/*
* EMS-ESP - https://github.com/emsesp/EMS-ESP
* Copyright 2020-2024 Paul Derbyshire
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see .
*/
#include "helpers.h"
#include "emsesp.h"
namespace emsesp {
// like itoa but for hex, and quicker
// note: only for single byte hex values
char * Helpers::hextoa(char * result, const uint8_t value) {
char * p = result;
uint8_t nib1 = (value >> 4) & 0x0F;
uint8_t nib2 = (value >> 0) & 0x0F;
*p++ = nib1 < 0xA ? '0' + nib1 : 'A' + nib1 - 0xA;
*p++ = nib2 < 0xA ? '0' + nib2 : 'A' + nib2 - 0xA;
*p = '\0'; // null terminate just in case
return result;
}
// same as above but to a hex string
std::string Helpers::hextoa(const uint8_t value, bool prefix) {
char buf[3];
if (prefix) {
return std::string("0x") + hextoa(buf, value);
}
return std::string(hextoa(buf, value));
}
// same for 16 bit values
char * Helpers::hextoa(char * result, const uint16_t value) {
if (value <= 0xFF) {
return hextoa(result, (uint8_t)value);
}
hextoa(result, (uint8_t)(value >> 8));
hextoa(&result[2], (uint8_t)(value & 0xFF));
return result;
}
// same as above but to a hex string
std::string Helpers::hextoa(const uint16_t value, bool prefix) {
char buf[5];
if (prefix) {
return std::string("0x") + hextoa(buf, value);
}
return std::string(hextoa(buf, value));
}
#ifdef EMSESP_STANDALONE
// special function to work outside of ESP's libraries
char * Helpers::ultostr(char * ptr, uint32_t value, const uint8_t base) {
if (nullptr == ptr) {
return nullptr;
}
unsigned long t = 0;
unsigned long tmp = value;
int count = 0;
if (tmp == 0) {
count++;
}
while (tmp > 0) {
tmp = tmp / base;
count++;
}
ptr += count;
*ptr = '\0';
do {
unsigned long res = value - base * (t = value / base);
if (res < 10) {
*--ptr = '0' + res;
} else if (res < 16) {
*--ptr = 'A' - 10 + res;
}
} while ((value = t) != 0);
return (ptr);
}
#endif
/**
* fast atoi returning a std::string
* http://www.strudel.org.uk/itoa/
*
*/
std::string Helpers::itoa(int16_t value) {
std::string buf;
buf.reserve(25); // Pre-allocate enough space.
int quotient = value;
do {
buf += "0123456789abcdef"[std::abs(quotient % 10)];
quotient /= 10;
} while (quotient);
// Append the negative sign
if (value < 0)
buf += '-';
std::reverse(buf.begin(), buf.end());
return buf;
}
/*
* fast itoa and optimized for ESP32
* written by Lukás Chmela, Released under GPLv3. http://www.strudel.org.uk/itoa/ version 0.4
*/
char * Helpers::itoa(int32_t value, char * result, const uint8_t base) {
// check that the base if valid
if (base < 2 || base > 36) {
*result = '\0';
return result;
}
char * ptr = result, *ptr1 = result;
int32_t tmp_value;
do {
tmp_value = value;
value /= base;
*ptr++ = "zyxwvutsrqponmlkjihgfedcba9876543210123456789abcdefghijklmnopqrstuvwxyz"[35 + (tmp_value - value * base)];
} while (value);
// Apply negative sign
if (tmp_value < 0) {
*ptr++ = '-';
}
*ptr-- = '\0';
while (ptr1 < ptr) {
char tmp_char = *ptr;
*ptr-- = *ptr1;
*ptr1++ = tmp_char;
}
return result;
}
// for decimals 0 to 99, printed as a 2 char string
char * Helpers::smallitoa(char * result, const uint8_t value) {
result[0] = ((value / 10) == 0) ? '0' : (value / 10) + '0';
result[1] = (value % 10) + '0';
result[2] = '\0';
return result;
}
// for decimals 0 to 999, printed as a string
char * Helpers::smallitoa(char * result, const uint16_t value) {
result[0] = ((value / 100) == 0) ? '0' : (value / 100) + '0';
result[1] = (((value % 100) / 10) == 0) ? '0' : ((value % 100) / 10) + '0';
result[2] = (value % 10) + '0';
result[3] = '\0';
return result;
}
// work out how to display booleans
// for strings only
char * Helpers::render_boolean(char * result, const bool value, const bool dashboard) {
uint8_t bool_format_ = dashboard ? EMSESP::system_.bool_dashboard() : EMSESP::system_.bool_format();
if (bool_format_ == BOOL_FORMAT_ONOFF_STR) {
strlcpy(result, value ? translated_word(FL_(on)) : translated_word(FL_(off)), 12);
} else if (bool_format_ == BOOL_FORMAT_ONOFF_STR_CAP) {
strlcpy(result, value ? translated_word(FL_(ON)) : translated_word(FL_(OFF)), 12);
} else if ((bool_format_ == BOOL_FORMAT_10) || (bool_format_ == BOOL_FORMAT_10_STR)) {
strlcpy(result, value ? "1" : "0", 2);
} else {
strlcpy(result, value ? "true" : "false", 7); // default
}
return result;
}
// convert unsigned int (single byte) to text value and returns it
// format: 255(0xFF)=boolean, 0=no formatting, otherwise divide by format
char * Helpers::render_value(char * result, uint8_t value, int8_t format, const uint8_t fahrenheit) {
// special check if its a boolean
if ((uint8_t)format == EMS_VALUE_BOOL) {
if (value == EMS_VALUE_BOOL_OFF) {
render_boolean(result, false);
} else if (value == EMS_VALUE_BOOL_NOTSET) {
return nullptr;
} else {
render_boolean(result, true); // assume on. could have value 0x01 or 0xFF
}
return result;
}
if (!hasValue(value)) {
return nullptr;
}
int16_t new_value = fahrenheit ? format ? value * 1.8 + 32 * format * (fahrenheit - 1) : value * 1.8 + 32 * (fahrenheit - 1) : value;
if (!format) {
itoa(new_value, result, 10); // format = 0
return result;
}
char s2[10];
// special case for / 2
if (format == 2) {
strlcpy(result, itoa(new_value >> 1, s2, 10), 5);
strlcat(result, ".", 5);
strlcat(result, ((new_value & 0x01) ? "5" : "0"), 7);
return result;
} else if (format == 4) {
strlcpy(result, itoa(new_value >> 2, s2, 10), 5);
strlcat(result, ".", 5);
new_value = (new_value & 0x03) * 25;
strlcat(result, itoa(new_value, s2, 10), 7);
return result;
} else if (format > 0) {
strlcpy(result, itoa(new_value / format, s2, 10), 5);
strlcat(result, ".", 5);
strlcat(result, itoa(new_value % format, s2, 10), 7);
} else {
strlcpy(result, itoa(new_value * format * -1, s2, 10), 5);
}
return result;
}
// float: convert float to char
// format is the precision, 0 to 8
char * Helpers::render_value(char * result, const double value, const int8_t format) {
if (format > 8) {
return nullptr;
}
uint32_t p[] = {1, 10, 100, 1000, 10000, 100000, 1000000, 10000000, 100000000};
char * ret = result;
double v = value < 0 ? value - 1.0 / (2 * p[format]) : value + 1.0 / (2 * p[format]);
auto whole = (int32_t)v;
itoa(whole, result, 10);
while (*result != '\0') {
result++;
}
*result++ = '.';
auto decimal = abs((int32_t)((v - whole) * p[format]));
for (int8_t i = 1; i < format; i++) {
if (decimal < p[i]) {
*result++ = '0'; // add leading zeros
}
}
itoa(decimal, result, 10);
return ret;
}
// int32: convert signed 32bit to text string and returns string
// format: 0=no division, other divide by the value given and render with a decimal point
char * Helpers::render_value(char * result, const int32_t value, const int8_t format, const uint8_t fahrenheit) {
int32_t new_value = fahrenheit ? format ? value * 1.8 + 32 * format * (fahrenheit - 1) : value * 1.8 + 32 * (fahrenheit - 1) : value;
char s[13] = {0};
// just print it if no conversion required (format = 0)
if (!format) {
strlcpy(result, itoa(new_value, s, 10), sizeof(s)); // format is 0
return result;
}
result[0] = '\0';
// check for negative values
if (new_value < 0) {
strlcpy(result, "-", sizeof(s));
new_value *= -1; // convert to positive
} else {
strlcpy(result, "", sizeof(s));
}
// do floating point
if (format == 2) {
// divide by 2
strlcat(result, itoa(new_value / 2, s, 10), sizeof(s));
strlcat(result, ".", sizeof(s));
strlcat(result, ((new_value & 0x01) ? "5" : "0"), sizeof(s));
} else if (format > 0) {
strlcat(result, itoa(new_value / format, s, 10), sizeof(s));
strlcat(result, ".", sizeof(s));
strlcat(result, itoa(((new_value % format) * 10) / format, s, 10), sizeof(s));
} else {
strlcat(result, itoa(new_value * format * -1, s, 10), sizeof(s));
}
return result;
}
// int16: convert short (two bytes) to text string and prints it
char * Helpers::render_value(char * result, const int16_t value, const int8_t format, const uint8_t fahrenheit) {
if (!hasValue(value)) {
return nullptr;
}
return (render_value(result, (int32_t)value, format, fahrenheit)); // use same code, force it to a signed int
}
// uint16: convert unsigned short (two bytes) to text string and prints it
char * Helpers::render_value(char * result, const uint16_t value, const int8_t format, const uint8_t fahrenheit) {
if (!hasValue(value)) {
return nullptr;
}
return (render_value(result, (int32_t)value, format, fahrenheit)); // use same code, force it to a signed int
}
// int8: convert signed byte to text string and prints it
char * Helpers::render_value(char * result, const int8_t value, const int8_t format, const uint8_t fahrenheit) {
if (!hasValue(value)) {
return nullptr;
}
return (render_value(result, (int32_t)value, format, fahrenheit)); // use same code, force it to a signed int
}
// uint32: render long (4 byte) unsigned values
char * Helpers::render_value(char * result, const uint32_t value, const int8_t format, const uint8_t fahrenheit) {
if (!hasValue(value)) {
return nullptr;
}
result[0] = '\0';
uint32_t new_value = fahrenheit ? format ? value * 1.8 + 32 * format * (fahrenheit - 1) : value * 1.8 + 32 * (fahrenheit - 1) : value;
char s[14] = {0};
#ifndef EMSESP_STANDALONE
if (!format) {
strlcpy(result, ltoa(new_value, s, 10), sizeof(s)); // format is 0
} else if (format > 0) {
strlcpy(result, ltoa(new_value / format, s, 10), sizeof(s));
strlcat(result, ".", sizeof(s));
strlcat(result, itoa(((new_value % format) * 10) / format, s, 10), sizeof(s));
if (format == 100) {
strlcat(result, itoa(new_value % 10, s, 10), sizeof(s));
}
} else {
strlcpy(result, ltoa(new_value * format * -1, s, 10), sizeof(s));
}
#else
if (!format) {
strlcpy(result, ultostr(s, new_value, 10), sizeof(s)); // format is 0
} else {
strlcpy(result, ultostr(s, new_value / format, 10), sizeof(s));
strlcat(result, ".", sizeof(s));
strncat(result, ultostr(s, new_value % format, 10), sizeof(s));
}
#endif
return result;
}
// creates string of hex values from an arrray of bytes
std::string Helpers::data_to_hex(const uint8_t * data, const uint8_t length) {
if (length == 0) {
return "";
}
char str[160] = {0};
char buffer[4];
char * p = &str[0];
for (uint8_t i = 0; i < length; i++) {
Helpers::hextoa(buffer, data[i]);
*p++ = buffer[0];
*p++ = buffer[1];
*p++ = ' '; // space
}
*--p = '\0'; // null terminate just in case, loosing the trailing space
return std::string(str);
}
// takes a hex string and convert it to an unsigned 32bit number (max 8 hex digits)
// works with only positive numbers
uint32_t Helpers::hextoint(const char * hex) {
if (hex == nullptr) {
return 0;
}
uint32_t val = 0;
// skip leading '0x'
if (hex[0] == '0' && hex[1] == 'x') {
hex += 2;
}
while (*hex) {
// get current character then increment
char byte = *hex++;
// transform hex character to the 4bit equivalent number, using the ascii table indexes
if (byte >= '0' && byte <= '9')
byte = byte - '0';
else if (byte >= 'a' && byte <= 'f')
byte = byte - 'a' + 10;
else if (byte >= 'A' && byte <= 'F')
byte = byte - 'A' + 10;
else
return 0; // error
// shift 4 to make space for new digit, and add the 4 bits of the new digit
val = (val << 4) | (byte & 0xF);
}
return val;
}
// quick char to long
int Helpers::atoint(const char * value) {
int x = 0;
char s = value[0];
if (s == '-') {
++value;
}
while (*value >= '0' && *value <= '9') {
x = (x * 10) + (*value - '0');
++value;
}
if (s == '-') {
return (-x);
}
return x;
}
// rounds a number to 2 decimal places
// example: round2(3.14159) -> 3.14
// The conversion to Fahrenheit is different for absolute temperatures and relative temperatures like hysteresis.
// fahrenheit=0 - off, no conversion
// fahrenheit=1 - relative, 1.8t
// fahrenheit=2 - absolute, 1.8t + 32(fahrenheit-1)
float Helpers::transformNumFloat(float value, const int8_t numeric_operator, const uint8_t fahrenheit) {
float val;
switch (numeric_operator) {
case DeviceValueNumOp::DV_NUMOP_DIV2:
val = ((value / 2) * 100 + 0.5);
break;
case DeviceValueNumOp::DV_NUMOP_DIV10:
val = ((value / 10) * 100 + 0.5);
break;
case DeviceValueNumOp::DV_NUMOP_DIV60:
val = ((value / 60) * 100 + 0.5);
break;
case DeviceValueNumOp::DV_NUMOP_DIV100:
val = ((value / 100) * 100 + 0.5);
break;
case DeviceValueNumOp::DV_NUMOP_MUL5:
val = value * 100 * 5;
break;
case DeviceValueNumOp::DV_NUMOP_MUL10:
val = value * 100 * 10;
break;
case DeviceValueNumOp::DV_NUMOP_MUL15:
val = value * 100 * 15;
break;
default:
val = (value * 100 + 0.5); // no ops
break;
}
if (value < 0) { // negative rounding
val = val - 1;
}
if (fahrenheit) {
val = val * 1.8 + 3200 * (fahrenheit - 1);
}
return ((int32_t)val) / 100.0;
}
// abs of a signed 32-bit integer
uint32_t Helpers::abs(const int32_t i) {
return (i < 0 ? -i : i);
}
// for booleans, use isBool true (EMS_VALUE_BOOL)
bool Helpers::hasValue(const uint8_t & value, const uint8_t isBool) {
if (isBool == EMS_VALUE_BOOL) {
return (value != EMS_VALUE_BOOL_NOTSET);
}
return (value != EMS_VALUE_UINT_NOTSET);
}
bool Helpers::hasValue(const int8_t & value) {
return (value != EMS_VALUE_INT_NOTSET);
}
bool Helpers::hasValue(const char * value) {
if ((value == nullptr) || (strlen(value) == 0)) {
return false;
}
return (value[0] != '\0');
}
// for short these are typically 0x8300, 0x7D00 and sometimes 0x8000
bool Helpers::hasValue(const int16_t & value) {
return (abs(value) < EMS_VALUE_USHORT_NOTSET);
}
bool Helpers::hasValue(const uint16_t & value) {
return (value < EMS_VALUE_USHORT_NOTSET);
}
bool Helpers::hasValue(const uint32_t & value) {
return (value != EMS_VALUE_ULONG_NOTSET && value != EMS_VALUE_ULLONG_NOTSET);
}
// checks if we can convert a char string to an int value
bool Helpers::value2number(const char * value, int & value_i, const int min, const int max) {
if ((value == nullptr) || (strlen(value) == 0)) {
value_i = 0;
return false;
}
value_i = atoi(value);
if (value_i >= min && value_i <= max) {
return true;
}
return false;
}
// checks if we can convert a char string to a float value
bool Helpers::value2float(const char * value, float & value_f) {
value_f = 0;
if ((value == nullptr) || (strlen(value) == 0)) {
return false;
}
if (value[0] == '-' || value[0] == '.' || (value[0] >= '0' && value[0] <= '9')) {
value_f = atof(value);
return true;
}
if (value[0] == '+' && (value[1] == '.' || (value[1] >= '0' && value[1] <= '9'))) {
value_f = atof(value + 1);
return true;
}
return false;
}
bool Helpers::value2temperature(const char * value, float & value_f, bool relative) {
if (value2float(value, value_f)) {
if (EMSESP::system_.fahrenheit()) {
value_f = relative ? (value_f / 1.8) : (value_f - 32) / 1.8;
}
return true;
}
return false;
}
bool Helpers::value2temperature(const char * value, int & value_i, const bool relative, const int min, const int max) {
if (value2number(value, value_i, min, max)) {
if (EMSESP::system_.fahrenheit()) {
value_i = relative ? (value_i / 1.8) : (value_i - 32) / 1.8;
}
return true;
}
return false;
}
// checks if we can convert a char string to a lowercase string
bool Helpers::value2string(const char * value, std::string & value_s) {
if ((value == nullptr) || (strlen(value) == 0)) {
value_s = std::string{};
return false;
}
value_s = toLower(value);
return true;
}
// checks to see if a string (usually a command or payload cmd) looks like a boolean
// on, off, true, false, 1, 0
bool Helpers::value2bool(const char * value, bool & value_b) {
if ((value == nullptr) || (strlen(value) == 0)) {
return false;
}
std::string bool_str = toLower(value);
if ((bool_str == std::string(Helpers::translated_word(FL_(on)))) || (bool_str == toLower(Helpers::translated_word(FL_(ON)))) || (bool_str == "on")
|| (bool_str == "1") || (bool_str == "true")) {
value_b = true;
return true; // is a bool
}
if ((bool_str == std::string(Helpers::translated_word(FL_(off)))) || (bool_str == toLower(Helpers::translated_word(FL_(OFF)))) || (bool_str == "off")
|| (bool_str == "0") || (bool_str == "false")) {
value_b = false;
return true; // is a bool
}
return false; // not a bool
}
// checks to see if a string is member of a vector and return the index, also allow true/false for on/off
// this for a list of lists, when using translated strings
bool Helpers::value2enum(const char * value, uint8_t & value_ui, const char * const ** strs) {
if ((value == nullptr) || (strlen(value) == 0)) {
return false;
}
std::string str = toLower(value);
for (value_ui = 0; strs[value_ui]; value_ui++) {
std::string str1 = toLower(std::string(Helpers::translated_word(strs[value_ui])));
std::string str2 = toLower((strs[value_ui][0])); // also check for default language
if ((str1 != "")
&& ((str2 == "off" && str == "false") || (str2 == "on" && str == "true") || (str == str1) || (str == str2)
|| (value[0] == ('0' + value_ui) && value[1] == '\0'))) {
return true;
}
}
return false;
}
// finds the string (value) of a list vector (strs)
// returns true if found, and sets the value_ui to the index, else false
// also allow true/false for on/off
bool Helpers::value2enum(const char * value, uint8_t & value_ui, const char * const * strs) {
if ((value == nullptr) || (strlen(value) == 0)) {
return false;
}
std::string str = toLower(value);
std::string s_on = Helpers::translated_word(FL_(on));
std::string s_off = Helpers::translated_word(FL_(off));
// stops when a nullptr is found, which is the end delimeter of a MAKE_TRANSLATION()
// could use count_items() to avoid buffer over-run but this works
for (value_ui = 0; strs[value_ui]; value_ui++) {
std::string enum_str = toLower((strs[value_ui]));
if ((enum_str != "")
&& ((enum_str == "off" && (str == s_off || str == "false")) || (enum_str == "on" && (str == s_on || str == "true")) || (str == enum_str)
|| (value[0] == ('0' + value_ui) && value[1] == '\0'))) {
return true;
}
}
return false;
}
// https://stackoverflow.com/questions/313970/how-to-convert-stdstring-to-lower-case
std::string Helpers::toLower(std::string const & s) {
std::string lc = s;
std::transform(lc.begin(), lc.end(), lc.begin(), [](unsigned char c) { return std::tolower(c); });
return lc;
}
std::string Helpers::toLower(const char * s) {
return toLower(std::string(s));
}
std::string Helpers::toUpper(std::string const & s) {
std::string lc = s;
std::transform(lc.begin(), lc.end(), lc.begin(), [](unsigned char c) { return std::toupper(c); });
return lc;
}
// capitalizes one UTF-8 character in char array
// works with Latin1 (1 byte), Polish amd some other (2 bytes) characters
// TODO add special characters that occur in other supported languages
#if defined(EMSESP_STANDALONE)
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wtype-limits"
#endif
void Helpers::CharToUpperUTF8(char * c) {
auto p = (c + 1); // pointer to 2nd char of 2-byte unicode char
char p_v = *p; // value of 2nd char in 2-byte unicode char
switch (*c) {
case (char)0xC3:
// grave, acute, circumflex, diaeresis, etc.
if ((p_v >= (char)0xA0) && (p_v <= (char)0xBE)) {
*p -= 0x20;
}
break;
case (char)0xC4:
switch (p_v) {
case (char)0x85: //ą (0xC4,0x85) -> Ą (0xC4,0x84)
case (char)0x87: //ć (0xC4,0x87) -> Ć (0xC4,0x86)
case (char)0x99: //ę (0xC4,0x99) -> Ę (0xC4,0x98)
*p -= 1;
break;
}
break;
case (char)0xC5:
switch (p_v) {
case (char)0x82: //ł (0xC5,0x82) -> Ł (0xC5,0x81)
case (char)0x84: //ń (0xC5,0x84) -> Ń (0xC5,0x83)
case (char)0x9B: //ś (0xC5,0x9B) -> Ś (0xC5,0x9A)
case (char)0xBA: //ź (0xC5,0xBA) -> Ź (0xC5,0xB9)
case (char)0xBC: //ż (0xC5,0xBC) -> Ż (0xC5,0xBB)
*p -= 1;
break;
}
break;
default:
*c = toupper(*c); // works on Latin1 letters
break;
}
}
#if defined(EMSESP_STANDALONE)
#pragma GCC diagnostic pop
#endif
// replace char in char string
void Helpers::replace_char(char * str, char find, char replace) {
if (str == nullptr) {
return;
}
int i = 0;
while (str[i] != '\0') {
// Replace the matched character...
if (str[i] == find)
str[i] = replace;
i++;
}
}
// count number of items in a list
// the end of a list has a nullptr
uint8_t Helpers::count_items(const char * const * list) {
uint8_t list_size = 0;
if (list != nullptr) {
while (list[list_size]) {
list_size++;
}
}
return list_size;
}
// count number of items in a list of lists
// the end of a list has a nullptr
uint8_t Helpers::count_items(const char * const ** list) {
uint8_t list_size = 0;
if (list != nullptr) {
while (list[list_size]) {
list_size++;
}
}
return list_size;
}
// returns char pointer to translated description or fullname
// if force_en is true always take the EN non-translated word
const char * Helpers::translated_word(const char * const * strings, const bool force_en) {
uint8_t language_index = EMSESP::system_.language_index();
uint8_t index = 0;
if (!strings) {
return ""; // no translations
}
// see how many translations we have for this entity. if there is no translation for this, revert to EN
if (!force_en && (Helpers::count_items(strings) >= language_index + 1 && strlen(strings[language_index]))) {
index = language_index;
}
return strings[index];
}
uint16_t Helpers::string2minutes(const std::string & str) {
uint8_t i = 0;
uint16_t res = 0;
uint16_t tmp = 0;
uint8_t state = 0;
while (str[i] != '\0') {
// If we got a digit
if (str[i] >= '0' && str[i] <= '9') {
tmp = tmp * 10 + str[i] - '0';
}
// Or if we got a colon
else if (str[i] == ':') {
// If we were reading the hours
if (state == 0) {
res = 60 * tmp;
}
// Or if we were reading the minutes
else if (state == 1) {
if (tmp > 60) {
return 0;
}
Serial.print("*");
Serial.print(tmp);
Serial.println("*");
res += tmp;
}
// Or we got an extra colon
else {
return 0;
}
state++;
tmp = 0;
}
// Or we got something wrong
else {
return 0;
}
i++;
}
if (state == 1 && tmp < 60) {
return res + tmp;
} else {
return 0; // Or if we were not, something is wrong in the given string
}
}
} // namespace emsesp