_count();
output["txfails"] = EMSESP::txservice_.telegram_read_fail_count() + EMSESP::txservice_.telegram_write_fail_count();
if (Mqtt::enabled()) {
output["mqttcount"] = Mqtt::publish_count();
output["mqttfails"] = Mqtt::publish_fails();
output["mqttconnects"] = Mqtt::connect_count();
}
output["apicalls"] = WebAPIService::api_count(); // + WebAPIService::api_fails();
output["apifails"] = WebAPIService::api_fails();
if (EMSESP::sensor_enabled() || EMSESP::analog_enabled()) {
output["sensorreads"] = EMSESP::temperaturesensor_.reads() + EMSESP::analogsensor_.reads();
output["sensorfails"] = EMSESP::temperaturesensor_.fails() + EMSESP::analogsensor_.fails();
}
#ifndef EMSESP_STANDALONE
output["freemem"] = getHeapMem();
output["max_alloc"] = getMaxAllocMem();
#endif
#ifndef EMSESP_STANDALONE
if (!ethernet_connected_) {
int8_t rssi = WiFi.RSSI();
output["rssi"] = rssi;
output["wifistrength"] = wifi_quality(rssi);
}
#endif
}
// send periodic MQTT message with system information
void System::send_heartbeat() {
// don't send heartbeat if WiFi or MQTT is not connected
if (!Mqtt::connected()) {
return;
}
refreshHeapMem(); // refresh free heap and max alloc heap
JsonDocument doc;
JsonObject json = doc.to();
heartbeat_json(json);
Mqtt::queue_publish(F_(heartbeat), json); // send to MQTT with retain off. This will add to MQTT queue.
}
// initializes network
void System::network_init(bool refresh) {
if (refresh) {
reload_settings();
}
last_system_check_ = 0; // force the LED to go from fast flash to pulse
#if CONFIG_IDF_TARGET_ESP32
bool disableEth;
EMSESP::esp8266React.getNetworkSettingsService()->read([&](NetworkSettings & settings) { disableEth = settings.ssid.length() > 0; });
// no ethernet present or disabled
if (phy_type_ == PHY_type::PHY_TYPE_NONE || disableEth) {
return;
} // no ethernet present
// configure Ethernet
int mdc = 23; // Pin# of the I²C clock signal for the Ethernet PHY - hardcoded
int mdio = 18; // Pin# of the I²C IO signal for the Ethernet PHY - hardcoded
uint8_t phy_addr = eth_phy_addr_; // I²C-address of Ethernet PHY (0 or 1 for LAN8720, 31 for TLK110)
int8_t power = eth_power_; // Pin# of the enable signal for the external crystal oscillator (-1 to disable for internal APLL source)
eth_phy_type_t type = (phy_type_ == PHY_type::PHY_TYPE_LAN8720) ? ETH_PHY_LAN8720 : ETH_PHY_TLK110; // Type of the Ethernet PHY (LAN8720 or TLK110)
// clock mode:
// ETH_CLOCK_GPIO0_IN = 0 RMII clock input to GPIO0
// ETH_CLOCK_GPIO0_OUT = 1 RMII clock output from GPIO0
// ETH_CLOCK_GPIO16_OUT = 2 RMII clock output from GPIO16
// ETH_CLOCK_GPIO17_OUT = 3 RMII clock output from GPIO17, for 50hz inverted clock
auto clock_mode = (eth_clock_mode_t)eth_clock_mode_;
// reset power and add a delay as ETH doesn't not always start up correctly after a warm boot
// TODO still experimental
pinMode(eth_power_, OUTPUT);
digitalWrite(eth_power_, LOW);
delay(1000);
digitalWrite(eth_power_, HIGH);
#if ESP_IDF_VERSION_MAJOR < 5
eth_present_ = ETH.begin(phy_addr, power, mdc, mdio, type, clock_mode);
#else
eth_present_ = ETH.begin(type, phy_addr, mdc, mdio, power, clock_mode);
#endif
#endif
}
// check health of system, done every 5 seconds
void System::system_check() {
if (!last_system_check_ || ((uint32_t)(uuid::get_uptime() - last_system_check_) >= SYSTEM_CHECK_FREQUENCY)) {
last_system_check_ = uuid::get_uptime();
#ifdef EMSESP_PINGTEST
static uint64_t ping_count = 0;
LOG_NOTICE("Ping test, #%d", ping_count++);
#endif
// check if we have a valid network connection
if (!ethernet_connected() && (WiFi.status() != WL_CONNECTED)) {
healthcheck_ |= HEALTHCHECK_NO_NETWORK;
} else {
healthcheck_ &= ~HEALTHCHECK_NO_NETWORK;
}
// check if we have a bus connection
if (!EMSbus::bus_connected()) {
healthcheck_ |= HEALTHCHECK_NO_BUS;
} else {
healthcheck_ &= ~HEALTHCHECK_NO_BUS;
}
// see if the healthcheck state has changed
static uint8_t last_healthcheck_ = 0;
if (healthcheck_ != last_healthcheck_) {
last_healthcheck_ = healthcheck_;
EMSESP::system_.send_heartbeat(); // send MQTT heartbeat immediately when connected
// see if we're better now
if (healthcheck_ == 0) {
// everything is healthy, show LED permanently on or off depending on setting
if (led_gpio_) {
#if defined(ARDUINO_LOLIN_C3_MINI) && !defined(BOARD_C3_MINI_V1)
neopixelWrite(led_gpio_, 0, hide_led_ ? 0 : 128, 0);
#else
digitalWrite(led_gpio_, hide_led_ ? !LED_ON : LED_ON);
#endif
}
} else {
// turn off LED so we're ready to the flashes
if (led_gpio_) {
#if defined(ARDUINO_LOLIN_C3_MINI) && !defined(BOARD_C3_MINI_V1)
neopixelWrite(led_gpio_, 0, 0, 0);
#else
digitalWrite(led_gpio_, !LED_ON);
#endif
}
}
}
}
}
// commands - takes static function pointers
// can be called via Console using 'call system '
void System::commands_init() {
Command::add(EMSdevice::DeviceType::SYSTEM, F_(send), System::command_send, FL_(send_cmd), CommandFlag::ADMIN_ONLY);
Command::add(EMSdevice::DeviceType::SYSTEM, F_(fetch), System::command_fetch, FL_(fetch_cmd), CommandFlag::ADMIN_ONLY);
Command::add(EMSdevice::DeviceType::SYSTEM, F_(restart), System::command_restart, FL_(restart_cmd), CommandFlag::ADMIN_ONLY);
Command::add(EMSdevice::DeviceType::SYSTEM, F_(format), System::command_format, FL_(format_cmd), CommandFlag::ADMIN_ONLY);
Command::add(EMSdevice::DeviceType::SYSTEM, F_(watch), System::command_watch, FL_(watch_cmd));
Command::add(EMSdevice::DeviceType::SYSTEM, F_(message), System::command_message, FL_(message_cmd));
#if defined(EMSESP_TEST)
Command::add(EMSdevice::DeviceType::SYSTEM, ("test"), System::command_test, FL_(test_cmd));
#endif
// these commands will return data in JSON format
Command::add(EMSdevice::DeviceType::SYSTEM, F("response"), System::command_response, FL_(commands_response));
Command::add(EMSdevice::DeviceType::SYSTEM, F("allvalues"), System::command_allvalues, FL_(allvalues_cmd));
// MQTT subscribe "ems-esp/system/#"
Mqtt::subscribe(EMSdevice::DeviceType::SYSTEM, "system/#", nullptr); // use empty function callback
}
// uses LED to show system health
// 1 x flash = the EMS bus is not connected
// 2 x flash = the network (wifi or ethernet) is not connected
// 3 x flash = both EMS bus and network are failing. This is a critical error!
void System::led_monitor() {
// we only need to run the LED healthcheck if there are errors
if (!healthcheck_ || !led_gpio_) {
return; // all good
}
static uint32_t led_long_timer_ = 1; // 1 will kick it off immediately
static uint32_t led_short_timer_ = 0;
static uint8_t led_flash_step_ = 0; // 0 means we're not in the short flash timer
auto current_time = uuid::get_uptime();
// first long pause before we start flashing
if (led_long_timer_ && (uint32_t)(current_time - led_long_timer_) >= HEALTHCHECK_LED_LONG_DUARATION) {
led_short_timer_ = current_time; // start the short timer
led_long_timer_ = 0; // stop long timer
led_flash_step_ = 1; // enable the short flash timer
}
// the flash timer which starts after the long pause
if (led_flash_step_ && (uint32_t)(current_time - led_short_timer_) >= HEALTHCHECK_LED_FLASH_DUARATION) {
led_long_timer_ = 0; // stop the long timer
led_short_timer_ = current_time;
static bool led_on_ = false;
if (++led_flash_step_ == 8) {
// reset the whole sequence
led_long_timer_ = uuid::get_uptime();
led_flash_step_ = 0;
#if defined(ARDUINO_LOLIN_C3_MINI) && !defined(BOARD_C3_MINI_V1)
neopixelWrite(led_gpio_, 0, 0, 0);
#else
digitalWrite(led_gpio_, !LED_ON); // LED off
#endif
} else if (led_flash_step_ % 2) {
// handle the step events (on odd numbers 3,5,7,etc). see if we need to turn on a LED
// 1 flash is the EMS bus is not connected
// 2 flashes if the network (wifi or ethernet) is not connected
// 3 flashes is both the bus and the network are not connected. Then you know you're truly f*cked.
#if defined(ARDUINO_LOLIN_C3_MINI) && !defined(BOARD_C3_MINI_V1)
if (led_flash_step_ == 3) {
if ((healthcheck_ & HEALTHCHECK_NO_NETWORK) == HEALTHCHECK_NO_NETWORK) {
neopixelWrite(led_gpio_, 128, 0, 0); // red
} else if ((healthcheck_ & HEALTHCHECK_NO_BUS) == HEALTHCHECK_NO_BUS) {
neopixelWrite(led_gpio_, 0, 0, 128); // blue
}
}
if (led_flash_step_ == 5 && (healthcheck_ & HEALTHCHECK_NO_NETWORK) == HEALTHCHECK_NO_NETWORK) {
neopixelWrite(led_gpio_, 128, 0, 0); // red
}
if ((led_flash_step_ == 7) && ((healthcheck_ & HEALTHCHECK_NO_NETWORK) == HEALTHCHECK_NO_NETWORK)
&& ((healthcheck_ & HEALTHCHECK_NO_BUS) == HEALTHCHECK_NO_BUS)) {
neopixelWrite(led_gpio_, 0, 0, 128); // blue
}
#else
if ((led_flash_step_ == 3)
&& (((healthcheck_ & HEALTHCHECK_NO_NETWORK) == HEALTHCHECK_NO_NETWORK) || ((healthcheck_ & HEALTHCHECK_NO_BUS) == HEALTHCHECK_NO_BUS))) {
led_on_ = true;
}
if ((led_flash_step_ == 5) && ((healthcheck_ & HEALTHCHECK_NO_NETWORK) == HEALTHCHECK_NO_NETWORK)) {
led_on_ = true;
}
if ((led_flash_step_ == 7) && ((healthcheck_ & HEALTHCHECK_NO_NETWORK) == HEALTHCHECK_NO_NETWORK)
&& ((healthcheck_ & HEALTHCHECK_NO_BUS) == HEALTHCHECK_NO_BUS)) {
led_on_ = true;
}
if (led_on_) {
digitalWrite(led_gpio_, LED_ON); // LED off
}
#endif
} else {
// turn the led off after the flash, on even number count
if (led_on_) {
#if defined(ARDUINO_LOLIN_C3_MINI) && !defined(BOARD_C3_MINI_V1)
neopixelWrite(led_gpio_, 0, 0, 0);
#else
digitalWrite(led_gpio_, !LED_ON); // LED off
#endif
led_on_ = false;
}
}
}
}
// Return the quality (Received Signal Strength Indicator) of the WiFi network as a %
// High quality: 90% ~= -55dBm
// Medium quality: 50% ~= -75dBm
// Low quality: 30% ~= -85dBm
// Unusable quality: 8% ~= -96dBm
int8_t System::wifi_quality(int8_t dBm) {
if (dBm <= -100) {
return 0;
}
if (dBm >= -50) {
return 100;
}
return 2 * (dBm + 100);
}
// print users to console
void System::show_users(uuid::console::Shell & shell) {
shell.printfln("Users:");
#ifndef EMSESP_STANDALONE
EMSESP::esp8266React.getSecuritySettingsService()->read([&](SecuritySettings & securitySettings) {
for (const User & user : securitySettings.users) {
shell.printfln(" username: %s, password: %s, is_admin: %s", user.username.c_str(), user.password.c_str(), user.admin ? ("yes") : ("no"));
}
});
#endif
shell.println();
}
// shell command 'show system'
void System::show_system(uuid::console::Shell & shell) {
refreshHeapMem(); // refresh free heap and max alloc heap
shell.println();
shell.println("System:");
shell.printfln(" Version: %s", EMSESP_APP_VERSION);
#ifndef EMSESP_STANDALONE
shell.printfln(" Platform: %s (%s)", EMSESP_PLATFORM, ESP.getChipModel());
shell.printfln(" Model: %s", getBBQKeesGatewayDetails().c_str());
shell.printfln(" Partition: %s", esp_ota_get_running_partition()->label);
#endif
shell.printfln(" Language: %s", locale().c_str());
shell.printfln(" Board profile: %s", board_profile().c_str());
shell.printfln(" Uptime: %s", uuid::log::format_timestamp_ms(uuid::get_uptime_ms(), 3).c_str());
#ifndef EMSESP_STANDALONE
// https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-reference/system/misc_system_api.html
unsigned char mac_base[6] = {0};
esp_efuse_mac_get_default(mac_base);
esp_read_mac(mac_base, ESP_MAC_WIFI_STA);
shell.printfln(" Base MAC Address: %02X:%02X:%02X:%02X:%02X:%02X", mac_base[0], mac_base[1], mac_base[2], mac_base[3], mac_base[4], mac_base[5]);
shell.printfln(" SDK version: %s", ESP.getSdkVersion());
shell.printfln(" CPU frequency: %lu MHz", ESP.getCpuFreqMHz());
shell.printfln(" Free heap/Max alloc: %lu KB / %lu KB", getHeapMem(), getMaxAllocMem());
shell.printfln(" App used/free: %lu KB / %lu KB", appUsed(), appFree());
uint32_t FSused = LittleFS.usedBytes() / 1024;
shell.printfln(" FS used/free: %lu KB / %lu KB", FSused, FStotal() - FSused);
if (PSram()) {
shell.printfln(" PSRAM size/free: %lu KB / %lu KB", PSram(), ESP.getFreePsram() / 1024);
}
shell.println();
shell.println("Network:");
switch (WiFi.status()) {
case WL_IDLE_STATUS:
shell.printfln(" Status: Idle");
break;
case WL_NO_SSID_AVAIL:
shell.printfln(" Status: Network not found");
break;
case WL_SCAN_COMPLETED:
shell.printfln(" Status: Network scan complete");
break;
case WL_CONNECTED:
shell.printfln(" Status: WiFi connected");
shell.printfln(" SSID: %s", WiFi.SSID().c_str());
shell.printfln(" BSSID: %s", WiFi.BSSIDstr().c_str());
shell.printfln(" RSSI: %d dBm (%d %%)", WiFi.RSSI(), wifi_quality(WiFi.RSSI()));
char result[10];
shell.printfln(" TxPower: %s dBm", emsesp::Helpers::render_value(result, (double)(WiFi.getTxPower() / 4), 1));
shell.printfln(" MAC address: %s", WiFi.macAddress().c_str());
shell.printfln(" Hostname: %s", WiFi.getHostname());
shell.printfln(" IPv4 address: %s/%s", uuid::printable_to_string(WiFi.localIP()).c_str(), uuid::printable_to_string(WiFi.subnetMask()).c_str());
shell.printfln(" IPv4 gateway: %s", uuid::printable_to_string(WiFi.gatewayIP()).c_str());
shell.printfln(" IPv4 nameserver: %s", uuid::printable_to_string(WiFi.dnsIP()).c_str());
#if ESP_IDF_VERSION_MAJOR < 5
if (WiFi.localIPv6().toString() != "0000:0000:0000:0000:0000:0000:0000:0000" && WiFi.localIPv6().toString() != "::") {
shell.printfln(" IPv6 address: %s", uuid::printable_to_string(WiFi.localIPv6()).c_str());
}
#else
if (WiFi.linkLocalIPv6().toString() != "0000:0000:0000:0000:0000:0000:0000:0000" && WiFi.linkLocalIPv6().toString() != "::") {
shell.printfln(" IPv6 address: %s", uuid::printable_to_string(WiFi.linkLocalIPv6()).c_str());
}
#endif
break;
case WL_CONNECT_FAILED:
shell.printfln(" WiFi Network: Connection failed");
break;
case WL_CONNECTION_LOST:
shell.printfln(" WiFi Network: Connection lost");
break;
case WL_DISCONNECTED:
shell.printfln(" WiFi Network: Disconnected");
break;
case WL_NO_SHIELD:
default:
shell.printfln(" WiFi MAC address: %s", WiFi.macAddress().c_str());
shell.printfln(" WiFi Network: not connected");
break;
}
// show Ethernet if connected
if (ethernet_connected_) {
shell.println();
shell.printfln(" Ethernet Status: connected");
shell.printfln(" Ethernet MAC address: %s", ETH.macAddress().c_str());
shell.printfln(" Hostname: %s", ETH.getHostname());
shell.printfln(" IPv4 address: %s/%s", uuid::printable_to_string(ETH.localIP()).c_str(), uuid::printable_to_string(ETH.subnetMask()).c_str());
shell.printfln(" IPv4 gateway: %s", uuid::printable_to_string(ETH.gatewayIP()).c_str());
shell.printfln(" IPv4 nameserver: %s", uuid::printable_to_string(ETH.dnsIP()).c_str());
#if ESP_IDF_VERSION_MAJOR < 5
if (ETH.localIPv6().toString() != "0000:0000:0000:0000:0000:0000:0000:0000" && ETH.localIPv6().toString() != "::") {
shell.printfln(" IPv6 address: %s", uuid::printable_to_string(ETH.localIPv6()).c_str());
}
#else
if (ETH.linkLocalIPv6().toString() != "0000:0000:0000:0000:0000:0000:0000:0000" && ETH.linkLocalIPv6().toString() != "::") {
shell.printfln(" IPv6 address: %s", uuid::printable_to_string(ETH.linkLocalIPv6()).c_str());
}
#endif
}
shell.println();
shell.println("Syslog:");
if (!syslog_enabled_) {
shell.printfln(" Syslog: disabled");
} else {
shell.printfln(" Syslog: %s", syslog_.started() ? "started" : "stopped");
shell.print(" ");
shell.printfln(F_(host_fmt), !syslog_host_.isEmpty() ? syslog_host_.c_str() : (F_(unset)));
shell.printfln(" IP: %s", uuid::printable_to_string(syslog_.ip()).c_str());
shell.print(" ");
shell.printfln(F_(port_fmt), syslog_port_);
shell.print(" ");
shell.printfln(F_(log_level_fmt), uuid::log::format_level_lowercase(static_cast(syslog_level_)));
shell.print(" ");
shell.printfln(F_(mark_interval_fmt), syslog_mark_interval_);
shell.printfln(" Queued: %d", syslog_.queued());
}
shell.println();
#endif
}
// see if there is a restore of an older settings file that needs to be applied
bool System::check_restore() {
bool reboot_required = false;
#ifndef EMSESP_STANDALONE
File new_file = LittleFS.open(TEMP_FILENAME_PATH);
if (new_file) {
JsonDocument jsonDocument;
DeserializationError error = deserializeJson(jsonDocument, new_file);
if (error == DeserializationError::Ok && jsonDocument.is()) {
JsonObject input = jsonDocument.as();
// see what type of file it is, either settings or customization. anything else is ignored
std::string settings_type = input["type"];
if (settings_type == "settings") {
// It's a settings file. Parse each section separately. If it's system related it will require a reboot
reboot_required = saveSettings(NETWORK_SETTINGS_FILE, "Network", input);
reboot_required |= saveSettings(AP_SETTINGS_FILE, "AP", input);
reboot_required |= saveSettings(MQTT_SETTINGS_FILE, "MQTT", input);
reboot_required |= saveSettings(NTP_SETTINGS_FILE, "NTP", input);
reboot_required |= saveSettings(SECURITY_SETTINGS_FILE, "Security", input);
reboot_required |= saveSettings(EMSESP_SETTINGS_FILE, "Settings", input);
} else if (settings_type == "customizations") {
// it's a customization file, just replace it and there's no need to reboot
saveSettings(EMSESP_CUSTOMIZATION_FILE, "Customizations", input);
} else if (settings_type == "schedule") {
// it's a schedule file, just replace it and there's no need to reboot
saveSettings(EMSESP_SCHEDULER_FILE, "Schedule", input);
} else if (settings_type == "entities") {
// it's a entity file, just replace it and there's no need to reboot
saveSettings(EMSESP_CUSTOMENTITY_FILE, "Entities", input);
} else {
LOG_ERROR("Unrecognized file uploaded");
}
} else {
LOG_ERROR("Unrecognized file uploaded, not json. Will be removed.");
}
// close (just in case) and remove the temp file
new_file.close();
LittleFS.remove(TEMP_FILENAME_PATH);
}
#endif
return reboot_required;
}
// handle upgrades from previous versions
// this function will not be called on a clean install, with no settings files yet created
// returns true if we need a reboot
bool System::check_upgrade(bool factory_settings) {
bool missing_version = true;
std::string settingsVersion{EMSESP_APP_VERSION}; // default setting version
if (!factory_settings) {
// fetch current version from settings file
EMSESP::webSettingsService.read([&](WebSettings & settings) { settingsVersion = settings.version.c_str(); });
// see if we're missing a version, will be < 3.5.0b13 from Dec 23 2022
missing_version = (settingsVersion.empty() || (settingsVersion.length() < 5));
if (missing_version) {
LOG_WARNING("No version information found");
settingsVersion = "3.5.0"; // this was the last stable version without version info
}
}
version::Semver200_version settings_version(settingsVersion);
if (!missing_version) {
LOG_DEBUG("Checking for version upgrades (settings file has v%d.%d.%d-%s)",
settings_version.major(),
settings_version.minor(),
settings_version.patch(),
settings_version.prerelease().c_str());
}
if (factory_settings) {
return false; // fresh install, do nothing
}
version::Semver200_version this_version(EMSESP_APP_VERSION);
bool save_version = true;
// compare versions
if (this_version > settings_version) {
// we need to do an upgrade
if (missing_version) {
LOG_NOTICE("Upgrading to version %d.%d.%d-%s", this_version.major(), this_version.minor(), this_version.patch(), this_version.prerelease().c_str());
} else {
LOG_NOTICE("Upgrading from version %d.%d.%d-%s to %d.%d.%d-%s",
settings_version.major(),
settings_version.minor(),
settings_version.patch(),
settings_version.prerelease().c_str(),
this_version.major(),
this_version.minor(),
this_version.patch(),
this_version.prerelease().c_str());
}
// if we're coming from 3.4.4 or 3.5.0b14 which had no version stored then we need to apply new settings
if (missing_version) {
LOG_INFO("Upgrade: Setting MQTT Entity ID format to older v3.4 format (0)");
EMSESP::esp8266React.getMqttSettingsService()->update([&](MqttSettings & mqttSettings) {
mqttSettings.entity_format = Mqtt::entityFormat::SINGLE_LONG; // use old Entity ID format from v3.4
return StateUpdateResult::CHANGED;
});
} else if (settings_version.major() == 3 && settings_version.minor() <= 6) {
EMSESP::esp8266React.getMqttSettingsService()->update([&](MqttSettings & mqttSettings) {
if (mqttSettings.entity_format == 1) {
mqttSettings.entity_format = Mqtt::entityFormat::SINGLE_OLD; // use old Entity ID format from v3.6
LOG_INFO("Upgrade: Setting MQTT Entity ID format to v3.6 format (3)");
return StateUpdateResult::CHANGED;
} else if (mqttSettings.entity_format == 2) {
mqttSettings.entity_format = Mqtt::entityFormat::MULTI_OLD; // use old Entity ID format from v3.6
LOG_INFO("Upgrade: Setting MQTT Entity ID format to v3.6 format (4)");
return StateUpdateResult::CHANGED;
}
return StateUpdateResult::UNCHANGED;
});
}
// changes to Network
EMSESP::esp8266React.getNetworkSettingsService()->update([&](NetworkSettings & networkSettings) {
// Network Settings Wifi tx_power is now using the value * 4.
if (networkSettings.tx_power == 20) {
networkSettings.tx_power = WIFI_POWER_19_5dBm; // use 19.5 as we don't have 20 anymore
LOG_INFO("Upgrade: Setting WiFi TX Power to Auto");
}
// force WiFi sleep to off (was default on < 3.7.0-dev-33)
networkSettings.nosleep = true;
LOG_INFO("Upgrade: Disabling WiFi nosleep");
return StateUpdateResult::CHANGED;
});
// changes to application settings
EMSESP::webSettingsService.update([&](WebSettings & settings) {
// force web buffer to 25 for those boards without psram
if (EMSESP::system_.PSram() == 0) {
settings.weblog_buffer = 25;
return StateUpdateResult::CHANGED;
}
return StateUpdateResult::UNCHANGED;
});
} else if (this_version < settings_version) {
// need downgrade
LOG_NOTICE("Downgrading to version %d.%d.%d-%s", this_version.major(), this_version.minor(), this_version.patch(), this_version.prerelease().c_str());
} else {
// same version, do nothing
save_version = false;
}
// if we did a change, set the new version and save it, then reboot
if (save_version) {
EMSESP::webSettingsService.update([&](WebSettings & settings) {
settings.version = EMSESP_APP_VERSION;
return StateUpdateResult::CHANGED;
});
// LOG_INFO("Upgrade: Setting version to %s", EMSESP_APP_VERSION);
return true; // need reboot
}
return false;
}
// convert settings file into json object
void System::extractSettings(const char * filename, const char * section, JsonObject output) {
#ifndef EMSESP_STANDALONE
File settingsFile = LittleFS.open(filename);
if (settingsFile) {
JsonDocument jsonDocument;
DeserializationError error = deserializeJson(jsonDocument, settingsFile);
if (error == DeserializationError::Ok && jsonDocument.is()) {
JsonObject jsonObject = jsonDocument.as();
JsonObject node = output[section].to();
for (JsonPair kvp : jsonObject) {
node[kvp.key()] = kvp.value();
}
}
}
settingsFile.close();
#endif
}
// save settings file using input from a json object
bool System::saveSettings(const char * filename, const char * section, JsonObject input) {
#ifndef EMSESP_STANDALONE
JsonObject section_json = input[section];
if (section_json) {
File section_file = LittleFS.open(filename, "w");
if (section_file) {
LOG_INFO("Applying new uploaded %s data", section);
serializeJson(section_json, section_file);
section_file.close();
return true; // reboot required
}
}
#endif
return false; // not found
}
// return back a system value
bool System::get_value_info(JsonObject output, const char * cmd) {
if (cmd == nullptr || strlen(cmd) == 0) {
LOG_ERROR("empty system command");
return false;
}
// check for hardcoded "info"/"value"
if (!strcmp(cmd, F_(info)) || !strcmp(cmd, F_(values))) {
return command_info("", 0, output);
}
// fetch all the data from the system in a different json
JsonDocument doc;
JsonObject root = doc.to();
(void)command_info("", 0, root);
// list all entities
if (!strcmp(cmd, F_(entities))) {
for (JsonPair p : root) {
if (p.value().is()) {
// String prefix = p.key().c_str();
for (JsonPair p1 : p.value().as()) {
JsonObject entity = output[std::string(p.key().c_str()) + "." + p1.key().c_str()].to();
get_value_json(entity, p.key().c_str(), p1.key().c_str(), p1.value());
}
} // else { // we don't have pairs in json root object
// get_value_json(entity, "", p.key().c_str(), p.value());
// }
}
return true;
}
char * val = (char *)strstr(cmd, "/value");
if (val) {
*val = '\0';
}
char * slash = (char *)strchr(cmd, '/');
if (slash) {
*slash = '\0';
slash++;
}
// list values for a jsonObject in system, e.g. /api/system/network
if (!slash || !strcmp(slash, F_(info)) || !strcmp(slash, F_(values))) {
for (JsonPair p : root) {
if (Helpers::toLower(p.key().c_str()) == cmd && p.value().is()) {
for (JsonPair p1 : p.value().as()) {
output[p1.key().c_str()] = p1.value().as();
}
return true;
}
}
return false;
}
// value info or api_data for a single value
// Loop through all the key-value pairs in root to find the key, case independent
if (slash) { // search the top level first
for (JsonPair p : root) {
if (p.value().is() && Helpers::toLower(p.key().c_str()) == cmd) {
for (JsonPair p1 : p.value().as()) {
if (Helpers::toLower(p1.key().c_str()) == slash && !p1.value().is()) {
if (val) {
output["api_data"] = p1.value().as();
return true;
}
get_value_json(output, p.key().c_str(), p1.key().c_str(), p1.value());
return true;
}
}
} // else skipt, but we don't have value pairs in system root
}
}
return false;
}
void System::get_value_json(JsonObject output, const std::string & circuit, const std::string & name, JsonVariant val) {
output["name"] = name;
if (circuit.length()) {
output["circuit"] = circuit;
}
output["readable"] = true;
output["writable"] = false;
output["visible"] = true;
if (val.is()) {
output["value"] = val.as();
output["type"] = "boolean";
} else if (val.is() || val.is() || val.is()) {
output["value"] = val.as();
output["type"] = "string";
} else {
output["value"] = val.as();
output["type"] = "number";
}
}
// export status information including the device information
// http://ems-esp/api/system/info
bool System::command_info(const char * value, const int8_t id, JsonObject output) {
JsonObject node;
// System
node = output["system"].to();
// prevent false negative in Unity tests every time the version changes
#if defined(EMSESP_UNITY)
node["version"] = "dev";
#else
node["version"] = EMSESP_APP_VERSION;
#endif
node["uptime"] = uuid::log::format_timestamp_ms(uuid::get_uptime_ms(), 3);
node["uptimeSec"] = uuid::get_uptime_sec();
#ifndef EMSESP_STANDALONE
node["platform"] = EMSESP_PLATFORM;
node["cpuType"] = ESP.getChipModel();
node["arduino"] = ARDUINO_VERSION;
node["sdk"] = ESP.getSdkVersion();
node["freeMem"] = getHeapMem();
node["maxAlloc"] = getMaxAllocMem();
node["freeCaps"] = heap_caps_get_free_size(MALLOC_CAP_8BIT) / 1024; // includes heap and psram
node["usedApp"] = EMSESP::system_.appUsed(); // kilobytes
node["freeApp"] = EMSESP::system_.appFree(); // kilobytes
node["partition"] = esp_ota_get_running_partition()->label; // active partition
#endif
node["resetReason"] = EMSESP::system_.reset_reason(0) + " / " + EMSESP::system_.reset_reason(1);
#ifndef EMSESP_STANDALONE
node["psram"] = (EMSESP::system_.PSram() > 0); // make boolean
if (EMSESP::system_.PSram()) {
node["psramSize"] = EMSESP::system_.PSram();
node["freePsram"] = ESP.getFreePsram() / 1024;
}
node["model"] = EMSESP::system_.getBBQKeesGatewayDetails();
#endif
// Network Status
node = output["network"].to();
#ifndef EMSESP_STANDALONE
if (EMSESP::system_.ethernet_connected()) {
node["network"] = "Ethernet";
node["hostname"] = ETH.getHostname();
// node["MAC"] = ETH.macAddress();
// node["IPv4 address"] = uuid::printable_to_string(ETH.localIP()) + "/" + uuid::printable_to_string(ETH.subnetMask());
// node["IPv4 gateway"] = uuid::printable_to_string(ETH.gatewayIP());
// node["IPv4 nameserver"] = uuid::printable_to_string(ETH.dnsIP());
// if (ETH.localIPv6().toString() != "0000:0000:0000:0000:0000:0000:0000:0000") {
// node["IPv6 address"] = uuid::printable_to_string(ETH.localIPv6());
// }
} else if (WiFi.status() == WL_CONNECTED) {
node["network"] = "WiFi";
node["hostname"] = WiFi.getHostname();
node["RSSI"] = WiFi.RSSI();
// node["MAC"] = WiFi.macAddress();
// node["IPv4 address"] = uuid::printable_to_string(WiFi.localIP()) + "/" + uuid::printable_to_string(WiFi.subnetMask());
// node["IPv4 gateway"] = uuid::printable_to_string(WiFi.gatewayIP());
// node["IPv4 nameserver"] = uuid::printable_to_string(WiFi.dnsIP());
// if (WiFi.localIPv6().toString() != "0000:0000:0000:0000:0000:0000:0000:0000") {
// node["IPv6 address"] = uuid::printable_to_string(WiFi.localIPv6());
// }
}
#else
// for testing
node["network"] = "WiFi";
node["hostname"] = "ems-esp";
node["RSSI"] = -23;
#endif
EMSESP::esp8266React.getNetworkSettingsService()->read([&](NetworkSettings & settings) {
if (WiFi.status() == WL_CONNECTED && !settings.bssid.isEmpty()) {
node["BSSID"] = "set"; // we don't disclose the name
}
node["TxPowerSetting"] = settings.tx_power;
node["staticIP"] = settings.staticIPConfig;
node["lowBandwidth"] = settings.bandwidth20;
node["disableSleep"] = settings.nosleep;
node["enableMDNS"] = settings.enableMDNS;
node["enableCORS"] = settings.enableCORS;
if (settings.enableCORS) {
node["CORSOrigin"] = settings.CORSOrigin;
}
});
#ifndef EMSESP_STANDALONE
EMSESP::esp8266React.getAPSettingsService()->read([&](APSettings & settings) {
const char * pM[] = {"always", "disconnected", "never"};
node["APProvisionMode"] = pM[settings.provisionMode];
node["APSecurity"] = settings.password.length() ? "wpa2" : "open";
node["APSSID"] = settings.ssid;
});
#endif
// NTP status
node = output["ntp"].to();
#ifndef EMSESP_STANDALONE
node["NTPStatus"] = EMSESP::system_.ntp_connected() ? "connected" : "disconnected";
EMSESP::esp8266React.getNTPSettingsService()->read([&](NTPSettings & settings) {
node["enabled"] = settings.enabled;
node["server"] = settings.server;
node["tzLabel"] = settings.tzLabel;
// node["tz format"] = settings.tzFormat;
});
#endif
// MQTT Status
node = output["mqtt"].to();
node["MQTTStatus"] = Mqtt::connected() ? F_(connected) : F_(disconnected);
if (Mqtt::enabled()) {
node["MQTTPublishes"] = Mqtt::publish_count();
node["MQTTQueued"] = Mqtt::publish_queued();
node["MQTTPublishFails"] = Mqtt::publish_fails();
node["MQTTConnects"] = Mqtt::connect_count();
}
EMSESP::esp8266React.getMqttSettingsService()->read([&](MqttSettings & settings) {
node["enabled"] = settings.enabled;
node["clientID"] = settings.clientId;
node["keepAlive"] = settings.keepAlive;
node["cleanSession"] = settings.cleanSession;
node["entityFormat"] = settings.entity_format;
node["base"] = settings.base;
node["discoveryPrefix"] = settings.discovery_prefix;
node["discoveryType"] = settings.discovery_type;
node["nestedFormat"] = settings.nested_format;
node["haEnabled"] = settings.ha_enabled;
node["mqttQos"] = settings.mqtt_qos;
node["mqttRetain"] = settings.mqtt_retain;
node["publishTimeHeartbeat"] = settings.publish_time_heartbeat;
node["publishTimeBoiler"] = settings.publish_time_boiler;
node["publishTimeThermostat"] = settings.publish_time_thermostat;
node["publishTimeSolar"] = settings.publish_time_solar;
node["publishTimeMixer"] = settings.publish_time_mixer;
node["publishTimeWater"] = settings.publish_time_water;
node["publishTimeOther"] = settings.publish_time_other;
node["publishTimeSensor"] = settings.publish_time_sensor;
node["publishSingle"] = settings.publish_single;
node["publish2command"] = settings.publish_single2cmd;
node["sendResponse"] = settings.send_response;
});
// Syslog Status
node = output["syslog"].to();
node["enabled"] = EMSESP::system_.syslog_enabled_;
#ifndef EMSESP_STANDALONE
if (EMSESP::system_.syslog_enabled_) {
node["syslogStarted"] = syslog_.started();
node["syslogLevel"] = FL_(list_syslog_level)[syslog_.log_level() + 1];
node["syslogIP"] = syslog_.ip();
node["syslogQueue"] = syslog_.queued();
}
#endif
// Sensor Status
node = output["sensor"].to();
if (EMSESP::sensor_enabled()) {
node["temperatureSensors"] = EMSESP::temperaturesensor_.no_sensors();
node["temperatureSensorReads"] = EMSESP::temperaturesensor_.reads();
node["temperatureSensorFails"] = EMSESP::temperaturesensor_.fails();
}
if (EMSESP::analog_enabled()) {
node["analogSensors"] = EMSESP::analogsensor_.no_sensors();
node["analogSensorReads"] = EMSESP::analogsensor_.reads();
node["analogSensorFails"] = EMSESP::analogsensor_.fails();
}
// API Status
node = output["api"].to();
// if we're generating test data for Unit Tests we dont want to count these API calls as it will pollute the data response
#if defined(EMSESP_UNITY)
node["APICalls"] = 0;
node["APIFails"] = 0;
#else
node["APICalls"] = WebAPIService::api_count();
node["APIFails"] = WebAPIService::api_fails();
#endif
// EMS Bus Status
node = output["bus"].to();
switch (EMSESP::bus_status()) {
case EMSESP::BUS_STATUS_OFFLINE:
node["busStatus"] = "disconnected";
break;
case EMSESP::BUS_STATUS_TX_ERRORS:
node["busStatus"] = "connected, tx issues - try a different Tx Mode";
break;
case EMSESP::BUS_STATUS_CONNECTED:
node["busStatus"] = "connected";
break;
default:
node["busStatus"] = "unknown";
break;
}
// if (EMSESP::bus_status() != EMSESP::BUS_STATUS_OFFLINE) {
node["busProtocol"] = EMSbus::is_ht3() ? "HT3" : "Buderus";
node["busTelegramsReceived"] = EMSESP::rxservice_.telegram_count();
node["busReads"] = EMSESP::txservice_.telegram_read_count();
node["busWrites"] = EMSESP::txservice_.telegram_write_count();
node["busIncompleteTelegrams"] = EMSESP::rxservice_.telegram_error_count();
node["busReadsFailed"] = EMSESP::txservice_.telegram_read_fail_count();
node["busWritesFailed"] = EMSESP::txservice_.telegram_write_fail_count();
node["busRxLineQuality"] = EMSESP::rxservice_.quality();
node["busTxLineQuality"] = (EMSESP::txservice_.read_quality() + EMSESP::txservice_.read_quality()) / 2;
// }
// Settings
node = output["settings"].to();
EMSESP::webSettingsService.read([&](WebSettings & settings) {
node["boardProfile"] = settings.board_profile;
node["locale"] = settings.locale;
node["txMode"] = settings.tx_mode;
node["emsBusID"] = settings.ems_bus_id;
node["showerTimer"] = settings.shower_timer;
node["showerMinDuration"] = settings.shower_min_duration; // seconds
node["showerAlert"] = settings.shower_alert;
if (settings.shower_alert) {
node["showerAlertColdshot"] = settings.shower_alert_coldshot; // seconds
node["showerAlertTrigger"] = settings.shower_alert_trigger; // minutes
}
if (settings.board_profile == "CUSTOM") {
node["phyType"] = settings.phy_type;
if (settings.phy_type != PHY_type::PHY_TYPE_NONE) {
node["ethPower"] = settings.eth_power;
node["ethPhyAddr"] = settings.eth_phy_addr;
node["ethClockMmode"] = settings.eth_clock_mode;
}
node["rxGPIO"] = settings.rx_gpio;
node["txGPIO"] = settings.tx_gpio;
node["dallasGPIO"] = settings.dallas_gpio;
node["pbuttonGPIO"] = settings.pbutton_gpio;
node["ledGPIO"] = settings.led_gpio;
}
node["hideLed"] = settings.hide_led;
node["noTokenApi"] = settings.notoken_api;
node["readonlyMode"] = settings.readonly_mode;
node["fahrenheit"] = settings.fahrenheit;
node["dallasParasite"] = settings.dallas_parasite;
node["boolFormat"] = settings.bool_format;
node["boolDashboard"] = settings.bool_dashboard;
node["enumFormat"] = settings.enum_format;
node["analogEnabled"] = settings.analog_enabled;
node["telnetEnabled"] = settings.telnet_enabled;
node["maxWebLogBuffer"] = settings.weblog_buffer;
#if defined(EMSESP_UNITY)
node["webLogBuffer"] = 0;
#else
node["webLogBuffer"] = EMSESP::webLogService.num_log_messages();
#endif
node["modbusEnabled"] = settings.modbus_enabled;
node["forceHeatingOff"] = settings.boiler_heatingoff;
});
// Devices - show EMS devices if we have any
if (!EMSESP::emsdevices.empty()) {
JsonArray devices = output["devices"].to();
for (const auto & device_class : EMSFactory::device_handlers()) {
for (const auto & emsdevice : EMSESP::emsdevices) {
if (emsdevice && (emsdevice->device_type() == device_class.first)) {
JsonObject obj = devices.add();
obj["type"] = emsdevice->device_type_name(); // non translated name
obj["name"] = emsdevice->name(); // custom name
obj["deviceID"] = Helpers::hextoa(emsdevice->device_id());
obj["productID"] = emsdevice->product_id();
obj["brand"] = emsdevice->brand_to_char();
obj["version"] = emsdevice->version();
obj["entities"] = emsdevice->count_entities();
char result[500];
(void)emsdevice->show_telegram_handlers(result, sizeof(result), EMSdevice::Handlers::RECEIVED);
if (result[0] != '\0') {
obj["handlersReceived"] = result; // don't show handlers if there aren't any
}
(void)emsdevice->show_telegram_handlers(result, sizeof(result), EMSdevice::Handlers::FETCHED);
if (result[0] != '\0') {
obj["handlersFetched"] = result;
}
(void)emsdevice->show_telegram_handlers(result, sizeof(result), EMSdevice::Handlers::PENDING);
if (result[0] != '\0') {
obj["handlersPending"] = result;
}
(void)emsdevice->show_telegram_handlers(result, sizeof(result), EMSdevice::Handlers::IGNORED);
if (result[0] != '\0') {
obj["handlersIgnored"] = result;
}
}
}
}
}
return true; // this function always returns true!
}
#if defined(EMSESP_TEST)
// run a test, e.g. http://ems-esp/api?device=system&cmd=test&data=boiler
bool System::command_test(const char * value, const int8_t id) {
if (value) {
return Test::test(value, id);
} else {
return false;
}
}
#endif
// takes a board profile and populates a data array with GPIO configurations
// returns false if profile is unknown
//
// data = led, dallas, rx, tx, button, phy_type, eth_power, eth_phy_addr, eth_clock_mode
//
// clock modes:
// 0 = RMII clock input to GPIO0
// 1 = RMII clock output from GPIO0
// 2 = RMII clock output from GPIO16
// 3 = RMII clock output from GPIO17, for 50hz inverted clock
bool System::load_board_profile(std::vector & data, const std::string & board_profile) {
if (board_profile == "S32") {
data = {2, 18, 23, 5, 0, PHY_type::PHY_TYPE_NONE, 0, 0, 0}; // BBQKees Gateway S32
} else if (board_profile == "E32") {
data = {2, 4, 5, 17, 33, PHY_type::PHY_TYPE_LAN8720, 16, 1, 0}; // BBQKees Gateway E32
} else if (board_profile == "E32V2") {
data = {2, 14, 4, 5, 34, PHY_type::PHY_TYPE_LAN8720, 15, 0, 1}; // BBQKees Gateway E32 V2
} else if (board_profile == "MH-ET") {
data = {2, 18, 23, 5, 0, PHY_type::PHY_TYPE_NONE, 0, 0, 0}; // MH-ET Live D1 Mini
} else if (board_profile == "NODEMCU") {
data = {2, 18, 23, 5, 0, PHY_type::PHY_TYPE_NONE, 0, 0, 0}; // NodeMCU 32S
} else if (board_profile == "LOLIN") {
data = {2, 18, 17, 16, 0, PHY_type::PHY_TYPE_NONE, 0, 0, 0}; // Lolin D32
} else if (board_profile == "OLIMEX") {
data = {0, 0, 36, 4, 34, PHY_type::PHY_TYPE_LAN8720, -1, 0, 0}; // Olimex ESP32-EVB (uses U1TXD/U1RXD/BUTTON, no LED or Temperature sensor)
} else if (board_profile == "OLIMEXPOE") {
data = {0, 0, 36, 4, 34, PHY_type::PHY_TYPE_LAN8720, 12, 0, 3}; // Olimex ESP32-POE
} else if (board_profile == "C3MINI") {
data = {7, 1, 4, 5, 9, PHY_type::PHY_TYPE_NONE, 0, 0, 0}; // Lolin C3 Mini
} else if (board_profile == "S2MINI") {
data = {15, 7, 11, 12, 0, PHY_type::PHY_TYPE_NONE, 0, 0, 0}; // Lolin S2 Mini
} else if (board_profile == "S3MINI") {
data = {17, 18, 8, 5, 0, PHY_type::PHY_TYPE_NONE, 0, 0, 0}; // Liligo S3
} else if (board_profile == "S32S3") {
data = {2, 18, 5, 17, 0, PHY_type::PHY_TYPE_NONE, 0, 0, 0}; // BBQKees Gateway S3
} else if (board_profile == "CUSTOM") {
// send back current values
data = {(int8_t)EMSESP::system_.led_gpio_,
(int8_t)EMSESP::system_.dallas_gpio_,
(int8_t)EMSESP::system_.rx_gpio_,
(int8_t)EMSESP::system_.tx_gpio_,
(int8_t)EMSESP::system_.pbutton_gpio_,
(int8_t)EMSESP::system_.phy_type_,
EMSESP::system_.eth_power_,
(int8_t)EMSESP::system_.eth_phy_addr_,
(int8_t)EMSESP::system_.eth_clock_mode_};
} else {
LOG_DEBUG("Couldn't identify board profile %s", board_profile.c_str());
return false; // unknown, return false
}
// LOG_DEBUG("Found data for board profile %s", board_profile.c_str());
return true;
}
// format command - factory reset, removing all config files
bool System::command_format(const char * value, const int8_t id) {
LOG_INFO("Removing all config files");
#ifndef EMSESP_STANDALONE
// TODO To replaced with LittleFS.rmdir(FS_CONFIG_DIRECTORY) now we're using IDF 4.2+
File root = LittleFS.open(EMSESP_FS_CONFIG_DIRECTORY);
File file;
while ((file = root.openNextFile())) {
String path = file.path();
file.close();
LittleFS.remove(path);
}
#endif
EMSESP::system_.restart_requested(true); // will be handled by the main loop
return true;
}
// restart command - perform a hard reset (system reboot)
bool System::command_restart(const char * value, const int8_t id) {
if (id == 0) {
// if it has an id then it's a web call and we need to queue the restart
// default id is -1 when calling /api/system/restart directly for example
LOG_INFO("Preparing to restart system");
EMSESP::system_.restart_pending(true);
return true;
}
LOG_INFO("Restarting system immediately");
EMSESP::system_.restart_requested(true); // will be handled by the main loop
return true;
}
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wswitch"
std::string System::reset_reason(uint8_t cpu) const {
#ifndef EMSESP_STANDALONE
switch (rtc_get_reset_reason(cpu)) {
case 1:
return ("Power on reset");
// case 2 :reset pin not on esp32
case 3:
return ("Software reset");
case 4: // not on S2, C3
return ("Legacy watch dog reset");
case 5:
return ("Deep sleep reset");
case 6: // not on S2, C3
return ("Reset by SDIO");
case 7:
return ("Timer group0 watch dog reset");
case 8:
return ("Timer group1 watch dog reset");
case 9:
return ("RTC watch dog reset");
case 10:
return ("Intrusion reset CPU");
case 11:
return ("Timer group reset CPU");
case 12:
return ("Software reset CPU");
case 13:
return ("RTC watch dog reset: CPU");
case 14: // not on S2, C3
return ("APP CPU reset by PRO CPU");
case 15:
return ("Brownout reset");
case 16:
return ("RTC watch dog reset: CPU+RTC");
default:
break;
}
#endif
return ("Unknown");
}
#pragma GCC diagnostic pop
// set NTP status
void System::ntp_connected(bool b) {
if (b != ntp_connected_ && !b) {
LOG_WARNING("NTP disconnected"); // if turned off report it
}
ntp_connected_ = b;
ntp_last_check_ = b ? uuid::get_uptime_sec() : 0;
}
// get NTP status
bool System::ntp_connected() {
// timeout 2 hours, ntp sync is normally every hour.
if ((uuid::get_uptime_sec() - ntp_last_check_ > 7201) && ntp_connected_) {
ntp_connected(false);
}
return ntp_connected_;
}
// see if its a BBQKees Gateway by checking the nvs values
String System::getBBQKeesGatewayDetails() {
#ifndef EMSESP_STANDALONE
if (!EMSESP::nvs_.isKey("mfg")) {
return "";
}
// mfg can be either "BBQKees" or "BBQKees Electronics"
auto mfg = EMSESP::nvs_.getString("mfg");
if (mfg) {
if (!mfg.startsWith("BBQKees")) {
return "";
}
}
return "BBQKees Gateway Model " + EMSESP::nvs_.getString("model") + " v" + EMSESP::nvs_.getString("hwrevision") + "/" + EMSESP::nvs_.getString("batch");
#else
return "";
#endif
}
// Stream from an URL and send straight to OTA uploader service.
//
// This function needs to be called twice, once with a url to persist it, and second with no arguments to start the upload
// This is to avoid timeouts in callback functions, like calling from a web hook.
bool System::uploadFirmwareURL(const char * url) {
#ifndef EMSESP_STANDALONE
static String saved_url;
// if the URL is not empty, store the URL for the 2nd pass
if (url && strlen(url) > 0) {
saved_url = url;
EMSESP::system_.upload_isrunning(true); // tell EMS-ESP we're ready to start the uploading process
return true;
}
// make sure we have a valid URL
if (saved_url.isEmpty()) {
return false; // error
}
// Configure temporary client
HTTPClient http;
http.setFollowRedirects(HTTPC_STRICT_FOLLOW_REDIRECTS); // important for GitHub 302's
http.setTimeout(8000);
http.useHTTP10(true); // use HTTP/1.0 for update since the update handler not support any transfer Encoding
http.begin(saved_url);
// start a connection, returns -1 if fails
int httpCode = http.GET();
if (httpCode != HTTP_CODE_OK) {
LOG_ERROR("Firmware upload failed - HTTP code %d", httpCode);
return false; // error
}
// check we have enough space for the upload in the ota partition
int firmware_size = http.getSize();
LOG_INFO("Firmware uploading (file: %s, size: %d bytes). Please wait...", saved_url.c_str(), firmware_size);
if (!Update.begin(firmware_size)) {
LOG_ERROR("Firmware upload failed - no space");
return false; // error
}
// flush log buffers so latest messages are shown
Shell::loop_all();
// get tcp stream and send it to Updater
WiFiClient * stream = http.getStreamPtr();
if (Update.writeStream(*stream) != firmware_size) {
LOG_ERROR("Firmware upload failed - size differences");
return false; // error
}
if (!Update.end(true)) {
LOG_ERROR("Firmware upload failed - general error");
return false; // error
}
http.end();
EMSESP::system_.upload_isrunning(false);
saved_url.clear(); // prevent from downloading again
LOG_INFO("Firmware uploaded successfully. Restarting...");
restart_pending(true);
#endif
return true; // OK
}
} // namespace emsesp