/** * ems.cpp * * Handles all the processing of the EMS messages * * Paul Derbyshire - https://github.com/proddy/EMS-ESP */ #include "ems.h" #include "ems_devices.h" #include "emsuart.h" #include #include // https://github.com/rlogiacco/CircularBuffer #include #include // std::list // myESP #define myDebug(...) myESP.myDebug(__VA_ARGS__) _EMS_Sys_Status EMS_Sys_Status; // EMS Status CircularBuffer<_EMS_TxTelegram, EMS_TX_TELEGRAM_QUEUE_MAX> EMS_TxQueue; // FIFO queue for Tx send buffer // callbacks per type // generic void _process_Version(uint8_t src, uint8_t * data, uint8_t length); // Boiler and Buderus devices void _process_UBAMonitorFast(uint8_t src, uint8_t * data, uint8_t length); void _process_UBAMonitorSlow(uint8_t src, uint8_t * data, uint8_t length); void _process_UBAMonitorWWMessage(uint8_t src, uint8_t * data, uint8_t length); void _process_UBAParameterWW(uint8_t src, uint8_t * data, uint8_t length); void _process_UBATotalUptimeMessage(uint8_t src, uint8_t * data, uint8_t length); void _process_UBAParametersMessage(uint8_t src, uint8_t * data, uint8_t length); void _process_SetPoints(uint8_t src, uint8_t * data, uint8_t length); void _process_SM10Monitor(uint8_t src, uint8_t * data, uint8_t length); // Common for most thermostats void _process_RCTime(uint8_t src, uint8_t * data, uint8_t length); void _process_RCOutdoorTempMessage(uint8_t src, uint8_t * data, uint8_t length); // RC10 void _process_RC10Set(uint8_t src, uint8_t * data, uint8_t length); void _process_RC10StatusMessage(uint8_t src, uint8_t * data, uint8_t length); // RC20 void _process_RC20Set(uint8_t src, uint8_t * data, uint8_t length); void _process_RC20StatusMessage(uint8_t src, uint8_t * data, uint8_t length); // RC30 void _process_RC30Set(uint8_t src, uint8_t * data, uint8_t length); void _process_RC30StatusMessage(uint8_t src, uint8_t * data, uint8_t length); // RC35 void _process_RC35Set(uint8_t src, uint8_t * data, uint8_t length); void _process_RC35StatusMessage(uint8_t src, uint8_t * data, uint8_t length); // Easy void _process_EasyStatusMessage(uint8_t src, uint8_t * data, uint8_t length); /* * Recognized EMS types and the functions they call to process the telegrams * Format: MODEL ID, TYPE ID, Description, function */ const _EMS_Type EMS_Types[] = { // common {EMS_MODEL_ALL, EMS_TYPE_Version, "Version", _process_Version}, // Boiler commands {EMS_MODEL_UBA, EMS_TYPE_UBAMonitorFast, "UBAMonitorFast", _process_UBAMonitorFast}, {EMS_MODEL_UBA, EMS_TYPE_UBAMonitorSlow, "UBAMonitorSlow", _process_UBAMonitorSlow}, {EMS_MODEL_UBA, EMS_TYPE_UBAMonitorWWMessage, "UBAMonitorWWMessage", _process_UBAMonitorWWMessage}, {EMS_MODEL_UBA, EMS_TYPE_UBAParameterWW, "UBAParameterWW", _process_UBAParameterWW}, {EMS_MODEL_UBA, EMS_TYPE_UBATotalUptimeMessage, "UBATotalUptimeMessage", _process_UBATotalUptimeMessage}, {EMS_MODEL_UBA, EMS_TYPE_UBAMaintenanceSettingsMessage, "UBAMaintenanceSettingsMessage", NULL}, {EMS_MODEL_UBA, EMS_TYPE_UBAParametersMessage, "UBAParametersMessage", _process_UBAParametersMessage}, {EMS_MODEL_UBA, EMS_TYPE_UBASetPoints, "UBASetPoints", _process_SetPoints}, // Other devices {EMS_MODEL_OTHER, EMS_TYPE_SM10Monitor, "SM10Monitor", _process_SM10Monitor}, // RC10 {EMS_MODEL_RC10, EMS_TYPE_RCTime, "RCTime", _process_RCTime}, {EMS_MODEL_RC10, EMS_TYPE_RC10Set, "RC10Set", _process_RC10Set}, {EMS_MODEL_RC10, EMS_TYPE_RC10StatusMessage, "RC10StatusMessage", _process_RC10StatusMessage}, // RC20 and RC20F {EMS_MODEL_RC20, EMS_TYPE_RCOutdoorTempMessage, "RCOutdoorTempMessage", _process_RCOutdoorTempMessage}, {EMS_MODEL_RC20, EMS_TYPE_RCTime, "RCTime", _process_RCTime}, {EMS_MODEL_RC20, EMS_TYPE_RC20Set, "RC20Set", _process_RC20Set}, {EMS_MODEL_RC20, EMS_TYPE_RC20StatusMessage, "RC20StatusMessage", _process_RC20StatusMessage}, {EMS_MODEL_RC20F, EMS_TYPE_RCOutdoorTempMessage, "RCOutdoorTempMessage", _process_RCOutdoorTempMessage}, {EMS_MODEL_RC20F, EMS_TYPE_RCTime, "RCTime", _process_RCTime}, {EMS_MODEL_RC20F, EMS_TYPE_RC20Set, "RC20Set", _process_RC20Set}, {EMS_MODEL_RC20F, EMS_TYPE_RC20StatusMessage, "RC20StatusMessage", _process_RC20StatusMessage}, // RC30 {EMS_MODEL_RC30, EMS_TYPE_RCOutdoorTempMessage, "RCOutdoorTempMessage", _process_RCOutdoorTempMessage}, {EMS_MODEL_RC30, EMS_TYPE_RCTime, "RCTime", _process_RCTime}, {EMS_MODEL_RC30, EMS_TYPE_RC30Set, "RC30Set", _process_RC30Set}, {EMS_MODEL_RC30, EMS_TYPE_RC30StatusMessage, "RC30StatusMessage", _process_RC30StatusMessage}, // RC35 {EMS_MODEL_RC35, EMS_TYPE_RCOutdoorTempMessage, "RCOutdoorTempMessage", _process_RCOutdoorTempMessage}, {EMS_MODEL_RC35, EMS_TYPE_RCTime, "RCTime", _process_RCTime}, {EMS_MODEL_RC35, EMS_TYPE_RC35Set, "RC35Set", _process_RC35Set}, {EMS_MODEL_RC35, EMS_TYPE_RC35StatusMessage, "RC35StatusMessage", _process_RC35StatusMessage}, // ES73 {EMS_MODEL_ES73, EMS_TYPE_RCOutdoorTempMessage, "RCOutdoorTempMessage", _process_RCOutdoorTempMessage}, {EMS_MODEL_ES73, EMS_TYPE_RCTime, "RCTime", _process_RCTime}, {EMS_MODEL_ES73, EMS_TYPE_RC35Set, "RC35Set", _process_RC35Set}, {EMS_MODEL_ES73, EMS_TYPE_RC35StatusMessage, "RC35StatusMessage", _process_RC35StatusMessage}, // Easy {EMS_MODEL_EASY, EMS_TYPE_EasyStatusMessage, "EasyStatusMessage", _process_EasyStatusMessage}, {EMS_MODEL_BOSCHEASY, EMS_TYPE_EasyStatusMessage, "EasyStatusMessage", _process_EasyStatusMessage}, }; // calculate sizes of arrays at compile uint8_t _EMS_Types_max = ArraySize(EMS_Types); // number of defined types uint8_t _Boiler_Types_max = ArraySize(Boiler_Types); // number of boiler models uint8_t _Other_Types_max = ArraySize(Other_Types); // number of other ems devices uint8_t _Thermostat_Types_max = ArraySize(Thermostat_Types); // number of defined thermostat types // these structs contain the data we store from the Boiler and Thermostat _EMS_Boiler EMS_Boiler; _EMS_Thermostat EMS_Thermostat; _EMS_Other EMS_Other; // CRC lookup table with poly 12 for faster checking const uint8_t ems_crc_table[] = {0x00, 0x02, 0x04, 0x06, 0x08, 0x0A, 0x0C, 0x0E, 0x10, 0x12, 0x14, 0x16, 0x18, 0x1A, 0x1C, 0x1E, 0x20, 0x22, 0x24, 0x26, 0x28, 0x2A, 0x2C, 0x2E, 0x30, 0x32, 0x34, 0x36, 0x38, 0x3A, 0x3C, 0x3E, 0x40, 0x42, 0x44, 0x46, 0x48, 0x4A, 0x4C, 0x4E, 0x50, 0x52, 0x54, 0x56, 0x58, 0x5A, 0x5C, 0x5E, 0x60, 0x62, 0x64, 0x66, 0x68, 0x6A, 0x6C, 0x6E, 0x70, 0x72, 0x74, 0x76, 0x78, 0x7A, 0x7C, 0x7E, 0x80, 0x82, 0x84, 0x86, 0x88, 0x8A, 0x8C, 0x8E, 0x90, 0x92, 0x94, 0x96, 0x98, 0x9A, 0x9C, 0x9E, 0xA0, 0xA2, 0xA4, 0xA6, 0xA8, 0xAA, 0xAC, 0xAE, 0xB0, 0xB2, 0xB4, 0xB6, 0xB8, 0xBA, 0xBC, 0xBE, 0xC0, 0xC2, 0xC4, 0xC6, 0xC8, 0xCA, 0xCC, 0xCE, 0xD0, 0xD2, 0xD4, 0xD6, 0xD8, 0xDA, 0xDC, 0xDE, 0xE0, 0xE2, 0xE4, 0xE6, 0xE8, 0xEA, 0xEC, 0xEE, 0xF0, 0xF2, 0xF4, 0xF6, 0xF8, 0xFA, 0xFC, 0xFE, 0x19, 0x1B, 0x1D, 0x1F, 0x11, 0x13, 0x15, 0x17, 0x09, 0x0B, 0x0D, 0x0F, 0x01, 0x03, 0x05, 0x07, 0x39, 0x3B, 0x3D, 0x3F, 0x31, 0x33, 0x35, 0x37, 0x29, 0x2B, 0x2D, 0x2F, 0x21, 0x23, 0x25, 0x27, 0x59, 0x5B, 0x5D, 0x5F, 0x51, 0x53, 0x55, 0x57, 0x49, 0x4B, 0x4D, 0x4F, 0x41, 0x43, 0x45, 0x47, 0x79, 0x7B, 0x7D, 0x7F, 0x71, 0x73, 0x75, 0x77, 0x69, 0x6B, 0x6D, 0x6F, 0x61, 0x63, 0x65, 0x67, 0x99, 0x9B, 0x9D, 0x9F, 0x91, 0x93, 0x95, 0x97, 0x89, 0x8B, 0x8D, 0x8F, 0x81, 0x83, 0x85, 0x87, 0xB9, 0xBB, 0xBD, 0xBF, 0xB1, 0xB3, 0xB5, 0xB7, 0xA9, 0xAB, 0xAD, 0xAF, 0xA1, 0xA3, 0xA5, 0xA7, 0xD9, 0xDB, 0xDD, 0xDF, 0xD1, 0xD3, 0xD5, 0xD7, 0xC9, 0xCB, 0xCD, 0xCF, 0xC1, 0xC3, 0xC5, 0xC7, 0xF9, 0xFB, 0xFD, 0xFF, 0xF1, 0xF3, 0xF5, 0xF7, 0xE9, 0xEB, 0xED, 0xEF, 0xE1, 0xE3, 0xE5, 0xE7}; const uint8_t TX_WRITE_TIMEOUT_COUNT = 2; // 3 retries before timeout const unsigned long EMS_BUS_TIMEOUT = 15000; // timeout in ms before recognizing the ems bus is offline (15 seconds) const unsigned long EMS_POLL_TIMEOUT = 5000; // timeout in ms before recognizing the ems bus is offline (5 seconds) // init stats and counters and buffers // uses -255 or 255 for values that haven't been set yet (EMS_VALUE_INT_NOTSET and EMS_VALUE_FLOAT_NOTSET) void ems_init() { // overall status EMS_Sys_Status.emsRxPgks = 0; EMS_Sys_Status.emsTxPkgs = 0; EMS_Sys_Status.emxCrcErr = 0; EMS_Sys_Status.emsRxStatus = EMS_RX_STATUS_IDLE; EMS_Sys_Status.emsTxStatus = EMS_TX_STATUS_IDLE; EMS_Sys_Status.emsRefreshed = false; EMS_Sys_Status.emsPollEnabled = false; // start up with Poll disabled EMS_Sys_Status.emsBusConnected = false; EMS_Sys_Status.emsRxTimestamp = 0; EMS_Sys_Status.emsTxCapable = false; EMS_Sys_Status.emsTxDisabled = false; EMS_Sys_Status.emsPollTimestamp = 0; EMS_Sys_Status.txRetryCount = 0; // thermostat EMS_Thermostat.setpoint_roomTemp = EMS_VALUE_FLOAT_NOTSET; EMS_Thermostat.curr_roomTemp = EMS_VALUE_FLOAT_NOTSET; EMS_Thermostat.hour = 0; EMS_Thermostat.minute = 0; EMS_Thermostat.second = 0; EMS_Thermostat.day = 0; EMS_Thermostat.month = 0; EMS_Thermostat.year = 0; EMS_Thermostat.mode = 255; // dummy value EMS_Thermostat.day_mode = 255; // dummy value EMS_Thermostat.type_id = EMS_ID_NONE; EMS_Thermostat.read_supported = false; EMS_Thermostat.write_supported = false; // UBAParameterWW EMS_Boiler.wWActivated = EMS_VALUE_INT_NOTSET; // Warm Water activated EMS_Boiler.wWSelTemp = EMS_VALUE_INT_NOTSET; // Warm Water selected temperature EMS_Boiler.wWCircPump = EMS_VALUE_INT_NOTSET; // Warm Water circulation pump available EMS_Boiler.wWDesiredTemp = EMS_VALUE_INT_NOTSET; // Warm Water desired temperature to prevent infection EMS_Boiler.wWComfort = EMS_VALUE_INT_NOTSET; // UBAMonitorFast EMS_Boiler.selFlowTemp = EMS_VALUE_INT_NOTSET; // Selected flow temperature EMS_Boiler.curFlowTemp = EMS_VALUE_FLOAT_NOTSET; // Current flow temperature EMS_Boiler.retTemp = EMS_VALUE_FLOAT_NOTSET; // Return temperature EMS_Boiler.burnGas = EMS_VALUE_INT_NOTSET; // Gas on/off EMS_Boiler.fanWork = EMS_VALUE_INT_NOTSET; // Fan on/off EMS_Boiler.ignWork = EMS_VALUE_INT_NOTSET; // Ignition on/off EMS_Boiler.heatPmp = EMS_VALUE_INT_NOTSET; // Boiler pump on/off EMS_Boiler.wWHeat = EMS_VALUE_INT_NOTSET; // 3-way valve on WW EMS_Boiler.wWCirc = EMS_VALUE_INT_NOTSET; // Circulation on/off EMS_Boiler.selBurnPow = EMS_VALUE_INT_NOTSET; // Burner max power EMS_Boiler.curBurnPow = EMS_VALUE_INT_NOTSET; // Burner current power EMS_Boiler.flameCurr = EMS_VALUE_FLOAT_NOTSET; // Flame current in micro amps EMS_Boiler.sysPress = EMS_VALUE_FLOAT_NOTSET; // System pressure strlcpy(EMS_Boiler.serviceCodeChar, "??", sizeof(EMS_Boiler.serviceCodeChar)); EMS_Boiler.serviceCode = EMS_VALUE_SHORT_NOTSET; // UBAMonitorSlow EMS_Boiler.extTemp = EMS_VALUE_FLOAT_NOTSET; // Outside temperature EMS_Boiler.boilTemp = EMS_VALUE_FLOAT_NOTSET; // Boiler temperature EMS_Boiler.pumpMod = EMS_VALUE_INT_NOTSET; // Pump modulation EMS_Boiler.burnStarts = EMS_VALUE_LONG_NOTSET; // # burner restarts EMS_Boiler.burnWorkMin = EMS_VALUE_LONG_NOTSET; // Total burner operating time EMS_Boiler.heatWorkMin = EMS_VALUE_LONG_NOTSET; // Total heat operating time // UBAMonitorWWMessage EMS_Boiler.wWCurTmp = EMS_VALUE_FLOAT_NOTSET; // Warm Water current temperature: EMS_Boiler.wWStarts = EMS_VALUE_LONG_NOTSET; // Warm Water # starts EMS_Boiler.wWWorkM = EMS_VALUE_LONG_NOTSET; // Warm Water # minutes EMS_Boiler.wWOneTime = EMS_VALUE_INT_NOTSET; // Warm Water one time function on/off EMS_Boiler.wWCurFlow = EMS_VALUE_INT_NOTSET; // UBATotalUptimeMessage EMS_Boiler.UBAuptime = EMS_VALUE_LONG_NOTSET; // Total UBA working hours // UBAParametersMessage EMS_Boiler.heating_temp = EMS_VALUE_INT_NOTSET; // Heating temperature setting on the boiler EMS_Boiler.pump_mod_max = EMS_VALUE_INT_NOTSET; // Boiler circuit pump modulation max. power EMS_Boiler.pump_mod_min = EMS_VALUE_INT_NOTSET; // Boiler circuit pump modulation min. power // Other EMS devices values EMS_Other.SM10collectorTemp = EMS_VALUE_FLOAT_NOTSET; // collector temp from SM10 EMS_Other.SM10bottomTemp = EMS_VALUE_FLOAT_NOTSET; // bottom temp from SM10 EMS_Other.SM10pumpModulation = EMS_VALUE_INT_NOTSET; // modulation solar pump SM10 // calculated values EMS_Boiler.tapwaterActive = EMS_VALUE_INT_NOTSET; // Hot tap water is on/off EMS_Boiler.heatingActive = EMS_VALUE_INT_NOTSET; // Central heating is on/off // set boiler type EMS_Boiler.product_id = 0; strlcpy(EMS_Boiler.version, "?", sizeof(EMS_Boiler.version)); // set thermostat model EMS_Thermostat.model_id = EMS_MODEL_NONE; EMS_Thermostat.product_id = 0; strlcpy(EMS_Thermostat.version, "?", sizeof(EMS_Thermostat.version)); // set other types EMS_Other.SM10 = false; // default logging is none ems_setLogging(EMS_SYS_LOGGING_DEFAULT); } // Getters and Setters for parameters void ems_setPoll(bool b) { EMS_Sys_Status.emsPollEnabled = b; myDebug("EMS Bus Poll is set to %s", EMS_Sys_Status.emsPollEnabled ? "enabled" : "disabled"); } bool ems_getPoll() { return EMS_Sys_Status.emsPollEnabled; } bool ems_getEmsRefreshed() { return EMS_Sys_Status.emsRefreshed; } void ems_setEmsRefreshed(bool b) { EMS_Sys_Status.emsRefreshed = b; } bool ems_getBoilerEnabled() { return (EMS_Boiler.type_id != EMS_ID_NONE); } bool ems_getThermostatEnabled() { return (EMS_Thermostat.type_id != EMS_ID_NONE); } uint8_t ems_getThermostatModel() { return (EMS_Thermostat.model_id); } void ems_setTxDisabled(bool b) { EMS_Sys_Status.emsTxDisabled = b; } bool ems_getTxCapable() { if ((millis() - EMS_Sys_Status.emsPollTimestamp) > EMS_POLL_TIMEOUT) { EMS_Sys_Status.emsTxCapable = false; } return EMS_Sys_Status.emsTxCapable; } bool ems_getBusConnected() { if ((millis() - EMS_Sys_Status.emsRxTimestamp) > EMS_BUS_TIMEOUT) { EMS_Sys_Status.emsBusConnected = false; } return EMS_Sys_Status.emsBusConnected; } _EMS_SYS_LOGGING ems_getLogging() { return EMS_Sys_Status.emsLogging; } void ems_setLogging(_EMS_SYS_LOGGING loglevel) { if (loglevel <= EMS_SYS_LOGGING_VERBOSE) { EMS_Sys_Status.emsLogging = loglevel; if (loglevel == EMS_SYS_LOGGING_NONE) { myDebug("System Logging set to None"); } else if (loglevel == EMS_SYS_LOGGING_BASIC) { myDebug("System Logging set to Basic"); } else if (loglevel == EMS_SYS_LOGGING_VERBOSE) { myDebug("System Logging set to Verbose"); } else if (loglevel == EMS_SYS_LOGGING_THERMOSTAT) { myDebug("System Logging set to Thermostat only"); } else if (loglevel == EMS_SYS_LOGGING_RAW) { myDebug("System Logging set to Raw mode"); } } } /** * Calculate CRC checksum using lookup table for speed * len is length of data in bytes (including the CRC byte at end) * So its the complete telegram with the header */ uint8_t _crcCalculator(uint8_t * data, uint8_t len) { uint8_t crc = 0; // read data and stop before the CRC for (uint8_t i = 0; i < len - 1; i++) { crc = ems_crc_table[crc]; crc ^= data[i]; } return crc; } /** * function to turn a telegram int (2 bytes) to a float. The source is *10 * negative values are stored as 1-compliment (https://medium.com/@LeeJulija/how-integers-are-stored-in-memory-using-twos-complement-5ba04d61a56c) */ float _toFloat(uint8_t i, uint8_t * data) { // if the MSB is set, it's a negative number or an error if ((data[i] & 0x80) == 0x80) { // check if its an invalid number // 0x8000 is used when sensor is missing if ((data[i] >= 0x80) && (data[i + 1] == 0)) { return (float)EMS_VALUE_FLOAT_NOTSET; // return -1 to indicate that is unknown } // its definitely a negative number // assume its 1-compliment, otherwise we need add 1 to the total for 2-compliment int16_t x = (data[i] << 8) + data[i + 1]; return ((float)(x)) / 10; } else { // ...a positive number return ((float)(((data[i] << 8) + data[i + 1]))) / 10; } } // function to turn a telegram long (3 bytes) to a long int uint32_t _toLong(uint8_t i, uint8_t * data) { return (((data[i]) << 16) + ((data[i + 1]) << 8) + (data[i + 2])); } /** * Find the pointer to the EMS_Types array for a given type ID */ int _ems_findType(uint8_t type) { uint8_t i = 0; bool typeFound = false; // scan through known ID types while (i < _EMS_Types_max) { if (EMS_Types[i].type == type) { typeFound = true; // we have a match break; } i++; } return (typeFound ? i : -1); } // like itoa but for hex, and quick char * _hextoa(uint8_t value, char * buffer) { char * p = buffer; byte nib1 = (value >> 4) & 0x0F; byte nib2 = (value >> 0) & 0x0F; *p++ = nib1 < 0xA ? '0' + nib1 : 'A' + nib1 - 0xA; *p++ = nib2 < 0xA ? '0' + nib2 : 'A' + nib2 - 0xA; *p = '\0'; // null terminate just in case return buffer; } // for decimals 0 to 99, printed as a string char * _smallitoa(uint8_t value, char * buffer) { buffer[0] = ((value / 10) == 0) ? '0' : (value / 10) + '0'; buffer[1] = (value % 10) + '0'; buffer[2] = '\0'; return buffer; } /* for decimals 0 to 999, printed as a string * From @nomis */ char * _smallitoa3(uint16_t value, char * buffer) { buffer[0] = ((value / 100) == 0) ? '0' : (value / 100) + '0'; buffer[1] = (((value % 100) / 10) == 0) ? '0' : ((value % 100) / 10) + '0'; buffer[2] = (value % 10) + '0'; buffer[3] = '\0'; return buffer; } /** * debug print a telegram to telnet/serial including the CRC * len is length in bytes including the CRC */ void _debugPrintTelegram(const char * prefix, _EMS_RxTelegram * EMS_RxTelegram, const char * color) { if (EMS_Sys_Status.emsLogging <= EMS_SYS_LOGGING_BASIC) return; char output_str[200] = {0}; char buffer[16] = {0}; uint8_t len = EMS_RxTelegram->length; uint8_t * data = EMS_RxTelegram->telegram; strlcpy(output_str, "(", sizeof(output_str)); strlcat(output_str, COLOR_CYAN, sizeof(output_str)); strlcat(output_str, _smallitoa((uint8_t)((EMS_RxTelegram->timestamp / 3600000) % 24), buffer), sizeof(output_str)); strlcat(output_str, ":", sizeof(output_str)); strlcat(output_str, _smallitoa((uint8_t)((EMS_RxTelegram->timestamp / 60000) % 60), buffer), sizeof(output_str)); strlcat(output_str, ":", sizeof(output_str)); strlcat(output_str, _smallitoa((uint8_t)((EMS_RxTelegram->timestamp / 1000) % 60), buffer), sizeof(output_str)); strlcat(output_str, ".", sizeof(output_str)); strlcat(output_str, _smallitoa3(EMS_RxTelegram->timestamp % 1000, buffer), sizeof(output_str)); strlcat(output_str, COLOR_RESET, sizeof(output_str)); strlcat(output_str, ") ", sizeof(output_str)); strlcat(output_str, color, sizeof(output_str)); strlcat(output_str, prefix, sizeof(output_str)); strlcat(output_str, " telegram: ", sizeof(output_str)); for (int i = 0; i < len - 1; i++) { strlcat(output_str, _hextoa(data[i], buffer), sizeof(output_str)); strlcat(output_str, " ", sizeof(output_str)); // add space } strlcat(output_str, "(CRC=", sizeof(output_str)); strlcat(output_str, _hextoa(data[len - 1], buffer), sizeof(output_str)); strlcat(output_str, ")", sizeof(output_str)); // print number of data bytes only if its a valid telegram if (len > 5) { strlcat(output_str, ", #data=", sizeof(output_str)); strlcat(output_str, itoa(len - 5, buffer, 10), sizeof(output_str)); } strlcat(output_str, COLOR_RESET, sizeof(output_str)); myDebug(output_str); } /** * send the contents of the Tx buffer to the UART * we take telegram from the queue and send it, but don't remove it until later when its confirmed successful */ void _ems_sendTelegram() { // check if we have something in the queue to send if (EMS_TxQueue.isEmpty()) { return; } // get the first in the queue, which is at the head // we don't remove from the queue yet _EMS_TxTelegram EMS_TxTelegram = EMS_TxQueue.first(); // if there is no destination, also delete it from the queue if (EMS_TxTelegram.dest == EMS_ID_NONE) { EMS_TxQueue.shift(); // remove from queue return; } // if we're in raw mode just fire and forget if (EMS_TxTelegram.action == EMS_TX_TELEGRAM_RAW) { EMS_TxTelegram.data[EMS_TxTelegram.length - 1] = _crcCalculator(EMS_TxTelegram.data, EMS_TxTelegram.length); // add the CRC _EMS_RxTelegram EMS_RxTelegram; EMS_RxTelegram.length = EMS_TxTelegram.length; EMS_RxTelegram.telegram = EMS_TxTelegram.data; EMS_RxTelegram.timestamp = millis(); // now _debugPrintTelegram("Sending raw", &EMS_RxTelegram, COLOR_CYAN); // always show emsuart_tx_buffer(EMS_TxTelegram.data, EMS_TxTelegram.length); // send the telegram to the UART Tx EMS_TxQueue.shift(); // remove from queue return; } // create header EMS_TxTelegram.data[0] = EMS_ID_ME; // src // dest if (EMS_TxTelegram.action == EMS_TX_TELEGRAM_WRITE) { EMS_TxTelegram.data[1] = EMS_TxTelegram.dest; } else { // for a READ or VALIDATE EMS_TxTelegram.data[1] = EMS_TxTelegram.dest | 0x80; // read has 8th bit set } EMS_TxTelegram.data[2] = EMS_TxTelegram.type; // type EMS_TxTelegram.data[3] = EMS_TxTelegram.offset; // offset // see if it has data, add the single data value byte // otherwise leave it alone and assume the data has been pre-populated if (EMS_TxTelegram.length == EMS_MIN_TELEGRAM_LENGTH) { // for reading this is #bytes we want to read (the size) // for writing its the value we want to write EMS_TxTelegram.data[4] = EMS_TxTelegram.dataValue; } // finally calculate CRC and add it to the end uint8_t crc = _crcCalculator(EMS_TxTelegram.data, EMS_TxTelegram.length); EMS_TxTelegram.data[EMS_TxTelegram.length - 1] = crc; // print debug info if (EMS_Sys_Status.emsLogging == EMS_SYS_LOGGING_VERBOSE) { char s[64] = {0}; if (EMS_TxTelegram.action == EMS_TX_TELEGRAM_WRITE) { snprintf(s, sizeof(s), "Sending write of type 0x%02X to 0x%02X:", EMS_TxTelegram.type, EMS_TxTelegram.dest & 0x7F); } else if (EMS_TxTelegram.action == EMS_TX_TELEGRAM_READ) { snprintf(s, sizeof(s), "Sending read of type 0x%02X to 0x%02X:", EMS_TxTelegram.type, EMS_TxTelegram.dest & 0x7F); } else if (EMS_TxTelegram.action == EMS_TX_TELEGRAM_VALIDATE) { snprintf(s, sizeof(s), "Sending validate of type 0x%02X to 0x%02X:", EMS_TxTelegram.type, EMS_TxTelegram.dest & 0x7F); } _EMS_RxTelegram EMS_RxTelegram; EMS_RxTelegram.length = EMS_TxTelegram.length; EMS_RxTelegram.telegram = EMS_TxTelegram.data; EMS_RxTelegram.timestamp = millis(); // now _debugPrintTelegram(s, &EMS_RxTelegram, COLOR_CYAN); } // send the telegram to the UART Tx emsuart_tx_buffer(EMS_TxTelegram.data, EMS_TxTelegram.length); EMS_Sys_Status.emsTxStatus = EMS_TX_STATUS_WAIT; } /** * Takes the last write command and turns into a validate request * placing it on the queue */ void _createValidate() { if (EMS_TxQueue.isEmpty()) { return; } // release the Tx lock EMS_Sys_Status.emsTxStatus = EMS_TX_STATUS_IDLE; // get the first in the queue, which is at the head _EMS_TxTelegram EMS_TxTelegram = EMS_TxQueue.first(); // safety check: only do a validate after a write and when we have a type to validate if ((EMS_TxTelegram.action != EMS_TX_TELEGRAM_WRITE) || (EMS_TxTelegram.type_validate == EMS_ID_NONE)) { EMS_TxQueue.shift(); // remove from queue return; } // create a new Telegram copying from the last write _EMS_TxTelegram new_EMS_TxTelegram; new_EMS_TxTelegram.action = EMS_TX_TELEGRAM_VALIDATE; // copy old Write record new_EMS_TxTelegram.type_validate = EMS_TxTelegram.type_validate; new_EMS_TxTelegram.dest = EMS_TxTelegram.dest; new_EMS_TxTelegram.type = EMS_TxTelegram.type; new_EMS_TxTelegram.comparisonValue = EMS_TxTelegram.comparisonValue; new_EMS_TxTelegram.comparisonPostRead = EMS_TxTelegram.comparisonPostRead; new_EMS_TxTelegram.comparisonOffset = EMS_TxTelegram.comparisonOffset; // this is what is different new_EMS_TxTelegram.offset = EMS_TxTelegram.comparisonOffset; // location of byte to fetch new_EMS_TxTelegram.dataValue = 1; // fetch single byte new_EMS_TxTelegram.length = EMS_MIN_TELEGRAM_LENGTH; // is always 6 bytes long (including CRC at end) // remove old telegram from queue and add this new read one EMS_TxQueue.shift(); // remove from queue EMS_TxQueue.unshift(new_EMS_TxTelegram); // add back to queue making it first to be picked up next (FIFO) } /** * the main logic that parses the telegram message, triggered by an interrupt in emsuart.cpp * length is only data bytes, excluding the BRK * Read commands are asynchronous as they're handled by the interrupt * When we receive a Poll Request we need to send any Tx packages quickly within a 200ms window */ void ems_parseTelegram(uint8_t * telegram, uint8_t length) { // check if we just received a single byte // it could well be a Poll request from the boiler for us, which will have a value of 0x8B (0x0B | 0x80) // or either a return code like 0x01 or 0x04 from the last Write command // create the Rx package static _EMS_RxTelegram EMS_RxTelegram; EMS_RxTelegram.length = length; EMS_RxTelegram.telegram = telegram; EMS_RxTelegram.timestamp = millis(); if (length == 1) { uint8_t value = telegram[0]; // 1st byte of data package // check first for a Poll for us if (value == (EMS_ID_ME | 0x80)) { EMS_Sys_Status.emsPollTimestamp = EMS_RxTelegram.timestamp; // store when we received a last poll EMS_Sys_Status.emsTxCapable = true; // do we have something to send thats waiting in the Tx queue? // if so send it if the Queue is not in a wait state if ((!EMS_TxQueue.isEmpty()) && (EMS_Sys_Status.emsTxStatus == EMS_TX_STATUS_IDLE)) { _ems_sendTelegram(); // perform the read/write command immediately } else { // nothing to send so just send a poll acknowledgement back if (EMS_Sys_Status.emsPollEnabled) { emsaurt_tx_poll(); } } } else if (EMS_Sys_Status.emsTxStatus == EMS_TX_STATUS_WAIT) { // this may be a single byte 01 (success) or 04 (error) from a recent write command? if (value == EMS_TX_SUCCESS) { EMS_Sys_Status.emsTxPkgs++; // got a success 01. Send a validate to check the value of the last write emsaurt_tx_poll(); // send a poll to free the EMS bus _createValidate(); // create a validate Tx request (if needed) } else if (value == EMS_TX_ERROR) { // last write failed (04), delete it from queue and dont bother to retry if (EMS_Sys_Status.emsLogging == EMS_SYS_LOGGING_VERBOSE) { myDebug("** Write command failed from host"); } emsaurt_tx_poll(); // send a poll to free the EMS bus _removeTxQueue(); // remove from queue } } return; // all done here } // ignore anything that doesn't resemble a proper telegram package // minimal is 5 bytes, excluding CRC at the end if (length <= 4) { //_debugPrintTelegram("Noisy data:", &EMS_RxTelegram COLOR_RED); return; } // Assume at this point we have something that vaguely resembles a telegram in the format [src] [dest] [type] [offset] [data] [crc] // validate the CRC, if its bad ignore it uint8_t crc = _crcCalculator(telegram, length); if (telegram[length - 1] != crc) { EMS_Sys_Status.emxCrcErr++; if (EMS_Sys_Status.emsLogging == EMS_SYS_LOGGING_VERBOSE) { _debugPrintTelegram("Corrupt telegram:", &EMS_RxTelegram, COLOR_RED); } return; } // if we are in raw logging mode then just print out the telegram as it is // but still continue to process it if (EMS_Sys_Status.emsLogging == EMS_SYS_LOGGING_RAW) { char raw[300] = {0}; char buffer[16] = {0}; for (int i = 0; i < length; i++) { strlcat(raw, _hextoa(telegram[i], buffer), sizeof(raw)); strlcat(raw, " ", sizeof(raw)); // add space } myDebug(raw); } // here we know its a valid incoming telegram of at least 6 bytes // we use this to see if we always have a connection to the boiler, in case of drop outs EMS_Sys_Status.emsRxTimestamp = EMS_RxTelegram.timestamp; // timestamp of last read EMS_Sys_Status.emsBusConnected = true; // now lets process it and see what to do next _processType(&EMS_RxTelegram); } /** * print detailed telegram * and then call its callback if there is one defined */ void _ems_processTelegram(_EMS_RxTelegram * EMS_RxTelegram) { // header uint8_t * telegram = EMS_RxTelegram->telegram; uint8_t src = telegram[0] & 0x7F; uint8_t dest = telegram[1] & 0x7F; // remove 8th bit to handle both reads and writes uint8_t type = telegram[2]; uint8_t offset = telegram[3]; uint8_t * data = telegram + 4; // data block starts at position 5 // print detailed telegram data if (EMS_Sys_Status.emsLogging >= EMS_SYS_LOGGING_THERMOSTAT) { char output_str[200] = {0}; char buffer[16] = {0}; char color_s[20] = {0}; // source if (src == EMS_Boiler.type_id) { strlcpy(output_str, "Boiler", sizeof(output_str)); } else if (src == EMS_Thermostat.type_id) { strlcpy(output_str, "Thermostat", sizeof(output_str)); } else if (src == EMS_ID_SM10) { strlcpy(output_str, "SM10", sizeof(output_str)); } else { strlcpy(output_str, "0x", sizeof(output_str)); strlcat(output_str, _hextoa(src, buffer), sizeof(output_str)); } strlcat(output_str, " -> ", sizeof(output_str)); // destination if (dest == EMS_ID_ME) { strlcat(output_str, "me", sizeof(output_str)); strlcpy(color_s, COLOR_YELLOW, sizeof(color_s)); } else if (dest == EMS_ID_NONE) { strlcat(output_str, "all", sizeof(output_str)); strlcpy(color_s, COLOR_GREEN, sizeof(color_s)); } else if (dest == EMS_Boiler.type_id) { strlcat(output_str, "Boiler", sizeof(output_str)); strlcpy(color_s, COLOR_MAGENTA, sizeof(color_s)); } else if (dest == EMS_ID_SM10) { strlcat(output_str, "SM10", sizeof(output_str)); strlcpy(color_s, COLOR_MAGENTA, sizeof(color_s)); } else if (dest == EMS_Thermostat.type_id) { strlcat(output_str, "Thermostat", sizeof(output_str)); strlcpy(color_s, COLOR_MAGENTA, sizeof(color_s)); } else { strlcat(output_str, "0x", sizeof(output_str)); strlcat(output_str, _hextoa(dest, buffer), sizeof(output_str)); strlcpy(color_s, COLOR_MAGENTA, sizeof(color_s)); } // type strlcat(output_str, ", type 0x", sizeof(output_str)); strlcat(output_str, _hextoa(type, buffer), sizeof(output_str)); if (EMS_Sys_Status.emsLogging == EMS_SYS_LOGGING_THERMOSTAT) { // only print ones to/from thermostat if logging is set to thermostat only if ((src == EMS_Thermostat.type_id) || (dest == EMS_Thermostat.type_id)) { _debugPrintTelegram(output_str, EMS_RxTelegram, color_s); } } else { // always print _debugPrintTelegram(output_str, EMS_RxTelegram, color_s); } } // see if we recognize the type first by scanning our known EMS types list bool typeFound = false; uint8_t i = 0; while (i < _EMS_Types_max) { if (EMS_Types[i].type == type) { // is it common type for everyone? // is it for us? So the src must match with either the boiler, thermostat or other devices if ((EMS_Types[i].model_id == EMS_MODEL_ALL) || ((src == EMS_Boiler.type_id) || (src == EMS_Thermostat.type_id) || (src == EMS_ID_SM10))) { typeFound = true; break; } } i++; } // if it's a common type (across ems devices) or something specifically for us process it. // dest will be EMS_ID_NONE and offset 0x00 for a broadcast message if (typeFound) { if ((EMS_Types[i].processType_cb) != (void *)NULL) { // print non-verbose message if (EMS_Sys_Status.emsLogging == EMS_SYS_LOGGING_BASIC) { myDebug("<--- %s(0x%02X) received", EMS_Types[i].typeString, type); } // call callback function to process it // as we only handle complete telegrams (not partial) check that the offset is 0 if (offset == 0) { (void)EMS_Types[i].processType_cb(src, data, EMS_RxTelegram->length - 5); } } } } /** * Remove current Tx telegram from queue and release lock on Tx */ void _removeTxQueue() { if (!EMS_TxQueue.isEmpty()) { EMS_TxQueue.shift(); // remove item from top of the queue } EMS_Sys_Status.emsTxStatus = EMS_TX_STATUS_IDLE; } /** * deciphers the telegram packet, which has already been checked for valid CRC and has a complete header (min of 5 bytes) * length is only data bytes, excluding the BRK * We only remove from the Tx queue if the read or write was successful */ void _processType(_EMS_RxTelegram * EMS_RxTelegram) { uint8_t * telegram = EMS_RxTelegram->telegram; // header uint8_t src = telegram[0] & 0x7F; // removing 8th bit as we deal with both reads and writes here // if its an echo of ourselves from the master UBA, ignore if (src == EMS_ID_ME) { // _debugPrintTelegram("echo:", EMS_RxTelegram, COLOR_WHITE); return; } // if its a broadcast and we didn't just send anything, process it and exit if (EMS_Sys_Status.emsTxStatus == EMS_TX_STATUS_IDLE) { _ems_processTelegram(EMS_RxTelegram); return; } // release the lock on the TxQueue EMS_Sys_Status.emsTxStatus = EMS_TX_STATUS_IDLE; // at this point we can assume Txstatus is EMS_TX_STATUS_WAIT so we just sent a read/write/validate // for READ, WRITE or VALIDATE the dest (telegram[1]) is always us, so check for this // and if not we probably didn't get any response so remove the last Tx from the queue and process the telegram anyway if ((telegram[1] & 0x7F) != EMS_ID_ME) { _removeTxQueue(); _ems_processTelegram(EMS_RxTelegram); return; } // first double check we actually have something in the queue if (EMS_TxQueue.isEmpty()) { _ems_processTelegram(EMS_RxTelegram); return; } // get the Tx telegram we just sent _EMS_TxTelegram EMS_TxTelegram = EMS_TxQueue.first(); // check action // if READ, match the current inbound telegram to what we sent // if WRITE, should not happen // if VALIDATE, check the contents if (EMS_TxTelegram.action == EMS_TX_TELEGRAM_READ) { uint8_t type = telegram[2]; if ((src == EMS_TxTelegram.dest) && (type == EMS_TxTelegram.type)) { // all checks out, read was successful, remove tx from queue and continue to process telegram _removeTxQueue(); EMS_Sys_Status.emsRxPgks++; // increment counter // myDebug("** Read from 0x%02X ok", type); ems_setEmsRefreshed(EMS_TxTelegram.forceRefresh); // does mqtt need refreshing? } else { // read not OK, we didn't get back a telegram we expected // leave on queue and try again, but continue to process what we received as it may be important EMS_Sys_Status.txRetryCount++; // if retried too many times, give up and remove it if (EMS_Sys_Status.txRetryCount >= TX_WRITE_TIMEOUT_COUNT) { if (EMS_Sys_Status.emsLogging >= EMS_SYS_LOGGING_BASIC) { myDebug("Read failed. Giving up, removing from queue"); } _removeTxQueue(); } else { if (EMS_Sys_Status.emsLogging >= EMS_SYS_LOGGING_BASIC) { myDebug("...Retrying read. Attempt %d/%d...", EMS_Sys_Status.txRetryCount, TX_WRITE_TIMEOUT_COUNT); } } } _ems_processTelegram(EMS_RxTelegram); // process it always } if (EMS_TxTelegram.action == EMS_TX_TELEGRAM_WRITE) { // should not get here, since this is handled earlier receiving a 01 or 04 myDebug("** Error ! Write - should not be here"); } if (EMS_TxTelegram.action == EMS_TX_TELEGRAM_VALIDATE) { // this is a read telegram which we use to validate the last write uint8_t * data = telegram + 4; // data block starts at position 5 uint8_t dataReceived = data[0]; // only a single byte is returned after a read if (EMS_TxTelegram.comparisonValue == dataReceived) { // validate was successful, the write changed the value _removeTxQueue(); // now we can remove the Tx validate command the queue if (EMS_Sys_Status.emsLogging >= EMS_SYS_LOGGING_BASIC) { myDebug("Write to 0x%02X was successful", EMS_TxTelegram.dest); } // follow up with the post read command ems_doReadCommand(EMS_TxTelegram.comparisonPostRead, EMS_TxTelegram.dest, true); } else { // write failed if (EMS_Sys_Status.emsLogging >= EMS_SYS_LOGGING_BASIC) { myDebug("Last write failed. Compared set value 0x%02X with received value 0x%02X", EMS_TxTelegram.comparisonValue, dataReceived); } if (++EMS_Sys_Status.txRetryCount > TX_WRITE_TIMEOUT_COUNT) { if (EMS_Sys_Status.emsLogging >= EMS_SYS_LOGGING_BASIC) { myDebug("Write failed. Giving up, removing from queue"); } _removeTxQueue(); } else { // retry, turn the validate back into a write and try again if (EMS_Sys_Status.emsLogging >= EMS_SYS_LOGGING_BASIC) { myDebug("...Retrying write. Attempt %d/%d...", EMS_Sys_Status.txRetryCount, TX_WRITE_TIMEOUT_COUNT); } EMS_TxTelegram.action = EMS_TX_TELEGRAM_WRITE; EMS_TxTelegram.dataValue = EMS_TxTelegram.comparisonValue; // restore old value EMS_TxTelegram.offset = EMS_TxTelegram.comparisonOffset; // restore old value EMS_TxQueue.shift(); // remove validate from queue EMS_TxQueue.unshift(EMS_TxTelegram); // add back to queue making it next in line } } } emsaurt_tx_poll(); // send Acknowledgement back to free the EMS bus since we have the telegram } /** * Check if hot tap water or heating is active * using a quick hack for checking the heating. Selected Flow Temp >= 70 */ void _checkActive() { // hot tap water, using flow to check instead of the burner power if (EMS_Boiler.wWCurFlow != EMS_VALUE_INT_NOTSET && EMS_Boiler.burnGas != EMS_VALUE_INT_NOTSET) { EMS_Boiler.tapwaterActive = ((EMS_Boiler.wWCurFlow != 0) && (EMS_Boiler.burnGas == EMS_VALUE_INT_ON)); } // heating if (EMS_Boiler.selFlowTemp != EMS_VALUE_INT_NOTSET && EMS_Boiler.burnGas != EMS_VALUE_INT_NOTSET) { EMS_Boiler.heatingActive = ((EMS_Boiler.selFlowTemp >= EMS_BOILER_SELFLOWTEMP_HEATING) && (EMS_Boiler.burnGas == EMS_VALUE_INT_ON)); } } /** * UBAParameterWW - type 0x33 - warm water parameters * received only after requested (not broadcasted) */ void _process_UBAParameterWW(uint8_t src, uint8_t * data, uint8_t length) { EMS_Boiler.wWActivated = (data[1] == 0xFF); // 0xFF means on EMS_Boiler.wWSelTemp = data[2]; EMS_Boiler.wWCircPump = (data[6] == 0xFF); // 0xFF means on EMS_Boiler.wWDesiredTemp = data[8]; EMS_Boiler.wWComfort = data[EMS_OFFSET_UBAParameterWW_wwComfort]; EMS_Sys_Status.emsRefreshed = true; // when we receieve this, lets force an MQTT publish } /** * UBATotalUptimeMessage - type 0x14 - total uptime * received only after requested (not broadcasted) */ void _process_UBATotalUptimeMessage(uint8_t src, uint8_t * data, uint8_t length) { EMS_Boiler.UBAuptime = _toLong(0, data); EMS_Sys_Status.emsRefreshed = true; // when we receieve this, lets force an MQTT publish } /* * UBAParametersMessage - type 0x16 */ void _process_UBAParametersMessage(uint8_t src, uint8_t * data, uint8_t length) { EMS_Boiler.heating_temp = data[1]; EMS_Boiler.pump_mod_max = data[9]; EMS_Boiler.pump_mod_min = data[10]; } /** * UBAMonitorWWMessage - type 0x34 - warm water monitor. 19 bytes long * received every 10 seconds */ void _process_UBAMonitorWWMessage(uint8_t src, uint8_t * data, uint8_t length) { EMS_Boiler.wWCurTmp = _toFloat(1, data); EMS_Boiler.wWStarts = _toLong(13, data); EMS_Boiler.wWWorkM = _toLong(10, data); EMS_Boiler.wWOneTime = bitRead(data[5], 1); EMS_Boiler.wWCurFlow = data[9]; } /** * UBAMonitorFast - type 0x18 - central heating monitor part 1 (25 bytes long) * received every 10 seconds */ void _process_UBAMonitorFast(uint8_t src, uint8_t * data, uint8_t length) { EMS_Boiler.selFlowTemp = data[0]; EMS_Boiler.curFlowTemp = _toFloat(1, data); EMS_Boiler.retTemp = _toFloat(13, data); uint8_t v = data[7]; EMS_Boiler.burnGas = bitRead(v, 0); EMS_Boiler.fanWork = bitRead(v, 2); EMS_Boiler.ignWork = bitRead(v, 3); EMS_Boiler.heatPmp = bitRead(v, 5); EMS_Boiler.wWHeat = bitRead(v, 6); EMS_Boiler.wWCirc = bitRead(v, 7); EMS_Boiler.curBurnPow = data[4]; EMS_Boiler.selBurnPow = data[3]; // burn power max setting EMS_Boiler.flameCurr = _toFloat(15, data); // read the service code / installation status as appears on the display EMS_Boiler.serviceCodeChar[0] = char(data[18]); // ascii character 1 EMS_Boiler.serviceCodeChar[1] = char(data[19]); // ascii character 2 EMS_Boiler.serviceCodeChar[2] = '\0'; // null terminate string // read error code EMS_Boiler.serviceCode = (data[20] << 8) + data[21]; if (data[17] == 0xFF) { // missing value for system pressure EMS_Boiler.sysPress = 0; } else { EMS_Boiler.sysPress = (((float)data[17]) / (float)10); } // at this point do a quick check to see if the hot water or heating is active _checkActive(); } /** * UBAMonitorSlow - type 0x19 - central heating monitor part 2 (27 bytes long) * received every 60 seconds */ void _process_UBAMonitorSlow(uint8_t src, uint8_t * data, uint8_t length) { EMS_Boiler.extTemp = _toFloat(0, data); // 0x8000 if not available EMS_Boiler.boilTemp = _toFloat(2, data); // 0x8000 if not available EMS_Boiler.pumpMod = data[9]; EMS_Boiler.burnStarts = _toLong(10, data); EMS_Boiler.burnWorkMin = _toLong(13, data); EMS_Boiler.heatWorkMin = _toLong(19, data); } /** * type 0xB1 - data from the RC10 thermostat (0x17) * For reading the temp values only * received every 60 seconds */ void _process_RC10StatusMessage(uint8_t src, uint8_t * data, uint8_t length) { EMS_Thermostat.setpoint_roomTemp = ((float)data[EMS_TYPE_RC10StatusMessage_setpoint]) / (float)2; EMS_Thermostat.curr_roomTemp = ((float)data[EMS_TYPE_RC10StatusMessage_curr]) / (float)10; EMS_Sys_Status.emsRefreshed = true; // triggers a send the values back via MQTT } /** * type 0x91 - data from the RC20 thermostat (0x17) - 15 bytes long * For reading the temp values only * received every 60 seconds */ void _process_RC20StatusMessage(uint8_t src, uint8_t * data, uint8_t length) { EMS_Thermostat.setpoint_roomTemp = ((float)data[EMS_TYPE_RC20StatusMessage_setpoint]) / (float)2; EMS_Thermostat.curr_roomTemp = _toFloat(EMS_TYPE_RC20StatusMessage_curr, data); EMS_Sys_Status.emsRefreshed = true; // triggers a send the values back via MQTT } /** * type 0x41 - data from the RC30 thermostat (0x10) - 14 bytes long * For reading the temp values only * received every 60 seconds */ void _process_RC30StatusMessage(uint8_t src, uint8_t * data, uint8_t length) { EMS_Thermostat.setpoint_roomTemp = ((float)data[EMS_TYPE_RC30StatusMessage_setpoint]) / (float)2; EMS_Thermostat.curr_roomTemp = _toFloat(EMS_TYPE_RC30StatusMessage_curr, data); EMS_Sys_Status.emsRefreshed = true; // triggers a send the values back via MQTT } /** * type 0x3E - data from the RC35 thermostat (0x10) - 16 bytes * For reading the temp values only * received every 60 seconds */ void _process_RC35StatusMessage(uint8_t src, uint8_t * data, uint8_t length) { EMS_Thermostat.setpoint_roomTemp = ((float)data[EMS_TYPE_RC35StatusMessage_setpoint]) / (float)2; // check if temp sensor is unavailable if ((data[0] == 0x7D) && (data[1] = 0x00)) { EMS_Thermostat.curr_roomTemp = EMS_VALUE_FLOAT_NOTSET; } else { EMS_Thermostat.curr_roomTemp = _toFloat(EMS_TYPE_RC35StatusMessage_curr, data); } EMS_Thermostat.day_mode = bitRead(data[EMS_OFFSET_RC35Get_mode_day], 1); //get day mode flag EMS_Sys_Status.emsRefreshed = true; // triggers a send the values back via MQTT } /** * type 0x0A - data from the Nefit Easy/TC100 thermostat (0x18) - 31 bytes long * The Easy has a digital precision of its floats to 2 decimal places, so values is divided by 100 */ void _process_EasyStatusMessage(uint8_t src, uint8_t * data, uint8_t length) { EMS_Thermostat.curr_roomTemp = ((float)(((data[EMS_TYPE_EasyStatusMessage_curr] << 8) + data[9]))) / 100; EMS_Thermostat.setpoint_roomTemp = ((float)(((data[EMS_TYPE_EasyStatusMessage_setpoint] << 8) + data[11]))) / 100; EMS_Sys_Status.emsRefreshed = true; // triggers a send the values back via MQTT } /** * type 0xB0 - for reading the mode from the RC10 thermostat (0x17) * received only after requested */ void _process_RC10Set(uint8_t src, uint8_t * data, uint8_t length) { // mode not implemented yet } /** * type 0xA8 - for reading the mode from the RC20 thermostat (0x17) * received only after requested */ void _process_RC20Set(uint8_t src, uint8_t * data, uint8_t length) { EMS_Thermostat.mode = data[EMS_OFFSET_RC20Set_mode]; } /** * type 0xA7 - for reading the mode from the RC30 thermostat (0x10) * received only after requested */ void _process_RC30Set(uint8_t src, uint8_t * data, uint8_t length) { EMS_Thermostat.mode = data[EMS_OFFSET_RC30Set_mode]; } /** * type 0x3D - for reading the mode from the RC35 thermostat (0x10) * Working Mode Heating Circuit 1 (HC1) * received only after requested */ void _process_RC35Set(uint8_t src, uint8_t * data, uint8_t length) { EMS_Thermostat.mode = data[EMS_OFFSET_RC35Set_mode]; } /** * type 0xA3 - for external temp settings from the the RC* thermostats */ void _process_RCOutdoorTempMessage(uint8_t src, uint8_t * data, uint8_t length) { // add support here if you're reading external sensors } /** * type 0x02 - get the firmware version and type of an EMS device * look up known devices via the product id and setup if not already set */ void _process_Version(uint8_t src, uint8_t * data, uint8_t length) { // ignore short messages that we can't interpret if (length < 3) { return; } uint8_t product_id = data[0]; char version[10] = {0}; snprintf(version, sizeof(version), "%02d.%02d", data[1], data[2]); // see if its a known boiler int i = 0; bool typeFound = false; while (i < _Boiler_Types_max) { if (Boiler_Types[i].product_id == product_id) { typeFound = true; // we have a matching product id. i is the index. break; } i++; } if (typeFound) { // its a boiler myDebug("Boiler found. Model %s with TypeID 0x%02X, Product ID %d, Version %s", Boiler_Types[i].model_string, Boiler_Types[i].type_id, product_id, version); // if its a boiler set it // it will take the first one found in the list if ((EMS_Boiler.type_id == EMS_ID_NONE) || (EMS_Boiler.type_id == Boiler_Types[i].type_id)) { myDebug("* Setting Boiler type to Model %s, TypeID 0x%02X, Product ID %d, Version %s", Boiler_Types[i].model_string, Boiler_Types[i].type_id, product_id, version); EMS_Boiler.type_id = Boiler_Types[i].type_id; EMS_Boiler.product_id = Boiler_Types[i].product_id; strlcpy(EMS_Boiler.version, version, sizeof(EMS_Boiler.version)); myESP.fs_saveConfig(); // save config to SPIFFS ems_getBoilerValues(); // get Boiler values that we would usually have to wait for } return; } // its not a boiler, maybe its a known thermostat? i = 0; while (i < _Thermostat_Types_max) { if (Thermostat_Types[i].product_id == product_id) { typeFound = true; // we have a matching product id. i is the index. break; } i++; } if (typeFound) { // its a known thermostat if (EMS_Sys_Status.emsLogging >= EMS_SYS_LOGGING_BASIC) { myDebug("Thermostat found. Model %s with TypeID 0x%02X, Product ID %d, Version %s", Thermostat_Types[i].model_string, Thermostat_Types[i].type_id, product_id, version); } // if we don't have a thermostat set, use this one if ((EMS_Thermostat.type_id == EMS_ID_NONE) || (EMS_Thermostat.model_id == EMS_MODEL_NONE) || (EMS_Thermostat.type_id == Thermostat_Types[i].type_id)) { myDebug("* Setting Thermostat type to Model %s, TypeID 0x%02X, Product ID %d, Version %s", Thermostat_Types[i].model_string, Thermostat_Types[i].type_id, product_id, version); EMS_Thermostat.model_id = Thermostat_Types[i].model_id; EMS_Thermostat.type_id = Thermostat_Types[i].type_id; EMS_Thermostat.read_supported = Thermostat_Types[i].read_supported; EMS_Thermostat.write_supported = Thermostat_Types[i].write_supported; EMS_Thermostat.product_id = product_id; strlcpy(EMS_Thermostat.version, version, sizeof(EMS_Thermostat.version)); myESP.fs_saveConfig(); // save config to SPIFFS // get Thermostat values (if supported) ems_getThermostatValues(); } return; } // finally look for the other EMS devices i = 0; while (i < _Other_Types_max) { if (Other_Types[i].product_id == product_id) { typeFound = true; // we have a matching product id. i is the index. break; } i++; } if (typeFound) { myDebug("Device found. Model %s with TypeID 0x%02X, Product ID %d, Version %s", Other_Types[i].model_string, Other_Types[i].type_id, product_id, version); // see if this is a Solar Module SM10 if (Other_Types[i].type_id == EMS_ID_SM10) { EMS_Other.SM10 = true; // we have detected a SM10 myDebug("SM10 Solar Module support enabled."); } // fetch other values ems_getOtherValues(); return; } else { myDebug("Unrecognized device found. TypeID 0x%02X, Product ID %d, Version %s", src, product_id, version); } } /* * SM10Monitor - type 0x97 */ void _process_SM10Monitor(uint8_t src, uint8_t * data, uint8_t length) { EMS_Other.SM10collectorTemp = _toFloat(2, data); // collector temp from SM10 EMS_Other.SM10bottomTemp = _toFloat(5, data); // bottom temp from SM10 EMS_Other.SM10pumpModulation = data[4]; // modulation solar pump } /** * UBASetPoint 0x1A */ void _process_SetPoints(uint8_t src, uint8_t * data, uint8_t length) { /* if (EMS_Sys_Status.emsLogging == EMS_SYS_LOGGING_VERBOSE) { if (length != 0) { uint8_t setpoint = data[0]; uint8_t hk_power = data[1]; uint8_t ww_power = data[2]; myDebug(" SetPoint=%d, hk_power=%d, ww_power=%d", setpoint, hk_power, ww_power); } } */ } /** * process_RCTime - type 0x06 - date and time from a thermostat - 14 bytes long * common for all thermostats */ void _process_RCTime(uint8_t src, uint8_t * data, uint8_t length) { if ((EMS_Thermostat.model_id == EMS_MODEL_EASY) || (EMS_Thermostat.model_id == EMS_MODEL_BOSCHEASY)) { return; // not supported } EMS_Thermostat.hour = data[2]; EMS_Thermostat.minute = data[4]; EMS_Thermostat.second = data[5]; EMS_Thermostat.day = data[3]; EMS_Thermostat.month = data[1]; EMS_Thermostat.year = data[0]; } /* * Figure out the boiler and thermostat types */ void ems_discoverModels() { // boiler ems_doReadCommand(EMS_TYPE_Version, EMS_Boiler.type_id); // get version details of boiler // solar module ems_doReadCommand(EMS_TYPE_Version, EMS_ID_SM10); // check if there is Solar Module available // thermostat // if it hasn't been set, auto discover it if (EMS_Thermostat.type_id == EMS_ID_NONE) { ems_scanDevices(); // auto-discover it } else { // set the model as hardcoded (see my_devices.h) and fetch the version and product id ems_doReadCommand(EMS_TYPE_Version, EMS_Thermostat.type_id); } } /* * Given a thermostat model ID go and fetch its characteristics */ void _ems_setThermostatModel(uint8_t thermostat_modelid) { bool found = false; uint8_t i = 0; const _Thermostat_Type * thermostat_type; while (i < _Thermostat_Types_max) { thermostat_type = &Thermostat_Types[i]; if (thermostat_type->model_id == thermostat_modelid) { found = true; // we have a matching product id break; } i++; } if (!found) { if (EMS_Sys_Status.emsLogging >= EMS_SYS_LOGGING_BASIC) { myDebug("Unknown thermostat model specified. Trying a scan..."); } ems_scanDevices(); // auto-discover it return; } // set the thermostat if (EMS_Sys_Status.emsLogging >= EMS_SYS_LOGGING_BASIC) { myDebug("Setting Thermostat. Model %s with TypeID 0x%02X, Product ID %d", thermostat_type->model_string, thermostat_type->type_id, thermostat_type->product_id); } // set its capabilities EMS_Thermostat.model_id = thermostat_type->model_id; EMS_Thermostat.type_id = thermostat_type->type_id; EMS_Thermostat.read_supported = thermostat_type->read_supported; EMS_Thermostat.write_supported = thermostat_type->write_supported; } /** * Print the Tx queue - for debugging */ void ems_printTxQueue() { _EMS_TxTelegram EMS_TxTelegram; char sType[20] = {0}; if (EMS_TxQueue.size() == 0) { myDebug("Tx queue is empty."); return; } myDebug("Tx queue (%d/%d)", EMS_TxQueue.size(), EMS_TxQueue.capacity); for (byte i = 0; i < EMS_TxQueue.size(); i++) { EMS_TxTelegram = EMS_TxQueue[i]; // retrieves the i-th element from the buffer without removing it // get action if (EMS_TxTelegram.action == EMS_TX_TELEGRAM_WRITE) { strlcpy(sType, "write", sizeof(sType)); } else if (EMS_TxTelegram.action == EMS_TX_TELEGRAM_READ) { strlcpy(sType, "read", sizeof(sType)); } else if (EMS_TxTelegram.action == EMS_TX_TELEGRAM_VALIDATE) { strlcpy(sType, "validate", sizeof(sType)); } else { strlcpy(sType, "?", sizeof(sType)); } char addedTime[15] = {0}; unsigned long upt = EMS_TxTelegram.timestamp; snprintf(addedTime, sizeof(addedTime), "(%02d:%02d:%02d)", (uint8_t)((upt / (1000 * 60 * 60)) % 24), (uint8_t)((upt / (1000 * 60)) % 60), (uint8_t)((upt / 1000) % 60)); myDebug(" [%d] action=%s dest=0x%02x type=0x%02x offset=%d length=%d dataValue=%d " "comparisonValue=%d type_validate=0x%02x comparisonPostRead=0x%02x @ %s", i + 1, sType, EMS_TxTelegram.dest & 0x7F, EMS_TxTelegram.type, EMS_TxTelegram.offset, EMS_TxTelegram.length, EMS_TxTelegram.dataValue, EMS_TxTelegram.comparisonValue, EMS_TxTelegram.type_validate, EMS_TxTelegram.comparisonPostRead, addedTime); } } /** * Generic function to return various settings from the thermostat */ void ems_getThermostatValues() { if (!ems_getThermostatEnabled()) { return; } if (!EMS_Thermostat.read_supported) { myDebug("Read operations not yet supported for this model thermostat"); return; } uint8_t model_id = EMS_Thermostat.model_id; uint8_t type = EMS_Thermostat.type_id; if (model_id == EMS_MODEL_RC20) { ems_doReadCommand(EMS_TYPE_RC20StatusMessage, type); // to get the setpoint temp ems_doReadCommand(EMS_TYPE_RC20Set, type); // to get the mode } else if (model_id == EMS_MODEL_RC30) { ems_doReadCommand(EMS_TYPE_RC30StatusMessage, type); // to get the setpoint temp ems_doReadCommand(EMS_TYPE_RC30Set, type); // to get the mode } else if ((model_id == EMS_MODEL_RC35) || (model_id == EMS_MODEL_ES73)) { ems_doReadCommand(EMS_TYPE_RC35StatusMessage, type); // to get the setpoint temp ems_doReadCommand(EMS_TYPE_RC35Set, type); // to get the mode } else if ((model_id == EMS_MODEL_EASY) || (model_id == EMS_MODEL_BOSCHEASY)) { ems_doReadCommand(EMS_TYPE_EasyStatusMessage, type); } ems_doReadCommand(EMS_TYPE_RCTime, type); // get Thermostat time } /** * Generic function to return various settings from the thermostat */ void ems_getBoilerValues() { ems_doReadCommand(EMS_TYPE_UBAMonitorFast, EMS_Boiler.type_id); // get boiler stats, instead of waiting 10secs for the broadcast ems_doReadCommand(EMS_TYPE_UBAMonitorSlow, EMS_Boiler.type_id); // get more boiler stats, instead of waiting 60secs for the broadcast ems_doReadCommand(EMS_TYPE_UBAParameterWW, EMS_Boiler.type_id); // get Warm Water values ems_doReadCommand(EMS_TYPE_UBAParametersMessage, EMS_Boiler.type_id); // get MC10 boiler values ems_doReadCommand(EMS_TYPE_UBATotalUptimeMessage, EMS_Boiler.type_id); // get uptime from boiler } /* * Get other values from EMS devices */ void ems_getOtherValues() { if (EMS_Other.SM10) { ems_doReadCommand(EMS_TYPE_SM10Monitor, EMS_ID_SM10); // fetch all from SM10Monitor, e.g. 0B B0 97 00 16 } } /** * returns current thermostat type as a string */ char * ems_getThermostatDescription(char * buffer) { uint8_t size = 128; if (!ems_getThermostatEnabled()) { strlcpy(buffer, "", size); } else { // find the boiler details int i = 0; bool found = false; // scan through known ID types while (i < _Thermostat_Types_max) { if (Thermostat_Types[i].product_id == EMS_Thermostat.product_id) { found = true; // we have a match break; } i++; } if (found) { strlcpy(buffer, Thermostat_Types[i].model_string, size); } else { strlcpy(buffer, "Generic Type", size); } char tmp[6] = {0}; strlcat(buffer, " [Type ID: 0x", size); strlcat(buffer, _hextoa(EMS_Thermostat.type_id, tmp), size); strlcat(buffer, "] Product ID:", size); strlcat(buffer, itoa(EMS_Thermostat.product_id, tmp, 10), size); strlcat(buffer, " Version:", size); strlcat(buffer, EMS_Thermostat.version, size); } return buffer; } /** * returns current boiler type as a string */ char * ems_getBoilerDescription(char * buffer) { uint8_t size = 128; if (!ems_getBoilerEnabled()) { strlcpy(buffer, "", size); } else { // find the boiler details int i = 0; bool found = false; // scan through known ID types while (i < _Boiler_Types_max) { if (Boiler_Types[i].product_id == EMS_Boiler.product_id) { found = true; // we have a match break; } i++; } if (found) { strlcpy(buffer, Boiler_Types[i].model_string, size); } else { strlcpy(buffer, "Generic Type", size); } char tmp[6] = {0}; strlcat(buffer, " [Type ID: 0x", size); strlcat(buffer, _hextoa(EMS_Boiler.type_id, tmp), size); strlcat(buffer, "] Product ID:", size); strlcat(buffer, itoa(EMS_Boiler.product_id, tmp, 10), size); strlcat(buffer, " Version:", size); strlcat(buffer, EMS_Boiler.version, size); } return buffer; } /* * Find the versions of our connected devices */ void ems_scanDevices() { myDebug("Started scan of EMS bus for known devices"); std::list Device_Ids; // create a new list // copy over boilers for (_Boiler_Type bt : Boiler_Types) { Device_Ids.push_back(bt.type_id); } // copy over thermostats for (_Thermostat_Type tt : Thermostat_Types) { Device_Ids.push_back(tt.type_id); } // copy over others for (_Other_Type ot : Other_Types) { Device_Ids.push_back(ot.type_id); } // remove duplicates and reserved IDs (like our own device) Device_Ids.sort(); Device_Ids.unique(); Device_Ids.remove(EMS_MODEL_NONE); // send the read command with Version command for (uint8_t type_id : Device_Ids) { ems_doReadCommand(EMS_TYPE_Version, type_id); } } /** * Print out all handled types */ void ems_printAllTypes() { uint8_t i; myDebug("\nThese %d boiler type devices are in the library:", _Boiler_Types_max); for (i = 0; i < _Boiler_Types_max; i++) { myDebug(" %s, type ID:0x%02X Product ID:%d", Boiler_Types[i].model_string, Boiler_Types[i].type_id, Boiler_Types[i].product_id); } myDebug("\nThese %d EMS devices are in the library:", _Other_Types_max); for (i = 0; i < _Other_Types_max; i++) { myDebug(" %s, type ID:0x%02X Product ID:%d", Other_Types[i].model_string, Other_Types[i].type_id, Other_Types[i].product_id); } myDebug("\nThese telegram type IDs are recognized for the selected boiler:"); for (i = 0; i < _EMS_Types_max; i++) { if ((EMS_Types[i].model_id == EMS_MODEL_ALL) || (EMS_Types[i].model_id == EMS_MODEL_UBA)) { myDebug(" type %02X (%s)", EMS_Types[i].type, EMS_Types[i].typeString); } } myDebug("\nThese %d thermostats models are supported:", _Thermostat_Types_max); for (i = 0; i < _Thermostat_Types_max; i++) { myDebug(" %s, type ID:0x%02X Product ID:%d Read/Write support:%c%c", Thermostat_Types[i].model_string, Thermostat_Types[i].type_id, Thermostat_Types[i].product_id, (Thermostat_Types[i].read_supported) ? 'r' : ' ', (Thermostat_Types[i].write_supported) ? 'w' : ' '); } } /** * Send a command to UART Tx to Read from another device * Read commands when sent must respond by the destination (target) immediately (or within 10ms) */ void ems_doReadCommand(uint8_t type, uint8_t dest, bool forceRefresh) { // if not a valid type of boiler is not accessible then quits if ((type == EMS_ID_NONE) || (dest == EMS_ID_NONE)) { return; } // if we're preventing all outbound traffic, quit if (EMS_Sys_Status.emsTxDisabled) { return; } _EMS_TxTelegram EMS_TxTelegram = EMS_TX_TELEGRAM_NEW; // create new Tx EMS_TxTelegram.timestamp = millis(); // set timestamp EMS_Sys_Status.txRetryCount = 0; // reset retry counter // see if its a known type int i = _ems_findType(type); if ((ems_getLogging() == EMS_SYS_LOGGING_BASIC) || (ems_getLogging() == EMS_SYS_LOGGING_VERBOSE)) { if (i == -1) { myDebug("Requesting type (0x%02X) from dest 0x%02X", type, dest); } else { myDebug("Requesting type %s(0x%02X) from dest 0x%02X", EMS_Types[i].typeString, type, dest); } } EMS_TxTelegram.action = EMS_TX_TELEGRAM_READ; // read command EMS_TxTelegram.dest = dest; // set 8th bit to indicate a read EMS_TxTelegram.offset = 0; // 0 for all data EMS_TxTelegram.length = EMS_MIN_TELEGRAM_LENGTH; // is always 6 bytes long (including CRC at end) EMS_TxTelegram.type = type; EMS_TxTelegram.dataValue = EMS_MAX_TELEGRAM_LENGTH; // for a read this is the # bytes we want back EMS_TxTelegram.type_validate = EMS_ID_NONE; EMS_TxTelegram.comparisonValue = 0; EMS_TxTelegram.comparisonOffset = 0; EMS_TxTelegram.comparisonPostRead = EMS_ID_NONE; EMS_TxTelegram.forceRefresh = forceRefresh; // should we send to MQTT after a successful read? EMS_TxQueue.push(EMS_TxTelegram); } /** * Send a raw telegram to the bus * telegram is a string of hex values */ void ems_sendRawTelegram(char * telegram) { uint8_t count = 0; char * p; char value[10] = {0}; if (EMS_Sys_Status.emsTxDisabled) { return; // user has disabled all Tx } _EMS_TxTelegram EMS_TxTelegram = EMS_TX_TELEGRAM_NEW; // create new Tx EMS_TxTelegram.timestamp = millis(); // set timestamp EMS_Sys_Status.txRetryCount = 0; // reset retry counter // get first value, which should be the src if ((p = strtok(telegram, " ,"))) { // delimiter strlcpy(value, p, sizeof(value)); EMS_TxTelegram.data[0] = (uint8_t)strtol(value, 0, 16); } // and interate until end while (p != 0) { if ((p = strtok(NULL, " ,"))) { strlcpy(value, p, sizeof(value)); uint8_t val = (uint8_t)strtol(value, 0, 16); EMS_TxTelegram.data[++count] = val; if (count == 1) { EMS_TxTelegram.dest = val; } else if (count == 2) { EMS_TxTelegram.type = val; } else if (count == 3) { EMS_TxTelegram.offset = val; } } } if (count == 0) { return; // nothing to send } // calculate length including header and CRC EMS_TxTelegram.length = count + 2; EMS_TxTelegram.type_validate = EMS_ID_NONE; EMS_TxTelegram.action = EMS_TX_TELEGRAM_RAW; // add to Tx queue. Assume it's not full. EMS_TxQueue.push(EMS_TxTelegram); } /** * Set the temperature of the thermostat */ void ems_setThermostatTemp(float temperature) { if (!ems_getThermostatEnabled()) { return; } if (!EMS_Thermostat.write_supported) { myDebug("Write not supported for this model Thermostat"); return; } _EMS_TxTelegram EMS_TxTelegram = EMS_TX_TELEGRAM_NEW; // create new Tx EMS_TxTelegram.timestamp = millis(); // set timestamp EMS_Sys_Status.txRetryCount = 0; // reset retry counter uint8_t model_id = EMS_Thermostat.model_id; uint8_t type = EMS_Thermostat.type_id; EMS_TxTelegram.action = EMS_TX_TELEGRAM_WRITE; EMS_TxTelegram.dest = type; myDebug("Setting new thermostat temperature"); // when doing a comparison to validate the new temperature we call a different type if (model_id == EMS_MODEL_RC20) { EMS_TxTelegram.type = EMS_TYPE_RC20Set; EMS_TxTelegram.offset = EMS_OFFSET_RC20Set_temp; EMS_TxTelegram.comparisonPostRead = EMS_TYPE_RC20StatusMessage; } else if (model_id == EMS_MODEL_RC10) { EMS_TxTelegram.type = EMS_TYPE_RC10Set; EMS_TxTelegram.offset = EMS_OFFSET_RC10Set_temp; EMS_TxTelegram.comparisonPostRead = EMS_TYPE_RC10StatusMessage; } else if (model_id == EMS_MODEL_RC30) { EMS_TxTelegram.type = EMS_TYPE_RC30Set; EMS_TxTelegram.offset = EMS_OFFSET_RC30Set_temp; EMS_TxTelegram.comparisonPostRead = EMS_TYPE_RC30StatusMessage; } else if ((model_id == EMS_MODEL_RC35) || (model_id == EMS_MODEL_ES73)) { EMS_TxTelegram.type = EMS_TYPE_RC35Set; if (EMS_Thermostat.day_mode == 0) { EMS_TxTelegram.offset = EMS_OFFSET_RC35Set_temp_night; } else if (EMS_Thermostat.day_mode == 1) { EMS_TxTelegram.offset = EMS_OFFSET_RC35Set_temp_day; } EMS_TxTelegram.comparisonPostRead = EMS_TYPE_RC35StatusMessage; } EMS_TxTelegram.length = EMS_MIN_TELEGRAM_LENGTH; EMS_TxTelegram.dataValue = (uint8_t)((float)temperature * (float)2); // value EMS_TxTelegram.type_validate = EMS_TxTelegram.type; EMS_TxTelegram.comparisonOffset = EMS_TxTelegram.offset; EMS_TxTelegram.comparisonValue = EMS_TxTelegram.dataValue; EMS_TxTelegram.forceRefresh = false; // send to MQTT is done automatically in EMS_TYPE_RC30StatusMessage EMS_TxQueue.push(EMS_TxTelegram); } /** * Set the thermostat working mode (0=low/night, 1=manual/day, 2=auto/clock) * 0xA8 on a RC20 and 0xA7 on RC30 */ void ems_setThermostatMode(uint8_t mode) { if (!ems_getThermostatEnabled()) { return; } if (!EMS_Thermostat.write_supported) { myDebug("Write not supported for this model Thermostat"); return; } uint8_t model_id = EMS_Thermostat.model_id; uint8_t type = EMS_Thermostat.type_id; myDebug("Setting thermostat mode to %d", mode); _EMS_TxTelegram EMS_TxTelegram = EMS_TX_TELEGRAM_NEW; // create new Tx EMS_TxTelegram.timestamp = millis(); // set timestamp EMS_Sys_Status.txRetryCount = 0; // reset retry counter EMS_TxTelegram.action = EMS_TX_TELEGRAM_WRITE; EMS_TxTelegram.dest = type; EMS_TxTelegram.length = EMS_MIN_TELEGRAM_LENGTH; EMS_TxTelegram.dataValue = mode; // handle different thermostat types if (model_id == EMS_MODEL_RC20) { EMS_TxTelegram.type = EMS_TYPE_RC20Set; EMS_TxTelegram.offset = EMS_OFFSET_RC20Set_mode; } else if (model_id == EMS_MODEL_RC30) { EMS_TxTelegram.type = EMS_TYPE_RC30Set; EMS_TxTelegram.offset = EMS_OFFSET_RC30Set_mode; } else if ((model_id == EMS_MODEL_RC35) || (model_id == EMS_MODEL_ES73)) { EMS_TxTelegram.type = EMS_TYPE_RC35Set; EMS_TxTelegram.offset = EMS_OFFSET_RC35Set_mode; } EMS_TxTelegram.type_validate = EMS_TxTelegram.type; // callback to EMS_TYPE_RC30Temperature to fetch temps EMS_TxTelegram.comparisonOffset = EMS_TxTelegram.offset; EMS_TxTelegram.comparisonValue = EMS_TxTelegram.dataValue; EMS_TxTelegram.comparisonPostRead = EMS_TxTelegram.type; EMS_TxTelegram.forceRefresh = false; // send to MQTT is done automatically in 0xA8 process EMS_TxQueue.push(EMS_TxTelegram); } /** * Set the warm water temperature 0x33 */ void ems_setWarmWaterTemp(uint8_t temperature) { // check for invalid temp values if ((temperature < 30) || (temperature > EMS_BOILER_TAPWATER_TEMPERATURE_MAX)) { return; } myDebug("Setting boiler warm water temperature to %d C", temperature); _EMS_TxTelegram EMS_TxTelegram = EMS_TX_TELEGRAM_NEW; // create new Tx EMS_TxTelegram.timestamp = millis(); // set timestamp EMS_Sys_Status.txRetryCount = 0; // reset retry counter EMS_TxTelegram.action = EMS_TX_TELEGRAM_WRITE; EMS_TxTelegram.dest = EMS_Boiler.type_id; EMS_TxTelegram.type = EMS_TYPE_UBAParameterWW; EMS_TxTelegram.offset = EMS_OFFSET_UBAParameterWW_wwtemp; EMS_TxTelegram.length = EMS_MIN_TELEGRAM_LENGTH; EMS_TxTelegram.dataValue = temperature; // value to compare against. must be a single int EMS_TxTelegram.type_validate = EMS_TYPE_UBAParameterWW; // validate EMS_TxTelegram.comparisonOffset = EMS_OFFSET_UBAParameterWW_wwtemp; EMS_TxTelegram.comparisonValue = temperature; EMS_TxTelegram.comparisonPostRead = EMS_TYPE_UBAParameterWW; EMS_TxTelegram.forceRefresh = false; // no need to send since this is done by 0x33 process EMS_TxQueue.push(EMS_TxTelegram); } /** * Set the warm water mode to comfort to Eco/Comfort * 1 = Hot, 2 = Eco, 3 = Intelligent */ void ems_setWarmWaterModeComfort(uint8_t comfort) { _EMS_TxTelegram EMS_TxTelegram = EMS_TX_TELEGRAM_NEW; // create new Tx EMS_TxTelegram.timestamp = millis(); // set timestamp EMS_Sys_Status.txRetryCount = 0; // reset retry counter if (comfort == 1) { myDebug("Setting boiler warm water comfort mode to Hot"); EMS_TxTelegram.dataValue = EMS_VALUE_UBAParameterWW_wwComfort_Hot; } else if (comfort == 2) { myDebug("Setting boiler warm water comfort mode to Eco"); EMS_TxTelegram.dataValue = EMS_VALUE_UBAParameterWW_wwComfort_Eco; } else if (comfort == 3) { myDebug("Setting boiler warm water comfort mode to Intelligent"); EMS_TxTelegram.dataValue = EMS_VALUE_UBAParameterWW_wwComfort_Intelligent; } else { return; // invalid comfort value } EMS_TxTelegram.action = EMS_TX_TELEGRAM_WRITE; EMS_TxTelegram.dest = EMS_Boiler.type_id; EMS_TxTelegram.type = EMS_TYPE_UBAParameterWW; EMS_TxTelegram.offset = EMS_OFFSET_UBAParameterWW_wwComfort; EMS_TxTelegram.length = EMS_MIN_TELEGRAM_LENGTH; EMS_TxTelegram.type_validate = EMS_ID_NONE; // don't validate EMS_TxQueue.push(EMS_TxTelegram); } /** * Activate / De-activate the Warm Water 0x33 * true = on, false = off */ void ems_setWarmWaterActivated(bool activated) { myDebug("Setting boiler warm water %s", activated ? "on" : "off"); _EMS_TxTelegram EMS_TxTelegram = EMS_TX_TELEGRAM_NEW; // create new Tx EMS_TxTelegram.timestamp = millis(); // set timestamp EMS_Sys_Status.txRetryCount = 0; // reset retry counter EMS_TxTelegram.action = EMS_TX_TELEGRAM_WRITE; EMS_TxTelegram.dest = EMS_Boiler.type_id; EMS_TxTelegram.type = EMS_TYPE_UBAParameterWW; EMS_TxTelegram.offset = EMS_OFFSET_UBAParameterWW_wwactivated; EMS_TxTelegram.length = EMS_MIN_TELEGRAM_LENGTH; EMS_TxTelegram.type_validate = EMS_ID_NONE; // don't validate EMS_TxTelegram.dataValue = (activated ? 0xFF : 0x00); // 0xFF is on, 0x00 is off EMS_TxQueue.push(EMS_TxTelegram); } /** * Activate / De-activate the Warm Tap Water * true = on, false = off * Using the type 0x1D to put the boiler into Test mode. This may be shown on the boiler with a flashing 'T' */ void ems_setWarmTapWaterActivated(bool activated) { myDebug("Setting boiler warm tap water %s", activated ? "on" : "off"); _EMS_TxTelegram EMS_TxTelegram = EMS_TX_TELEGRAM_NEW; // create new Tx EMS_TxTelegram.timestamp = millis(); // set timestamp EMS_Sys_Status.txRetryCount = 0; // reset retry counter // clear Tx to make sure all data is set to 0x00 for (int i = 0; (i < EMS_MAX_TELEGRAM_LENGTH); i++) { EMS_TxTelegram.data[i] = 0x00; } EMS_TxTelegram.action = EMS_TX_TELEGRAM_WRITE; EMS_TxTelegram.dest = EMS_Boiler.type_id; EMS_TxTelegram.type = EMS_TYPE_UBAFunctionTest; EMS_TxTelegram.offset = 0; EMS_TxTelegram.length = 22; // 17 bytes of data including header and CRC EMS_TxTelegram.type_validate = EMS_TxTelegram.type; EMS_TxTelegram.comparisonOffset = 0; // 1st byte EMS_TxTelegram.comparisonValue = (activated ? 0 : 1); // value is 1 if in Test mode (not activated) EMS_TxTelegram.comparisonPostRead = EMS_TxTelegram.type; EMS_TxTelegram.forceRefresh = true; // send new value to MQTT after successful write // create header EMS_TxTelegram.data[0] = EMS_ID_ME; // src EMS_TxTelegram.data[1] = EMS_TxTelegram.dest; // dest EMS_TxTelegram.data[2] = EMS_TxTelegram.type; // type EMS_TxTelegram.data[3] = EMS_TxTelegram.offset; // offset // we use the special test mode 0x1D for this. Setting the first data to 5A puts the system into test mode and // a setting of 0x00 puts it back into normal operarting mode // when in test mode we're able to mess around with the core 3-way valve settings if (!activated) { // on EMS_TxTelegram.data[4] = 0x5A; // test mode on EMS_TxTelegram.data[5] = 0x00; // burner output 0% EMS_TxTelegram.data[7] = 0x64; // boiler pump capacity 100% EMS_TxTelegram.data[8] = 0xFF; // 3-way valve hot water only } EMS_TxQueue.push(EMS_TxTelegram); // add to queue } /* * Start up sequence for UBA Master * Still experimental */ void ems_startupTelegrams() { if ((EMS_Sys_Status.emsTxDisabled) || (!EMS_Sys_Status.emsBusConnected)) { myDebug("Unable to send startup sequence when in silent mode or bus is disabled"); } myDebug("Sending startup sequence..."); char s[20] = {0}; // (00:07:27.512) Telegram echo: telegram: 0B 08 1D 00 00 (CRC=84), #data=1 // Write type 0x1D to get out of function test mode snprintf(s, sizeof(s), "%02X %02X 1D 00 00", EMS_ID_ME, EMS_Boiler.type_id); ems_sendRawTelegram(s); // (00:07:35.555) Telegram echo: telegram: 0B 88 01 00 1B (CRC=8B), #data=1 // Read type 0x01 snprintf(s, sizeof(s), "%02X %02X 01 00 1B", EMS_ID_ME, EMS_Boiler.type_id | 0x80); ems_sendRawTelegram(s); }