/*
* EMS-ESP - https://github.com/proddy/EMS-ESP
* Copyright 2019 Paul Derbyshire
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see .
*/
#if defined(ESP8266)
#include "uart/emsuart_esp8266.h"
#include "emsesp.h"
namespace emsesp {
os_event_t recvTaskQueue[EMSUART_recvTaskQueueLen]; // our Rx queue
EMSuart::EMSRxBuf_t * pEMSRxBuf;
EMSuart::EMSRxBuf_t * paEMSRxBuf[EMS_MAXBUFFERS];
uint8_t emsRxBufIdx = 0;
uint8_t phantomBreak = 0;
uint8_t tx_mode_ = EMS_TXMODE_DEFAULT;
// Main interrupt handler
// Important: must not use ICACHE_FLASH_ATTR
void ICACHE_RAM_ATTR EMSuart::emsuart_rx_intr_handler(void * para) {
static uint8_t length = 0;
static uint8_t uart_buffer[128];
// BREAK detection = End of EMS data block
if (USIS(EMSUART_UART) & ((1 << UIBD))) {
uint8_t rxlen = (USS(EMSUART_UART) & 0xFF); // length of buffer
for (length = 0; length < rxlen; length++) {
uart_buffer[length] = USF(EMSUART_UART);
}
USIE(EMSUART_UART) = 0; // disable all interrupts and clear them
USC0(EMSUART_UART) &= ~(1 << UCBRK); // reset from sending
if (length < EMS_MAXBUFFERSIZE) { // only a valid telegram
pEMSRxBuf->length = length;
os_memcpy((void *)pEMSRxBuf->buffer, (void *)&uart_buffer, pEMSRxBuf->length); // copy data into transfer buffer, including the BRK 0x00 at the end
system_os_post(EMSUART_recvTaskPrio, 0, 0); // call emsuart_recvTask() at next opportunity
}
USIC(EMSUART_UART) = (1 << UIBD); // INT clear the BREAK detect interrupt
USIE(EMSUART_UART) = (1 << UIBD); // enable only rx break
}
}
/*
* system task triggered on BRK interrupt
* incoming received messages are always asynchronous
* The full buffer is sent to EMSESP::incoming_telegram()
*/
void ICACHE_FLASH_ATTR EMSuart::emsuart_recvTask(os_event_t * events) {
EMSRxBuf_t * pCurrent = pEMSRxBuf;
pEMSRxBuf = paEMSRxBuf[++emsRxBufIdx % EMS_MAXBUFFERS]; // next free EMS Receive buffer
uint8_t length = pCurrent->length; // number of bytes including the BRK at the end
pCurrent->length = 0;
// LEGACY CODE
if (phantomBreak) {
phantomBreak = 0;
length--; // remove phantom break from Rx buffer
}
// it's a poll or status code, single byte and ok to send on, then quit
if (length == 2) {
EMSESP::incoming_telegram((uint8_t *)pCurrent->buffer, 1);
return;
}
// also telegrams with no data value
// then transmit EMS buffer, excluding the BRK, length is checked by irq
if (length > 4) {
EMSESP::incoming_telegram((uint8_t *)pCurrent->buffer, length - 1);
}
}
/*
* init UART0 driver
*/
void ICACHE_FLASH_ATTR EMSuart::start(uint8_t tx_mode) {
tx_mode_ = tx_mode;
// allocate and preset EMS Receive buffers
for (int i = 0; i < EMS_MAXBUFFERS; i++) {
EMSRxBuf_t * p = (EMSRxBuf_t *)malloc(sizeof(EMSRxBuf_t));
paEMSRxBuf[i] = p;
}
pEMSRxBuf = paEMSRxBuf[0]; // reset EMS Rx Buffer
// pin settings
PIN_PULLUP_DIS(PERIPHS_IO_MUX_U0TXD_U);
PIN_FUNC_SELECT(PERIPHS_IO_MUX_U0TXD_U, FUNC_U0TXD);
PIN_PULLUP_DIS(PERIPHS_IO_MUX_U0RXD_U);
PIN_FUNC_SELECT(PERIPHS_IO_MUX_U0RXD_U, FUNC_U0RXD);
// set 9600, 8 bits, no parity check, 1 stop bit
USD(EMSUART_UART) = (UART_CLK_FREQ / EMSUART_BAUD);
USC0(EMSUART_UART) = EMSUART_CONFIG;
USC0(EMSUART_UART) |= ((1 << UCRXRST) | (1 << UCTXRST)); // set bits
USC0(EMSUART_UART) &= ~((1 << UCRXRST) | (1 << UCTXRST)); // clear bits
// UCFFT = RX FIFO Full Threshold (7 bit) = want this to be more than 32)
USC1(EMSUART_UART) = (0x7F << UCFFT); // rx buffer full
USIE(EMSUART_UART) = 0; // disable all interrupts
USIC(EMSUART_UART) = 0xFFFF; // clear all interupts
system_os_task(emsuart_recvTask, EMSUART_recvTaskPrio, recvTaskQueue, EMSUART_recvTaskQueueLen); // set up interrupt callbacks for Rx
system_set_os_print(0); // disable esp debug which will go to Tx and mess up the line - see https://github.com/espruino/Espruino/issues/655
system_uart_swap(); // swap Rx and Tx pins to use GPIO13 (D7) and GPIO15 (D8) respectively
ETS_UART_INTR_ATTACH(emsuart_rx_intr_handler, nullptr);
USIE(EMSUART_UART) = (1 << UIBD); // enable only rx break interrupt
}
/*
* stop UART0 driver
* This is called prior to an OTA upload and also before a save to the filesystem to prevent conflicts
*/
void ICACHE_FLASH_ATTR EMSuart::stop() {
USIE(EMSUART_UART) = 0; // disable interrup
}
/*
* re-start UART0 driver
*/
void ICACHE_FLASH_ATTR EMSuart::restart() {
USIE(EMSUART_UART) = (1 << UIBD); // enable only rx break
}
void EMSuart::send_poll(uint8_t data) {
USC0(EMSUART_UART) &= ~(1 << UCBRK); // clear bit
USF(EMSUART_UART) = data;
USC0(EMSUART_UART) |= (1 << UCBRK); // send at the end
}
/*
* Send data to Tx line, ending with a
* buf contains the CRC and len is #bytes including the CRC
*/
EMSUART_STATUS ICACHE_FLASH_ATTR EMSuart::transmit(uint8_t * buf, uint8_t len) {
if (len == 0) {
return EMS_TX_STATUS_OK; // nothing to send
}
// new code from Michael. See https://github.com/proddy/EMS-ESP/issues/380
if (tx_mode_ == EMS_TXMODE_NEW) {
USC0(EMSUART_UART) &= ~(1 << UCBRK); // clear bit
for (uint8_t i = 0; i < len; i++) {
USF(EMSUART_UART) = buf[i];
}
USC0(EMSUART_UART) |= (1 << UCBRK); // send at the end
return EMS_TX_STATUS_OK;
}
// EMS+ https://github.com/proddy/EMS-ESP/issues/23#
if (tx_mode_ == EMS_TXMODE_EMSPLUS) { // With extra tx delay for EMS+
for (uint8_t i = 0; i < len; i++) {
USF(EMSUART_UART) = buf[i];
delayMicroseconds(EMSUART_TX_BRK_WAIT); // 2070
}
tx_brk(); // send
return EMS_TX_STATUS_OK;
}
// Junkers logic by @philrich
if (tx_mode_ == EMS_TXMODE_HT3) {
for (uint8_t i = 0; i < len; i++) {
USF(EMSUART_UART) = buf[i];
// just to be safe wait for tx fifo empty (still needed?)
while (((USS(EMSUART_UART) >> USTXC) & 0xff))
;
// wait until bits are sent on wire
delayMicroseconds(EMSUART_TX_WAIT_BYTE - EMSUART_TX_LAG + EMSUART_TX_WAIT_GAP); // 1760
}
tx_brk(); // send
return EMS_TX_STATUS_OK;
}
/*
* Logic for tx_mode of 0 (EMS_TXMODE_DEFAULT)
* based on code from https://github.com/proddy/EMS-ESP/issues/103 by @susisstrolch
*
* Logic:
* we emit the whole telegram, with Rx interrupt disabled, collecting busmaster response in FIFO.
* after sending the last char we poll the Rx status until either
* - size(Rx FIFO) == size(Tx-Telegram)
* - is detected
* At end of receive we re-enable Rx-INT and send a Tx-BRK in loopback mode.
*
* EMS-Bus error handling
* 1. Busmaster stops echoing on Tx w/o permission
* 2. Busmaster cancel telegram by sending a BRK
*
* Case 1. is handled by a watchdog counter which is reset on each
* Tx attempt. The timeout should be 20x EMSUART_BIT_TIME plus
* some smart guess for processing time on targeted EMS device.
* We set Status to EMS_TX_WTD_TIMEOUT and return
*
* Case 2. is handled via a BRK chk during transmission.
* We set Status to EMS_TX_BRK_DETECT and return
*
*/
EMSUART_STATUS result = EMS_TX_STATUS_OK;
// disable rx interrupt
// clear Rx status register, resetting the Rx FIFO and flush it
ETS_UART_INTR_DISABLE();
USC0(EMSUART_UART) |= (1 << UCRXRST);
emsuart_flush_fifos();
// send the bytes along the serial line
for (uint8_t i = 0; i < len; i++) {
uint16_t wdc = EMS_TX_TO_COUNT; // 1760
volatile uint8_t _usrxc = (USS(EMSUART_UART) >> USRXC) & 0xFF;
USF(EMSUART_UART) = buf[i]; // send each Tx byte
// wait for echo from the busmaster
while (((USS(EMSUART_UART) >> USRXC) & 0xFF) == _usrxc) {
delayMicroseconds(EMSUART_BUSY_WAIT); // burn CPU cycles...
if (--wdc == 0) {
ETS_UART_INTR_ENABLE();
return EMS_TX_WTD_TIMEOUT;
}
if (USIR(EMSUART_UART) & (1 << UIBD)) {
USIC(EMSUART_UART) = (1 << UIBD); // clear BRK detect IRQ
ETS_UART_INTR_ENABLE();
return EMS_TX_BRK_DETECT;
}
}
}
// we got the whole telegram in the Rx buffer
// on Rx-BRK (bus collision), we simply enable Rx and leave it
// otherwise we send the final Tx-BRK in the loopback and re=enable Rx-INT.
// worst case, we'll see an additional Rx-BRK...
if (result == EMS_TX_STATUS_OK) {
// neither bus collision nor timeout - send terminating BRK signal
if (!(USIS(EMSUART_UART) & (1 << UIBD))) {
// no bus collision - send terminating BRK signal
USC0(EMSUART_UART) |= (1 << UCLBE) | (1 << UCBRK); // enable loopback & set
// wait until BRK detected...
while (!(USIR(EMSUART_UART) & (1 << UIBD))) {
delayMicroseconds(EMSUART_BIT_TIME);
}
USC0(EMSUART_UART) &= ~((1 << UCBRK) | (1 << UCLBE)); // disable loopback & clear
USIC(EMSUART_UART) = (1 << UIBD); // clear BRK detect IRQ
phantomBreak = 1;
}
}
ETS_UART_INTR_ENABLE(); // open up the FIFO again to start receiving
return result; // send the Tx status back
}
/*
* flush everything left over in buffer, this clears both rx and tx FIFOs
*/
void ICACHE_FLASH_ATTR EMSuart::emsuart_flush_fifos() {
uint32_t tmp = ((1 << UCRXRST) | (1 << UCTXRST)); // bit mask
USC0(EMSUART_UART) |= (tmp); // set bits
USC0(EMSUART_UART) &= ~(tmp); // clear bits
}
/*
* Send a BRK signal
* Which is a 11-bit set of zero's (11 cycles)
*/
void ICACHE_FLASH_ATTR EMSuart::tx_brk() {
uint32_t tmp;
// must make sure Tx FIFO is empty
while (((USS(EMSUART_UART) >> USTXC) & 0xFF))
;
tmp = ((1 << UCRXRST) | (1 << UCTXRST)); // bit mask
USC0(EMSUART_UART) |= (tmp); // set bits
USC0(EMSUART_UART) &= ~(tmp); // clear bits
// To create a 11-bit we set TXD_BRK bit so the break signal will
// automatically be sent when the tx fifo is empty
tmp = (1 << UCBRK);
USC0(EMSUART_UART) |= (tmp); // set bit
if (tx_mode_ == EMS_TX_WTD_TIMEOUT) { // EMS+ mode
delayMicroseconds(EMSUART_TX_BRK_WAIT);
} else if (tx_mode_ == EMS_TXMODE_HT3) { // junkers mode
delayMicroseconds(EMSUART_TX_WAIT_BRK - EMSUART_TX_LAG); // 1144 (11 Bits)
}
USC0(EMSUART_UART) &= ~(tmp); // clear bit
}
} // namespace emsesp
#endif