/*
* EMS-ESP - https://github.com/emsesp/EMS-ESP
* Copyright 2020 Paul Derbyshire
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see .
*/
#include "system.h"
#include "emsesp.h" // for send_raw_telegram() command
#if defined(EMSESP_DEBUG)
#include "test/test.h"
#endif
namespace emsesp {
uuid::log::Logger System::logger_{F_(system), uuid::log::Facility::KERN};
#ifndef EMSESP_STANDALONE
uuid::syslog::SyslogService System::syslog_;
#endif
// init statics
uint32_t System::heap_start_ = 1; // avoid using 0 to divide-by-zero later
PButton System::myPButton_;
// send on/off to a gpio pin
// value: true = HIGH, false = LOW
// e.g. http://ems-esp/api?device=system&cmd=pin&data=1&id=2
bool System::command_pin(const char * value, const int8_t id) {
if (!is_valid_gpio(id)) {
LOG_INFO(F("invalid GPIO number"));
return false;
}
bool v = false;
if (Helpers::value2bool(value, v)) {
pinMode(id, OUTPUT);
digitalWrite(id, v);
LOG_INFO(F("GPIO %d set to %s"), id, v ? "HIGH" : "LOW");
return true;
}
return false;
}
// send raw to ems
bool System::command_send(const char * value, const int8_t id) {
EMSESP::send_raw_telegram(value); // ignore id
return true;
}
// fetch device values
bool System::command_fetch(const char * value, const int8_t id) {
std::string value_s(14, '\0');
if (Helpers::value2string(value, value_s)) {
if (value_s == "all") {
LOG_INFO(F("Requesting data from EMS devices"));
EMSESP::fetch_device_values();
return true;
} else if (value_s == "boiler") {
EMSESP::fetch_device_values_type(EMSdevice::DeviceType::BOILER);
return true;
} else if (value_s == "thermostat") {
EMSESP::fetch_device_values_type(EMSdevice::DeviceType::THERMOSTAT);
return true;
} else if (value_s == "solar") {
EMSESP::fetch_device_values_type(EMSdevice::DeviceType::SOLAR);
return true;
} else if (value_s == "mixer") {
EMSESP::fetch_device_values_type(EMSdevice::DeviceType::MIXER);
return true;
}
}
EMSESP::fetch_device_values(); // default if no name or id is given
return true;
}
// mqtt publish
bool System::command_publish(const char * value, const int8_t id) {
std::string value_s(14, '\0');
if (Helpers::value2string(value, value_s)) {
if (value_s == "ha") {
EMSESP::publish_all(true); // includes HA
LOG_INFO(F("Publishing all data to MQTT, including HA configs"));
return true;
} else if (value_s == "boiler") {
EMSESP::publish_device_values(EMSdevice::DeviceType::BOILER);
return true;
} else if (value_s == "thermostat") {
EMSESP::publish_device_values(EMSdevice::DeviceType::THERMOSTAT);
return true;
} else if (value_s == "solar") {
EMSESP::publish_device_values(EMSdevice::DeviceType::SOLAR);
return true;
} else if (value_s == "mixer") {
EMSESP::publish_device_values(EMSdevice::DeviceType::MIXER);
return true;
} else if (value_s == "other") {
EMSESP::publish_other_values();
return true;
} else if (value_s == "dallassensor") {
EMSESP::publish_sensor_values(true);
return true;
}
}
EMSESP::publish_all(); // ignore value and id
LOG_INFO(F("Publishing all data to MQTT"));
return true;
}
// restart EMS-ESP
void System::restart() {
LOG_INFO(F("Restarting system..."));
Shell::loop_all();
delay(1000); // wait a second
#ifndef EMSESP_STANDALONE
ESP.restart();
#endif
}
// saves all settings
void System::wifi_reconnect() {
LOG_INFO(F("Wifi reconnecting..."));
Shell::loop_all();
EMSESP::console_.loop();
delay(1000); // wait a second
EMSESP::webSettingsService.save(); // local settings
EMSESP::esp8266React.getNetworkSettingsService()->callUpdateHandlers("local"); // in case we've changed ssid or password
}
// format fs
// format the FS. Wipes everything.
void System::format(uuid::console::Shell & shell) {
auto msg = F("Formatting file system. This will reset all settings to their defaults");
shell.logger().warning(msg);
shell.flush();
EMSuart::stop();
#ifndef EMSESP_STANDALONE
LITTLEFS.format();
#endif
System::restart();
}
void System::syslog_start() {
if (syslog_enabled_) {
#ifndef EMSESP_STANDALONE
syslog_.start();
syslog_.log_level((uuid::log::Level)syslog_level_);
#endif
EMSESP::logger().info(F("Starting Syslog"));
}
}
void System::syslog_init(bool refresh) {
if (refresh) {
get_settings();
}
#ifndef EMSESP_STANDALONE
// check for empty or invalid hostname
IPAddress addr;
if (!addr.fromString(syslog_host_.c_str())) {
syslog_enabled_ = false;
}
// in case service is still running, this flushes the queue
// https://github.com/emsesp/EMS-ESP/issues/496
if (!syslog_enabled_) {
syslog_.log_level((uuid::log::Level)-1);
syslog_.mark_interval(0);
syslog_.destination((IPAddress)((uint32_t)0));
return;
}
// start & configure syslog
syslog_.log_level((uuid::log::Level)syslog_level_);
syslog_.mark_interval(syslog_mark_interval_);
syslog_.destination(addr, syslog_port_);
syslog_.hostname(hostname().c_str());
#endif
}
// read all the settings from the config files and store locally
void System::get_settings() {
EMSESP::webSettingsService.read([&](WebSettings & settings) {
// Button
pbutton_gpio_ = settings.pbutton_gpio;
// ADC
analog_enabled_ = settings.analog_enabled;
// Syslog
syslog_enabled_ = settings.syslog_enabled;
syslog_level_ = settings.syslog_level;
syslog_mark_interval_ = settings.syslog_mark_interval;
syslog_host_ = settings.syslog_host;
syslog_port_ = settings.syslog_port;
// LED
hide_led_ = settings.hide_led;
led_gpio_ = settings.led_gpio;
// Board profile
board_profile_ = settings.board_profile;
});
}
// adjust WiFi settings
// this for problem solving mesh and connection issues, and also get EMS bus-powered more stable by lowering power
void System::wifi_tweak() {
#if defined(EMSESP_WIFI_TWEAK)
// Default Tx Power is 80 = 20dBm <-- default
// WIFI_POWER_19_5dBm = 78,// 19.5dBm
// WIFI_POWER_19dBm = 76,// 19dBm
// WIFI_POWER_18_5dBm = 74,// 18.5dBm
// WIFI_POWER_17dBm = 68,// 17dBm
// WIFI_POWER_15dBm = 60,// 15dBm
// WIFI_POWER_13dBm = 52,// 13dBm
// WIFI_POWER_11dBm = 44,// 11dBm
// WIFI_POWER_8_5dBm = 34,// 8.5dBm
// WIFI_POWER_7dBm = 28,// 7dBm
// WIFI_POWER_5dBm = 20,// 5dBm
// WIFI_POWER_2dBm = 8,// 2dBm
// WIFI_POWER_MINUS_1dBm = -4// -1dBm
wifi_power_t p1 = WiFi.getTxPower();
(void)WiFi.setTxPower(WIFI_POWER_19_5dBm);
wifi_power_t p2 = WiFi.getTxPower();
bool s1 = WiFi.getSleep();
WiFi.setSleep(false); // turn off sleep - WIFI_PS_NONE
bool s2 = WiFi.getSleep();
LOG_DEBUG(F("Adjusting WiFi - Tx power %d->%d, Sleep %d->%d"), p1, p2, s1, s2);
#endif
}
// check for valid ESP32 pins. This is very dependent on which ESP32 board is being used.
// Typically you can't use 1, 6-11, 12, 14, 15, 20, 24, 28-31 and 40+
// we allow 0 as it has a special function on the NodeMCU apparently
// See https://diyprojects.io/esp32-how-to-use-gpio-digital-io-arduino-code/#.YFpVEq9KhjG
// and https://nodemcu.readthedocs.io/en/dev-esp32/modules/gpio/
bool System::is_valid_gpio(uint8_t pin) {
if ((pin == 1) || (pin >= 6 && pin <= 12) || (pin >= 14 && pin <= 15) || (pin == 20) || (pin == 24) || (pin >= 28 && pin <= 31) || (pin > 40)) {
return false; // bad pin
}
return true;
}
// first call. Sets memory and starts up the UART Serial bridge
void System::start(uint32_t heap_start) {
#if defined(EMSESP_DEBUG)
show_mem("Startup");
#endif
// set the inital free mem, only on first boot
if (heap_start_ < 2) {
heap_start_ = heap_start;
}
// load in all the settings first
get_settings();
EMSESP::esp8266React.getNetworkSettingsService()->read([&](NetworkSettings & networkSettings) {
hostname(networkSettings.hostname.c_str()); // sets the hostname
LOG_INFO(F("System name: %s"), hostname().c_str());
});
commands_init(); // console & api commands
led_init(false); // init LED
adc_init(false); // analog ADC
button_init(false); // the special button
network_init(false); // network
syslog_init(false); // init SysLog
EMSESP::init_uart(); // start UART
}
// adc and bluetooth
void System::adc_init(bool refresh) {
if (refresh) {
get_settings();
}
#ifndef EMSESP_STANDALONE
// setCpuFrequencyMhz(160); // default is 240
// disable bluetooth & ADC
/*
btStop();
esp_bt_controller_disable();
if (!analog_enabled_) {
adc_power_release(); // turn off ADC to save power if not needed
}
*/
#endif
}
// button single click
void System::button_OnClick(PButton & b) {
LOG_DEBUG(F("Button pressed - single click"));
}
// button double click
void System::button_OnDblClick(PButton & b) {
LOG_DEBUG(F("Button pressed - double click - reconnect"));
EMSESP::system_.wifi_reconnect();
}
// button long press
void System::button_OnLongPress(PButton & b) {
LOG_DEBUG(F("Button pressed - long press"));
}
// button indefinite press
void System::button_OnVLongPress(PButton & b) {
LOG_DEBUG(F("Button pressed - very long press"));
#ifndef EMSESP_STANDALONE
LOG_WARNING(F("Performing factory reset..."));
EMSESP::console_.loop();
#ifdef EMSESP_DEBUG
Test::listDir(LITTLEFS, FS_CONFIG_DIRECTORY, 3);
#endif
EMSESP::esp8266React.factoryReset();
#endif
}
// push button
void System::button_init(bool refresh) {
if (refresh) {
get_settings();
}
if (is_valid_gpio(pbutton_gpio_)) {
if (!myPButton_.init(pbutton_gpio_, HIGH)) {
LOG_INFO(F("Multi-functional button not detected"));
} else {
LOG_INFO(F("Multi-functional button enabled"));
}
} else {
LOG_WARNING(F("Invalid button GPIO. Check config."));
}
myPButton_.onClick(BUTTON_Debounce, button_OnClick);
myPButton_.onDblClick(BUTTON_DblClickDelay, button_OnDblClick);
myPButton_.onLongPress(BUTTON_LongPressDelay, button_OnLongPress);
myPButton_.onVLongPress(BUTTON_VLongPressDelay, button_OnVLongPress);
}
// set the LED to on or off when in normal operating mode
void System::led_init(bool refresh) {
if (refresh) {
get_settings();
}
if ((led_gpio_ != 0) && is_valid_gpio(led_gpio_)) {
pinMode(led_gpio_, OUTPUT); // 0 means disabled
digitalWrite(led_gpio_, hide_led_ ? !LED_ON : LED_ON);
}
}
// returns true if OTA is uploading
bool System::upload_status() {
#if defined(EMSESP_STANDALONE)
return false;
#else
return upload_status_ || Update.isRunning();
#endif
}
void System::upload_status(bool in_progress) {
// if we've just started an upload
if ((!upload_status_) && (in_progress)) {
EMSuart::stop();
}
upload_status_ = in_progress;
}
// checks system health and handles LED flashing wizardry
void System::loop() {
#ifndef EMSESP_STANDALONE
myPButton_.check(); // check button press
if (syslog_enabled_) {
syslog_.loop();
}
led_monitor(); // check status and report back using the LED
system_check(); // check system health
if (analog_enabled_) {
measure_analog();
}
// send out heartbeat
uint32_t currentMillis = uuid::get_uptime();
if (!last_heartbeat_ || (currentMillis - last_heartbeat_ > SYSTEM_HEARTBEAT_INTERVAL)) {
last_heartbeat_ = currentMillis;
send_heartbeat();
}
/*
#ifndef EMSESP_STANDALONE
#if defined(EMSESP_DEBUG)
static uint32_t last_memcheck_ = 0;
if (currentMillis - last_memcheck_ > 10000) { // 10 seconds
last_memcheck_ = currentMillis;
show_mem("core");
}
#endif
#endif
*/
#endif
}
void System::show_mem(const char * note) {
#ifndef EMSESP_STANDALONE
static uint32_t old_free_heap = 0;
uint32_t free_heap = ESP.getFreeHeap();
LOG_INFO(F("(%s) Free heap: %lu (~%lu)"), note, free_heap, (uint32_t)Helpers::abs(free_heap - old_free_heap));
old_free_heap = free_heap;
#endif
}
// create the json for heartbeat
bool System::heartbeat_json(JsonObject & doc) {
uint8_t ems_status = EMSESP::bus_status();
if (ems_status == EMSESP::BUS_STATUS_TX_ERRORS) {
doc["status"] = FJSON("txerror");
} else if (ems_status == EMSESP::BUS_STATUS_CONNECTED) {
doc["status"] = FJSON("connected");
} else {
doc["status"] = FJSON("disconnected");
}
doc["uptime"] = uuid::log::format_timestamp_ms(uuid::get_uptime_ms(), 3);
doc["uptime_sec"] = uuid::get_uptime_sec();
doc["rxreceived"] = EMSESP::rxservice_.telegram_count();
doc["rxfails"] = EMSESP::rxservice_.telegram_error_count();
doc["txread"] = EMSESP::txservice_.telegram_read_count();
doc["txwrite"] = EMSESP::txservice_.telegram_write_count();
doc["txfails"] = EMSESP::txservice_.telegram_fail_count();
if (Mqtt::enabled()) {
doc["mqttfails"] = Mqtt::publish_fails();
}
if (EMSESP::dallas_enabled()) {
doc["dallasfails"] = EMSESP::sensor_fails();
}
#ifndef EMSESP_STANDALONE
doc["freemem"] = ESP.getFreeHeap() / 1000L; // kilobytes
#endif
if (analog_enabled_) {
doc["adc"] = analog_;
}
#ifndef EMSESP_STANDALONE
if (!ethernet_connected_) {
int8_t rssi = WiFi.RSSI();
doc["rssi"] = rssi;
doc["wifistrength"] = wifi_quality(rssi);
}
#endif
return true;
}
// send periodic MQTT message with system information
void System::send_heartbeat() {
// don't send heartbeat if WiFi or MQTT is not connected
if (!Mqtt::connected()) {
return;
}
StaticJsonDocument doc;
JsonObject json = doc.to();
if (heartbeat_json(json)) {
Mqtt::publish(F_(heartbeat), doc.as()); // send to MQTT with retain off. This will add to MQTT queue.
}
}
// measure and moving average adc
void System::measure_analog() {
static uint32_t measure_last_ = 0;
if (!measure_last_ || (uint32_t)(uuid::get_uptime() - measure_last_) >= SYSTEM_MEASURE_ANALOG_INTERVAL) {
measure_last_ = uuid::get_uptime();
#if defined(ESP32)
uint16_t a = analogRead(36);
#else
uint16_t a = 0; // standalone
#endif
static uint32_t sum_ = 0;
if (!analog_) { // init first time
analog_ = a;
sum_ = a * 512;
} else { // simple moving average filter
sum_ = (sum_ * 511) / 512 + a;
analog_ = sum_ / 512;
}
}
}
// sets rate of led flash
void System::set_led_speed(uint32_t speed) {
led_flash_speed_ = speed;
led_monitor();
}
// initializes network
void System::network_init(bool refresh) {
if (refresh) {
get_settings();
}
last_system_check_ = 0; // force the LED to go from fast flash to pulse
send_heartbeat();
// check board profile for those which use ethernet
// ethernet uses lots of additional memory so we only start it when it's explicitly set in the config
if (!board_profile_.equals("E32") && !board_profile_.equals("TLK110") && !board_profile_.equals("LAN8720") && !board_profile_.equals("OLIMEX")) {
return;
}
uint8_t phy_addr; // I²C-address of Ethernet PHY (0 or 1 for LAN8720, 31 for TLK110)
int power; // Pin# of the enable signal for the external crystal oscillator (-1 to disable for internal APLL source)
int mdc; // Pin# of the I²C clock signal for the Ethernet PHY
int mdio; // Pin# of the I²C IO signal for the Ethernet PHY
eth_phy_type_t type; // Type of the Ethernet PHY (LAN8720 or TLK110)
eth_clock_mode_t clock_mode; // ETH_CLOCK_GPIO0_IN or ETH_CLOCK_GPIO0_OUT, ETH_CLOCK_GPIO16_OUT, ETH_CLOCK_GPIO17_OUT for 50Hz inverted clock
if (board_profile_.equals("E32") || board_profile_.equals("LAN8720")) {
// BBQKees Gateway E32 (LAN8720)
phy_addr = 1;
power = 16;
mdc = 23;
mdio = 18;
type = ETH_PHY_LAN8720;
clock_mode = ETH_CLOCK_GPIO0_IN;
} else if (board_profile_.equals("OLIMEX")) {
// Olimex ESP32-EVB (LAN8720)
phy_addr = 0;
power = -1;
mdc = 23;
mdio = 18;
type = ETH_PHY_LAN8720;
clock_mode = ETH_CLOCK_GPIO0_IN;
} else if (board_profile_.equals("TLK110")) {
// Ethernet (TLK110)
phy_addr = 31;
power = -1;
mdc = 23;
mdio = 18;
type = ETH_PHY_TLK110;
clock_mode = ETH_CLOCK_GPIO0_IN;
} else {
return; // invalid combi
}
// bool have_ethernet = ETH.begin(phy_addr, power, mdc, mdio, type, clock_mode);
(void)ETH.begin(phy_addr, power, mdc, mdio, type, clock_mode);
}
// check health of system, done every few seconds
void System::system_check() {
if (!last_system_check_ || ((uint32_t)(uuid::get_uptime() - last_system_check_) >= SYSTEM_CHECK_FREQUENCY)) {
last_system_check_ = uuid::get_uptime();
#ifndef EMSESP_STANDALONE
if (!ethernet_connected() && (WiFi.status() != WL_CONNECTED)) {
set_led_speed(LED_WARNING_BLINK_FAST);
system_healthy_ = false;
return;
}
#endif
// not healthy if bus not connected
if (!EMSbus::bus_connected()) {
if (system_healthy_) {
LOG_ERROR(F("Error: No connection to the EMS bus"));
}
system_healthy_ = false;
set_led_speed(LED_WARNING_BLINK); // flash every 1/2 second from now on
} else {
// if it was unhealthy but now we're better, make sure the LED is solid again cos we've been healed
if (!system_healthy_) {
system_healthy_ = true;
send_heartbeat();
if (led_gpio_) {
digitalWrite(led_gpio_, hide_led_ ? !LED_ON : LED_ON);
}
}
}
}
}
// commands - takes static function pointers
// these commands respond to the topic "system" and take a payload like {cmd:"", data:"", id:""}
// no individual subscribe for pin command because id is needed
void System::commands_init() {
Command::add(EMSdevice::DeviceType::SYSTEM, F_(pin), System::command_pin, F("set GPIO"), MqttSubFlag::FLAG_NOSUB);
Command::add(EMSdevice::DeviceType::SYSTEM, F_(send), System::command_send, F("send a telegram"));
Command::add(EMSdevice::DeviceType::SYSTEM, F_(publish), System::command_publish, F("force a MQTT publish"));
Command::add(EMSdevice::DeviceType::SYSTEM, F_(fetch), System::command_fetch, F("refresh all EMS values"));
Command::add_with_json(EMSdevice::DeviceType::SYSTEM, F_(info), System::command_info, F("system status"));
Command::add_with_json(EMSdevice::DeviceType::SYSTEM, F_(settings), System::command_settings, F("list system settings"));
Command::add_with_json(EMSdevice::DeviceType::SYSTEM, F_(commands), System::command_commands, F("list system commands"));
#if defined(EMSESP_DEBUG)
Command::add(EMSdevice::DeviceType::SYSTEM, F("test"), System::command_test, F("run tests"));
#endif
}
// flashes the LED
void System::led_monitor() {
if (!led_gpio_) {
return;
}
static uint32_t led_last_blink_ = 0;
if (!led_last_blink_ || (uint32_t)(uuid::get_uptime() - led_last_blink_) >= led_flash_speed_) {
led_last_blink_ = uuid::get_uptime();
// if bus_not_connected or network not connected, start flashing
if (!system_healthy_) {
digitalWrite(led_gpio_, !digitalRead(led_gpio_));
}
}
}
// Return the quality (Received Signal Strength Indicator) of the WiFi network as a %
// High quality: 90% ~= -55dBm
// Medium quality: 50% ~= -75dBm
// Low quality: 30% ~= -85dBm
// Unusable quality: 8% ~= -96dBm
int8_t System::wifi_quality(int8_t dBm) {
if (dBm <= -100) {
return 0;
}
if (dBm >= -50) {
return 100;
}
return 2 * (dBm + 100);
}
// print users to console
void System::show_users(uuid::console::Shell & shell) {
shell.printfln(F("Users:"));
#ifndef EMSESP_STANDALONE
EMSESP::esp8266React.getSecuritySettingsService()->read([&](SecuritySettings & securitySettings) {
for (User user : securitySettings.users) {
shell.printfln(F(" username: %s, password: %s, is_admin: %s"), user.username.c_str(), user.password.c_str(), user.admin ? F("yes") : F("no"));
}
});
#endif
shell.println();
}
void System::show_system(uuid::console::Shell & shell) {
shell.printfln(F("Uptime: %s"), uuid::log::format_timestamp_ms(uuid::get_uptime_ms(), 3).c_str());
#ifndef EMSESP_STANDALONE
shell.printfln(F("SDK version: %s"), ESP.getSdkVersion());
shell.printfln(F("CPU frequency: %lu MHz"), ESP.getCpuFreqMHz());
shell.printfln(F("Free heap: %lu bytes"), (uint32_t)ESP.getFreeHeap());
shell.println();
switch (WiFi.status()) {
case WL_IDLE_STATUS:
shell.printfln(F("WiFi: Idle"));
break;
case WL_NO_SSID_AVAIL:
shell.printfln(F("WiFi: Network not found"));
break;
case WL_SCAN_COMPLETED:
shell.printfln(F("WiFi: Network scan complete"));
break;
case WL_CONNECTED:
shell.printfln(F("WiFi: Connected"));
shell.printfln(F("SSID: %s"), WiFi.SSID().c_str());
shell.printfln(F("BSSID: %s"), WiFi.BSSIDstr().c_str());
shell.printfln(F("RSSI: %d dBm (%d %%)"), WiFi.RSSI(), wifi_quality(WiFi.RSSI()));
shell.printfln(F("MAC address: %s"), WiFi.macAddress().c_str());
shell.printfln(F("Hostname: %s"), WiFi.getHostname());
shell.printfln(F("IPv4 address: %s/%s"), uuid::printable_to_string(WiFi.localIP()).c_str(), uuid::printable_to_string(WiFi.subnetMask()).c_str());
shell.printfln(F("IPv4 gateway: %s"), uuid::printable_to_string(WiFi.gatewayIP()).c_str());
shell.printfln(F("IPv4 nameserver: %s"), uuid::printable_to_string(WiFi.dnsIP()).c_str());
break;
case WL_CONNECT_FAILED:
shell.printfln(F("WiFi: Connection failed"));
break;
case WL_CONNECTION_LOST:
shell.printfln(F("WiFi: Connection lost"));
break;
case WL_DISCONNECTED:
shell.printfln(F("WiFi: Disconnected"));
break;
case WL_NO_SHIELD:
default:
shell.printfln(F("WiFi: Unknown"));
break;
}
shell.println();
// show Ethernet
if (ethernet_connected_) {
shell.printfln(F("Ethernet: Connected"));
shell.printfln(F("MAC address: %s"), ETH.macAddress().c_str());
shell.printfln(F("Hostname: %s"), ETH.getHostname());
shell.printfln(F("IPv4 address: %s/%s"), uuid::printable_to_string(ETH.localIP()).c_str(), uuid::printable_to_string(ETH.subnetMask()).c_str());
shell.printfln(F("IPv4 gateway: %s"), uuid::printable_to_string(ETH.gatewayIP()).c_str());
shell.printfln(F("IPv4 nameserver: %s"), uuid::printable_to_string(ETH.dnsIP()).c_str());
} else {
shell.printfln(F("Ethernet: disconnected"));
}
shell.println();
if (!syslog_enabled_) {
shell.printfln(F("Syslog: disabled"));
} else {
shell.printfln(F("Syslog:"));
shell.print(F(" "));
shell.printfln(F_(host_fmt), !syslog_host_.isEmpty() ? syslog_host_.c_str() : uuid::read_flash_string(F_(unset)).c_str());
shell.print(F(" "));
shell.printfln(F_(port_fmt), syslog_port_);
shell.print(F(" "));
shell.printfln(F_(log_level_fmt), uuid::log::format_level_lowercase(static_cast(syslog_level_)));
shell.print(F(" "));
shell.printfln(F_(mark_interval_fmt), syslog_mark_interval_);
}
#endif
}
// upgrade from previous versions of EMS-ESP
// returns true if an upgrade was done
bool System::check_upgrade() {
return false;
}
// list commands
bool System::command_commands(const char * value, const int8_t id, JsonObject & json) {
return Command::list(EMSdevice::DeviceType::SYSTEM, json);
}
// export all settings to JSON text
// e.g. http://ems-esp/api?device=system&cmd=settings
// value and id are ignored
bool System::command_settings(const char * value, const int8_t id, JsonObject & json) {
JsonObject node;
node = json.createNestedObject("System");
node["version"] = EMSESP_APP_VERSION;
EMSESP::esp8266React.getNetworkSettingsService()->read([&](NetworkSettings & settings) {
node = json.createNestedObject("WIFI");
// node["ssid"] = settings.ssid; // commented out - people don't like others to see this
node["hostname"] = settings.hostname;
node["static_ip_config"] = settings.staticIPConfig;
JsonUtils::writeIP(node, "local_ip", settings.localIP);
JsonUtils::writeIP(node, "gateway_ip", settings.gatewayIP);
JsonUtils::writeIP(node, "subnet_mask", settings.subnetMask);
JsonUtils::writeIP(node, "dns_ip_1", settings.dnsIP1);
JsonUtils::writeIP(node, "dns_ip_2", settings.dnsIP2);
});
#ifndef EMSESP_STANDALONE
EMSESP::esp8266React.getAPSettingsService()->read([&](APSettings & settings) {
node = json.createNestedObject("AP");
node["provision_mode"] = settings.provisionMode;
node["ssid"] = settings.ssid;
node["local_ip"] = settings.localIP.toString();
node["gateway_ip"] = settings.gatewayIP.toString();
node["subnet_mask"] = settings.subnetMask.toString();
});
#endif
EMSESP::esp8266React.getMqttSettingsService()->read([&](MqttSettings & settings) {
node = json.createNestedObject("MQTT");
node["enabled"] = settings.enabled;
#ifndef EMSESP_STANDALONE
node["host"] = settings.host;
node["port"] = settings.port;
node["username"] = settings.username;
node["client_id"] = settings.clientId;
node["keep_alive"] = settings.keepAlive;
node["clean_session"] = settings.cleanSession;
#endif
node["publish_time_boiler"] = settings.publish_time_boiler;
node["publish_time_thermostat"] = settings.publish_time_thermostat;
node["publish_time_solar"] = settings.publish_time_solar;
node["publish_time_mixer"] = settings.publish_time_mixer;
node["publish_time_other"] = settings.publish_time_other;
node["publish_time_sensor"] = settings.publish_time_sensor;
node["dallas_format"] = settings.dallas_format;
node["bool_format"] = settings.bool_format;
node["ha_climate_format"] = settings.ha_climate_format;
node["ha_enabled"] = settings.ha_enabled;
node["mqtt_qos"] = settings.mqtt_qos;
node["mqtt_retain"] = settings.mqtt_retain;
});
#ifndef EMSESP_STANDALONE
EMSESP::esp8266React.getNTPSettingsService()->read([&](NTPSettings & settings) {
node = json.createNestedObject("NTP");
node["enabled"] = settings.enabled;
node["server"] = settings.server;
node["tz_label"] = settings.tzLabel;
node["tz_format"] = settings.tzFormat;
});
EMSESP::esp8266React.getOTASettingsService()->read([&](OTASettings & settings) {
node = json.createNestedObject("OTA");
node["enabled"] = settings.enabled;
node["port"] = settings.port;
});
#endif
EMSESP::webSettingsService.read([&](WebSettings & settings) {
node = json.createNestedObject("Settings");
node["tx_mode"] = settings.tx_mode;
node["ems_bus_id"] = settings.ems_bus_id;
node["syslog_enabled"] = settings.syslog_enabled;
node["syslog_level"] = settings.syslog_level;
node["syslog_mark_interval"] = settings.syslog_mark_interval;
node["syslog_host"] = settings.syslog_host;
node["syslog_port"] = settings.syslog_port;
node["master_thermostat"] = settings.master_thermostat;
node["shower_timer"] = settings.shower_timer;
node["shower_alert"] = settings.shower_alert;
node["rx_gpio"] = settings.rx_gpio;
node["tx_gpio"] = settings.tx_gpio;
node["dallas_gpio"] = settings.dallas_gpio;
node["dallas_parasite"] = settings.dallas_parasite;
node["led_gpio"] = settings.led_gpio;
node["hide_led"] = settings.hide_led;
node["notoken_api"] = settings.notoken_api;
node["analog_enabled"] = settings.analog_enabled;
node["pbutton_gpio"] = settings.pbutton_gpio;
node["board_profile"] = settings.board_profile;
});
return true;
}
// export status information including some basic settings
// e.g. http://ems-esp/api?device=system&cmd=info
bool System::command_info(const char * value, const int8_t id, JsonObject & json) {
JsonObject node;
node = json.createNestedObject("System");
node["version"] = EMSESP_APP_VERSION;
node["uptime"] = uuid::log::format_timestamp_ms(uuid::get_uptime_ms(), 3);
#ifndef EMSESP_STANDALONE
node["freemem"] = ESP.getFreeHeap() / 1000L; // kilobytes
#endif
node = json.createNestedObject("Status");
switch (EMSESP::bus_status()) {
case EMSESP::BUS_STATUS_OFFLINE:
node["bus"] = (F("disconnected"));
break;
case EMSESP::BUS_STATUS_TX_ERRORS:
node["bus"] = (F("connected, instable tx"));
break;
case EMSESP::BUS_STATUS_CONNECTED:
default:
node["bus"] = (F("connected"));
break;
}
if (EMSESP::bus_status() != EMSESP::BUS_STATUS_OFFLINE) {
node["bus protocol"] = EMSbus::is_ht3() ? F("HT3") : F("Buderus");
node["#telegrams received"] = EMSESP::rxservice_.telegram_count();
node["#read requests sent"] = EMSESP::txservice_.telegram_read_count();
node["#write requests sent"] = EMSESP::txservice_.telegram_write_count();
node["#incomplete telegrams"] = EMSESP::rxservice_.telegram_error_count();
node["#tx fails"] = EMSESP::txservice_.telegram_fail_count();
node["rx line quality"] = EMSESP::rxservice_.quality();
node["tx line quality"] = EMSESP::txservice_.quality();
if (Mqtt::enabled()) {
node["#MQTT publishes"] = Mqtt::publish_count();
node["#MQTT publish fails"] = Mqtt::publish_fails();
}
if (EMSESP::dallas_enabled()) {
node["#dallas sensors"] = EMSESP::sensor_devices().size();
node["#dallas reads"] = EMSESP::sensor_reads();
node["#dallas fails"] = EMSESP::sensor_fails();
}
}
JsonArray devices2 = json.createNestedArray("Devices");
for (const auto & device_class : EMSFactory::device_handlers()) {
for (const auto & emsdevice : EMSESP::emsdevices) {
if ((emsdevice) && (emsdevice->device_type() == device_class.first)) {
JsonObject obj = devices2.createNestedObject();
obj["type"] = emsdevice->device_type_name();
obj["name"] = emsdevice->to_string();
char result[200];
obj["handlers"] = emsdevice->show_telegram_handlers(result);
}
}
}
if (EMSESP::sensor_devices().size()) {
JsonObject obj = devices2.createNestedObject();
obj["type"] = F_(Dallassensor);
obj["name"] = F_(Dallassensor);
}
return true;
}
#if defined(EMSESP_DEBUG)
// run a test, e.g. http://ems-esp/api?device=system&cmd=test&data=boiler
bool System::command_test(const char * value, const int8_t id) {
Test::run_test(value, id);
return true;
}
#endif
// takes a board profile and populates a data array with GPIO configurations
// data = led, dallas, rx, tx, button
// returns false if profile is not found
bool System::load_board_profile(std::vector & data, const std::string & board_profile) {
if (board_profile == "S32") {
data = {2, 18, 23, 5, 0}; // BBQKees Gateway S32
} else if (board_profile == "E32") {
data = {2, 4, 5, 17, 33}; // BBQKees Gateway E32
} else if (board_profile == "MH-ET") {
data = {2, 18, 23, 5, 0}; // MH-ET Live D1 Mini
} else if (board_profile == "NODEMCU") {
data = {2, 18, 23, 5, 0}; // NodeMCU 32S
} else if (board_profile == "LOLIN") {
data = {2, 18, 17, 16, 0}; // Lolin D32
} else if (board_profile == "OLIMEX") {
data = {0, 0, 36, 4, 34}; // Olimex ESP32-EVB (uses U1TXD/U1RXD/BUTTON, no LED or Dallas)
} else if (board_profile == "TLK110") {
data = {2, 4, 5, 17, 33}; // Generic Ethernet (TLK110)
} else if (board_profile == "LAN8720") {
data = {2, 4, 5, 17, 33}; // Generic Ethernet (LAN8720)
} else {
data = {EMSESP_DEFAULT_LED_GPIO, EMSESP_DEFAULT_DALLAS_GPIO, EMSESP_DEFAULT_RX_GPIO, EMSESP_DEFAULT_TX_GPIO, EMSESP_DEFAULT_PBUTTON_GPIO};
return (board_profile == "CUSTOM");
}
return true;
}
} // namespace emsesp