/* Asynchronous WebServer library for Espressif MCUs Copyright (c) 2016 Hristo Gochkov. All rights reserved. This file is part of the esp8266 core for Arduino environment. This library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this library; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ #include "ESPAsyncWebServer.h" #include "WebResponseImpl.h" #include "cbuf.h" // Since ESP8266 does not link memchr by default, here's its implementation. void* memchr(void* ptr, int ch, size_t count) { unsigned char* p = static_cast(ptr); while(count--) if(*p++ == static_cast(ch)) return --p; return nullptr; } /* * Abstract Response * */ const char* AsyncWebServerResponse::_responseCodeToString(int code) { return reinterpret_cast(responseCodeToString(code)); } const __FlashStringHelper *AsyncWebServerResponse::responseCodeToString(int code) { switch (code) { case 100: return F("Continue"); case 101: return F("Switching Protocols"); case 200: return F("OK"); case 201: return F("Created"); case 202: return F("Accepted"); case 203: return F("Non-Authoritative Information"); case 204: return F("No Content"); case 205: return F("Reset Content"); case 206: return F("Partial Content"); case 300: return F("Multiple Choices"); case 301: return F("Moved Permanently"); case 302: return F("Found"); case 303: return F("See Other"); case 304: return F("Not Modified"); case 305: return F("Use Proxy"); case 307: return F("Temporary Redirect"); case 400: return F("Bad Request"); case 401: return F("Unauthorized"); case 402: return F("Payment Required"); case 403: return F("Forbidden"); case 404: return F("Not Found"); case 405: return F("Method Not Allowed"); case 406: return F("Not Acceptable"); case 407: return F("Proxy Authentication Required"); case 408: return F("Request Time-out"); case 409: return F("Conflict"); case 410: return F("Gone"); case 411: return F("Length Required"); case 412: return F("Precondition Failed"); case 413: return F("Request Entity Too Large"); case 414: return F("Request-URI Too Large"); case 415: return F("Unsupported Media Type"); case 416: return F("Requested range not satisfiable"); case 417: return F("Expectation Failed"); case 500: return F("Internal Server Error"); case 501: return F("Not Implemented"); case 502: return F("Bad Gateway"); case 503: return F("Service Unavailable"); case 504: return F("Gateway Time-out"); case 505: return F("HTTP Version not supported"); default: return F(""); } } AsyncWebServerResponse::AsyncWebServerResponse() : _code(0) , _headers(LinkedList([](AsyncWebHeader *h){ delete h; })) , _contentType() , _contentLength(0) , _sendContentLength(true) , _chunked(false) , _headLength(0) , _sentLength(0) , _ackedLength(0) , _writtenLength(0) , _state(RESPONSE_SETUP) { for(auto header: DefaultHeaders::Instance()) { _headers.add(new AsyncWebHeader(header->name(), header->value())); } } AsyncWebServerResponse::~AsyncWebServerResponse(){ _headers.free(); } void AsyncWebServerResponse::setCode(int code){ if(_state == RESPONSE_SETUP) _code = code; } void AsyncWebServerResponse::setContentLength(size_t len){ if(_state == RESPONSE_SETUP) _contentLength = len; } void AsyncWebServerResponse::setContentType(const String& type){ if(_state == RESPONSE_SETUP) _contentType = type; } void AsyncWebServerResponse::addHeader(const String& name, const String& value){ _headers.add(new AsyncWebHeader(name, value)); } String AsyncWebServerResponse::_assembleHead(uint8_t version){ if(version){ addHeader(F("Accept-Ranges"), F("none")); if(_chunked) addHeader(F("Transfer-Encoding"), F("chunked")); } String out = String(); int bufSize = 300; char buf[bufSize]; snprintf_P(buf, bufSize, PSTR("HTTP/1.%d %d %s\r\n"), version, _code, _responseCodeToString(_code)); out.concat(buf); if(_sendContentLength) { snprintf_P(buf, bufSize, PSTR("Content-Length: %d\r\n"), _contentLength); out.concat(buf); } if(_contentType.length()) { snprintf_P(buf, bufSize, PSTR("Content-Type: %s\r\n"), _contentType.c_str()); out.concat(buf); } for(const auto& header: _headers){ snprintf_P(buf, bufSize, PSTR("%s: %s\r\n"), header->name().c_str(), header->value().c_str()); out.concat(buf); } _headers.free(); out.concat(F("\r\n")); _headLength = out.length(); return out; } bool AsyncWebServerResponse::_started() const { return _state > RESPONSE_SETUP; } bool AsyncWebServerResponse::_finished() const { return _state > RESPONSE_WAIT_ACK; } bool AsyncWebServerResponse::_failed() const { return _state == RESPONSE_FAILED; } bool AsyncWebServerResponse::_sourceValid() const { return false; } void AsyncWebServerResponse::_respond(AsyncWebServerRequest *request){ _state = RESPONSE_END; request->client()->close(); } size_t AsyncWebServerResponse::_ack(AsyncWebServerRequest *request, size_t len, uint32_t time){ (void)request; (void)len; (void)time; return 0; } /* * String/Code Response * */ AsyncBasicResponse::AsyncBasicResponse(int code, const String& contentType, const String& content){ _code = code; _content = content; _contentType = contentType; if(_content.length()){ _contentLength = _content.length(); if(!_contentType.length()) _contentType = F("text/plain"); } addHeader(F("Connection"), F("close")); } void AsyncBasicResponse::_respond(AsyncWebServerRequest *request){ _state = RESPONSE_HEADERS; String out = _assembleHead(request->version()); size_t outLen = out.length(); size_t space = request->client()->space(); if(!_contentLength && space >= outLen){ _writtenLength += request->client()->write(out.c_str(), outLen); _state = RESPONSE_WAIT_ACK; } else if(_contentLength && space >= outLen + _contentLength){ out += _content; outLen += _contentLength; _writtenLength += request->client()->write(out.c_str(), outLen); _state = RESPONSE_WAIT_ACK; } else if(space && space < outLen){ String partial = out.substring(0, space); _content = out.substring(space) + _content; _contentLength += outLen - space; _writtenLength += request->client()->write(partial.c_str(), partial.length()); _state = RESPONSE_CONTENT; } else if(space > outLen && space < (outLen + _contentLength)){ size_t shift = space - outLen; outLen += shift; _sentLength += shift; out += _content.substring(0, shift); _content = _content.substring(shift); _writtenLength += request->client()->write(out.c_str(), outLen); _state = RESPONSE_CONTENT; } else { _content = out + _content; _contentLength += outLen; _state = RESPONSE_CONTENT; } } size_t AsyncBasicResponse::_ack(AsyncWebServerRequest *request, size_t len, uint32_t time){ (void)time; _ackedLength += len; if(_state == RESPONSE_CONTENT){ size_t available = _contentLength - _sentLength; size_t space = request->client()->space(); //we can fit in this packet if(space > available){ _writtenLength += request->client()->write(_content.c_str(), available); _content = String(); _state = RESPONSE_WAIT_ACK; return available; } //send some data, the rest on ack String out = _content.substring(0, space); _content = _content.substring(space); _sentLength += space; _writtenLength += request->client()->write(out.c_str(), space); return space; } else if(_state == RESPONSE_WAIT_ACK){ if(_ackedLength >= _writtenLength){ _state = RESPONSE_END; } } return 0; } /* * Abstract Response * */ AsyncAbstractResponse::AsyncAbstractResponse(AwsTemplateProcessor callback): _callback(callback) { // In case of template processing, we're unable to determine real response size if(callback) { _contentLength = 0; _sendContentLength = false; _chunked = true; } } void AsyncAbstractResponse::_respond(AsyncWebServerRequest *request){ addHeader(F("Connection"), F("close")); _head = _assembleHead(request->version()); _state = RESPONSE_HEADERS; _ack(request, 0, 0); } size_t AsyncAbstractResponse::_ack(AsyncWebServerRequest *request, size_t len, uint32_t time){ (void)time; if(!_sourceValid()){ _state = RESPONSE_FAILED; request->client()->close(); return 0; } _ackedLength += len; size_t space = request->client()->space(); size_t headLen = _head.length(); if(_state == RESPONSE_HEADERS){ if(space >= headLen){ _state = RESPONSE_CONTENT; space -= headLen; } else { String out = _head.substring(0, space); _head = _head.substring(space); _writtenLength += request->client()->write(out.c_str(), out.length()); return out.length(); } } if(_state == RESPONSE_CONTENT){ size_t outLen; if(_chunked){ if(space <= 8){ return 0; } outLen = space; } else if(!_sendContentLength){ outLen = space; } else { outLen = ((_contentLength - _sentLength) > space)?space:(_contentLength - _sentLength); } uint8_t *buf = (uint8_t *)malloc(outLen+headLen); if (!buf) { // os_printf("_ack malloc %d failed\n", outLen+headLen); return 0; } if(headLen){ memcpy(buf, _head.c_str(), _head.length()); } size_t readLen = 0; if(_chunked){ // HTTP 1.1 allows leading zeros in chunk length. Or spaces may be added. // See RFC2616 sections 2, 3.6.1. readLen = _fillBufferAndProcessTemplates(buf+headLen+6, outLen - 8); if(readLen == RESPONSE_TRY_AGAIN){ free(buf); return 0; } outLen = snprintf_P((char*)buf+headLen, sizeof(buf)-headLen-2, PSTR("%x"), readLen) + headLen; while(outLen < headLen + 4) buf[outLen++] = ' '; buf[outLen++] = '\r'; buf[outLen++] = '\n'; outLen += readLen; buf[outLen++] = '\r'; buf[outLen++] = '\n'; } else { readLen = _fillBufferAndProcessTemplates(buf+headLen, outLen); if(readLen == RESPONSE_TRY_AGAIN){ free(buf); return 0; } outLen = readLen + headLen; } if(headLen){ _head = String(); } if(outLen){ _writtenLength += request->client()->write((const char*)buf, outLen); } if(_chunked){ _sentLength += readLen; } else { _sentLength += outLen - headLen; } free(buf); if((_chunked && readLen == 0) || (!_sendContentLength && outLen == 0) || (!_chunked && _sentLength == _contentLength)){ _state = RESPONSE_WAIT_ACK; } return outLen; } else if(_state == RESPONSE_WAIT_ACK){ if(!_sendContentLength || _ackedLength >= _writtenLength){ _state = RESPONSE_END; if(!_chunked && !_sendContentLength) request->client()->close(true); } } return 0; } size_t AsyncAbstractResponse::_readDataFromCacheOrContent(uint8_t* data, const size_t len) { // If we have something in cache, copy it to buffer const size_t readFromCache = std::min(len, _cache.size()); if(readFromCache) { memcpy(data, _cache.data(), readFromCache); _cache.erase(_cache.begin(), _cache.begin() + readFromCache); } // If we need to read more... const size_t needFromFile = len - readFromCache; const size_t readFromContent = _fillBuffer(data + readFromCache, needFromFile); return readFromCache + readFromContent; } size_t AsyncAbstractResponse::_fillBufferAndProcessTemplates(uint8_t* data, size_t len) { if(!_callback) return _fillBuffer(data, len); const size_t originalLen = len; len = _readDataFromCacheOrContent(data, len); // Now we've read 'len' bytes, either from cache or from file // Search for template placeholders uint8_t* pTemplateStart = data; while((pTemplateStart < &data[len]) && (pTemplateStart = (uint8_t*)memchr(pTemplateStart, TEMPLATE_PLACEHOLDER, &data[len - 1] - pTemplateStart + 1))) { // data[0] ... data[len - 1] uint8_t* pTemplateEnd = (pTemplateStart < &data[len - 1]) ? (uint8_t*)memchr(pTemplateStart + 1, TEMPLATE_PLACEHOLDER, &data[len - 1] - pTemplateStart) : nullptr; // temporary buffer to hold parameter name uint8_t buf[TEMPLATE_PARAM_NAME_LENGTH + 1]; String paramName; // If closing placeholder is found: if(pTemplateEnd) { // prepare argument to callback const size_t paramNameLength = std::min((size_t)sizeof(buf) - 1, (size_t)(pTemplateEnd - pTemplateStart - 1)); if(paramNameLength) { memcpy(buf, pTemplateStart + 1, paramNameLength); buf[paramNameLength] = 0; paramName = String(reinterpret_cast(buf)); } else { // double percent sign encountered, this is single percent sign escaped. // remove the 2nd percent sign memmove(pTemplateEnd, pTemplateEnd + 1, &data[len] - pTemplateEnd - 1); len += _readDataFromCacheOrContent(&data[len - 1], 1) - 1; ++pTemplateStart; } } else if(&data[len - 1] - pTemplateStart + 1 < TEMPLATE_PARAM_NAME_LENGTH + 2) { // closing placeholder not found, check if it's in the remaining file data memcpy(buf, pTemplateStart + 1, &data[len - 1] - pTemplateStart); const size_t readFromCacheOrContent = _readDataFromCacheOrContent(buf + (&data[len - 1] - pTemplateStart), TEMPLATE_PARAM_NAME_LENGTH + 2 - (&data[len - 1] - pTemplateStart + 1)); if(readFromCacheOrContent) { pTemplateEnd = (uint8_t*)memchr(buf + (&data[len - 1] - pTemplateStart), TEMPLATE_PLACEHOLDER, readFromCacheOrContent); if(pTemplateEnd) { // prepare argument to callback *pTemplateEnd = 0; paramName = String(reinterpret_cast(buf)); // Copy remaining read-ahead data into cache _cache.insert(_cache.begin(), pTemplateEnd + 1, buf + (&data[len - 1] - pTemplateStart) + readFromCacheOrContent); pTemplateEnd = &data[len - 1]; } else // closing placeholder not found in file data, store found percent symbol as is and advance to the next position { // but first, store read file data in cache _cache.insert(_cache.begin(), buf + (&data[len - 1] - pTemplateStart), buf + (&data[len - 1] - pTemplateStart) + readFromCacheOrContent); ++pTemplateStart; } } else // closing placeholder not found in content data, store found percent symbol as is and advance to the next position ++pTemplateStart; } else // closing placeholder not found in content data, store found percent symbol as is and advance to the next position ++pTemplateStart; if(paramName.length()) { // call callback and replace with result. // Everything in range [pTemplateStart, pTemplateEnd] can be safely replaced with parameter value. // Data after pTemplateEnd may need to be moved. // The first byte of data after placeholder is located at pTemplateEnd + 1. // It should be located at pTemplateStart + numBytesCopied (to begin right after inserted parameter value). const String paramValue(_callback(paramName)); const char* pvstr = paramValue.c_str(); const unsigned int pvlen = paramValue.length(); const size_t numBytesCopied = std::min(pvlen, static_cast(&data[originalLen - 1] - pTemplateStart + 1)); // make room for param value // 1. move extra data to cache if parameter value is longer than placeholder AND if there is no room to store if((pTemplateEnd + 1 < pTemplateStart + numBytesCopied) && (originalLen - (pTemplateStart + numBytesCopied - pTemplateEnd - 1) < len)) { _cache.insert(_cache.begin(), &data[originalLen - (pTemplateStart + numBytesCopied - pTemplateEnd - 1)], &data[len]); //2. parameter value is longer than placeholder text, push the data after placeholder which not saved into cache further to the end memmove(pTemplateStart + numBytesCopied, pTemplateEnd + 1, &data[originalLen] - pTemplateStart - numBytesCopied); len = originalLen; // fix issue with truncated data, not sure if it has any side effects } else if(pTemplateEnd + 1 != pTemplateStart + numBytesCopied) //2. Either parameter value is shorter than placeholder text OR there is enough free space in buffer to fit. // Move the entire data after the placeholder memmove(pTemplateStart + numBytesCopied, pTemplateEnd + 1, &data[len] - pTemplateEnd - 1); // 3. replace placeholder with actual value memcpy(pTemplateStart, pvstr, numBytesCopied); // If result is longer than buffer, copy the remainder into cache (this could happen only if placeholder text itself did not fit entirely in buffer) if(numBytesCopied < pvlen) { _cache.insert(_cache.begin(), pvstr + numBytesCopied, pvstr + pvlen); } else if(pTemplateStart + numBytesCopied < pTemplateEnd + 1) { // result is copied fully; if result is shorter than placeholder text... // there is some free room, fill it from cache const size_t roomFreed = pTemplateEnd + 1 - pTemplateStart - numBytesCopied; const size_t totalFreeRoom = originalLen - len + roomFreed; len += _readDataFromCacheOrContent(&data[len - roomFreed], totalFreeRoom) - roomFreed; } else { // result is copied fully; it is longer than placeholder text const size_t roomTaken = pTemplateStart + numBytesCopied - pTemplateEnd - 1; len = std::min(len + roomTaken, originalLen); } } } // while(pTemplateStart) return len; } /* * File Response * */ AsyncFileResponse::~AsyncFileResponse(){ if(_content) _content.close(); } void AsyncFileResponse::_setContentType(const String& path){ #if HAVE_EXTERN_GET_CONTENT_TYPE_FUNCTION extern const __FlashStringHelper *getContentType(const String &path); _contentType = getContentType(path); #else if (path.endsWith(F(".html"))) _contentType = F("text/html"); else if (path.endsWith(F(".htm"))) _contentType = F("text/html"); else if (path.endsWith(F(".css"))) _contentType = F("text/css"); else if (path.endsWith(F(".json"))) _contentType = F("application/json"); else if (path.endsWith(F(".js"))) _contentType = F("application/javascript"); else if (path.endsWith(F(".png"))) _contentType = F("image/png"); else if (path.endsWith(F(".gif"))) _contentType = F("image/gif"); else if (path.endsWith(F(".jpg"))) _contentType = F("image/jpeg"); else if (path.endsWith(F(".ico"))) _contentType = F("image/x-icon"); else if (path.endsWith(F(".svg"))) _contentType = F("image/svg+xml"); else if (path.endsWith(F(".eot"))) _contentType = F("font/eot"); else if (path.endsWith(F(".woff"))) _contentType = F("font/woff"); else if (path.endsWith(F(".woff2"))) _contentType = F("font/woff2"); else if (path.endsWith(F(".ttf"))) _contentType = F("font/ttf"); else if (path.endsWith(F(".xml"))) _contentType = F("text/xml"); else if (path.endsWith(F(".pdf"))) _contentType = F("application/pdf"); else if (path.endsWith(F(".zip"))) _contentType = F("application/zip"); else if(path.endsWith(F(".gz"))) _contentType = F("application/x-gzip"); else _contentType = F("text/plain"); #endif } AsyncFileResponse::AsyncFileResponse(FS &fs, const String& path, const String& contentType, bool download, AwsTemplateProcessor callback): AsyncAbstractResponse(callback){ _code = 200; _path = path; if(!download && !fs.exists(_path) && fs.exists(_path + F(".gz"))){ _path = _path + F(".gz"); addHeader(F("Content-Encoding"), F("gzip")); _callback = nullptr; // Unable to process zipped templates _sendContentLength = true; _chunked = false; } _content = fs.open(_path, fs::FileOpenMode::read); _contentLength = _content.size(); if(contentType.length() == 0) _setContentType(path); else _contentType = contentType; int filenameStart = path.lastIndexOf('/') + 1; char buf[26+path.length()-filenameStart]; char* filename = (char*)path.c_str() + filenameStart; if(download) { // set filename and force download snprintf_P(buf, sizeof (buf), PSTR("attachment; filename=\"%s\""), filename); } else { // set filename and force rendering snprintf_P(buf, sizeof (buf), PSTR("inline; filename=\"%s\""), filename); } addHeader(F("Content-Disposition"), buf); } AsyncFileResponse::AsyncFileResponse(File content, const String& path, const String& contentType, bool download, AwsTemplateProcessor callback): AsyncAbstractResponse(callback){ _code = 200; _path = path; if(!download && String(content.name()).endsWith(F(".gz")) && !path.endsWith(F(".gz"))){ addHeader(F("Content-Encoding"), F("gzip")); _callback = nullptr; // Unable to process gzipped templates _sendContentLength = true; _chunked = false; } _content = content; _contentLength = _content.size(); if(contentType.length() == 0) _setContentType(path); else _contentType = contentType; int filenameStart = path.lastIndexOf('/') + 1; char buf[26+path.length()-filenameStart]; char* filename = (char*)path.c_str() + filenameStart; if(download) { snprintf_P(buf, sizeof (buf), PSTR("attachment; filename=\"%s\""), filename); } else { snprintf_P(buf, sizeof (buf), PSTR("inline; filename=\"%s\""), filename); } addHeader(F("Content-Disposition"), buf); } size_t AsyncFileResponse::_fillBuffer(uint8_t *data, size_t len){ return _content.read(data, len); } /* * Stream Response * */ AsyncStreamResponse::AsyncStreamResponse(Stream &stream, const String& contentType, size_t len, AwsTemplateProcessor callback): AsyncAbstractResponse(callback) { _code = 200; _content = &stream; _contentLength = len; _contentType = contentType; } size_t AsyncStreamResponse::_fillBuffer(uint8_t *data, size_t len){ size_t available = _content->available(); size_t outLen = (available > len)?len:available; size_t i; for(i=0;iread(); return outLen; } /* * Callback Response * */ AsyncCallbackResponse::AsyncCallbackResponse(const String& contentType, size_t len, AwsResponseFiller callback, AwsTemplateProcessor templateCallback): AsyncAbstractResponse(templateCallback) { _code = 200; _content = callback; _contentLength = len; if(!len) _sendContentLength = false; _contentType = contentType; _filledLength = 0; } size_t AsyncCallbackResponse::_fillBuffer(uint8_t *data, size_t len){ size_t ret = _content(data, len, _filledLength); if(ret != RESPONSE_TRY_AGAIN){ _filledLength += ret; } return ret; } /* * Chunked Response * */ AsyncChunkedResponse::AsyncChunkedResponse(const String& contentType, AwsResponseFiller callback, AwsTemplateProcessor processorCallback): AsyncAbstractResponse(processorCallback) { _code = 200; _content = callback; _contentLength = 0; _contentType = contentType; _sendContentLength = false; _chunked = true; _filledLength = 0; } size_t AsyncChunkedResponse::_fillBuffer(uint8_t *data, size_t len){ size_t ret = _content(data, len, _filledLength); if(ret != RESPONSE_TRY_AGAIN){ _filledLength += ret; } return ret; } /* * Progmem Response * */ AsyncProgmemResponse::AsyncProgmemResponse(int code, const String& contentType, const uint8_t * content, size_t len, AwsTemplateProcessor callback): AsyncAbstractResponse(callback) { _code = code; _content = content; _contentType = contentType; _contentLength = len; _readLength = 0; } size_t AsyncProgmemResponse::_fillBuffer(uint8_t *data, size_t len){ size_t left = _contentLength - _readLength; if (left > len) { memcpy_P(data, _content + _readLength, len); _readLength += len; return len; } memcpy_P(data, _content + _readLength, left); _readLength += left; return left; } /* * Response Stream (You can print/write/printf to it, up to the contentLen bytes) * */ AsyncResponseStream::AsyncResponseStream(const String& contentType, size_t bufferSize){ _code = 200; _contentLength = 0; _contentType = contentType; _content = new cbuf(bufferSize); } AsyncResponseStream::~AsyncResponseStream(){ delete _content; } size_t AsyncResponseStream::_fillBuffer(uint8_t *buf, size_t maxLen){ return _content->read((char*)buf, maxLen); } size_t AsyncResponseStream::write(const uint8_t *data, size_t len){ if(_started()) return 0; if(len > _content->room()){ size_t needed = len - _content->room(); _content->resizeAdd(needed); } size_t written = _content->write((const char*)data, len); _contentLength += written; return written; } size_t AsyncResponseStream::write(uint8_t data){ return write(&data, 1); }