/*
* EMS-ESP - https://github.com/emsesp/EMS-ESP
* Copyright 2020 Paul Derbyshire
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see .
*/
#include "system.h"
#include "emsesp.h" // for send_raw_telegram() command
#if defined(EMSESP_DEBUG)
#include "test/test.h"
#endif
#ifndef EMSESP_STANDALONE
#ifdef ESP_IDF_VERSION_MAJOR // IDF 4+
#if CONFIG_IDF_TARGET_ESP32 // ESP32/PICO-D4
#include "../esp32/rom/rtc.h"
#elif CONFIG_IDF_TARGET_ESP32S2
#include "../esp32s2/rom/rtc.h"
#elif CONFIG_IDF_TARGET_ESP32C3
#include "../esp32c3/rom/rtc.h"
#else
#error Target CONFIG_IDF_TARGET is not supported
#endif
#else // ESP32 Before IDF 4.0
#include "../rom/rtc.h"
#endif
#endif
namespace emsesp {
uuid::log::Logger System::logger_{F_(system), uuid::log::Facility::KERN};
#ifndef EMSESP_STANDALONE
uuid::syslog::SyslogService System::syslog_;
#endif
// init statics
PButton System::myPButton_;
bool System::restart_requested_ = false;
// send on/off to a gpio pin
// value: true = HIGH, false = LOW
bool System::command_pin(const char * value, const int8_t id) {
#ifndef EMSESP_STANDALONE
if (!is_valid_gpio(id)) {
LOG_INFO(F("Invalid GPIO number"));
return false;
}
bool v = false;
std::string v1 = {7, '\0'};
int v2 = 0;
if (id == 25 && Helpers::value2number(value, v2)) {
if (v2 >= 0 && v2 <= 255) {
dacWrite(id, v2);
return true;
}
} else if (Helpers::value2bool(value, v)) {
pinMode(id, OUTPUT);
digitalWrite(id, v);
// LOG_INFO(F("GPIO %d set to %s"), id, v ? "HIGH" : "LOW");
return true;
} else if (Helpers::value2string(value, v1)) {
if (v1 == "input" || v1 == "in" || v1 == "-1") {
pinMode(id, INPUT);
v = digitalRead(id);
// LOG_INFO(F("GPIO %d set input, state %s"), id, v ? "HIGH" : "LOW");
return true;
}
}
// LOG_INFO(F("GPIO %d: invalid value"), id);
#endif
return false;
}
// send raw to ems
bool System::command_send(const char * value, const int8_t id) {
EMSESP::send_raw_telegram(value); // ignore id
return true;
}
// fetch device values
bool System::command_fetch(const char * value, const int8_t id) {
std::string value_s;
if (Helpers::value2string(value, value_s)) {
if (value_s == "all") {
LOG_INFO(F("Requesting data from EMS devices"));
EMSESP::fetch_device_values();
return true;
} else if (value_s == read_flash_string(F_(boiler))) {
EMSESP::fetch_device_values_type(EMSdevice::DeviceType::BOILER);
return true;
} else if (value_s == read_flash_string(F_(thermostat))) {
EMSESP::fetch_device_values_type(EMSdevice::DeviceType::THERMOSTAT);
return true;
} else if (value_s == read_flash_string(F_(solar))) {
EMSESP::fetch_device_values_type(EMSdevice::DeviceType::SOLAR);
return true;
} else if (value_s == read_flash_string(F_(mixer))) {
EMSESP::fetch_device_values_type(EMSdevice::DeviceType::MIXER);
return true;
}
}
EMSESP::fetch_device_values(); // default if no name or id is given
return true;
}
// mqtt publish
bool System::command_publish(const char * value, const int8_t id) {
std::string value_s;
if (Helpers::value2string(value, value_s)) {
if (value_s == "ha") {
EMSESP::publish_all(true); // includes HA
LOG_INFO(F("Publishing all data to MQTT, including HA configs"));
return true;
} else if (value_s == read_flash_string(F_(boiler))) {
EMSESP::publish_device_values(EMSdevice::DeviceType::BOILER);
return true;
} else if (value_s == read_flash_string(F_(thermostat))) {
EMSESP::publish_device_values(EMSdevice::DeviceType::THERMOSTAT);
return true;
} else if (value_s == read_flash_string(F_(solar))) {
EMSESP::publish_device_values(EMSdevice::DeviceType::SOLAR);
return true;
} else if (value_s == read_flash_string(F_(mixer))) {
EMSESP::publish_device_values(EMSdevice::DeviceType::MIXER);
return true;
} else if (value_s == "other") {
EMSESP::publish_other_values(); // switch and heat pump
return true;
} else if ((value_s == read_flash_string(F_(dallassensor))) || (value_s == read_flash_string(F_(analogsensor)))) {
EMSESP::publish_sensor_values(true);
return true;
}
}
EMSESP::publish_all();
LOG_INFO(F("Publishing all data to MQTT"));
return true;
}
// syslog level
bool System::command_syslog_level(const char * value, const int8_t id) {
uint8_t s = 0xff;
if (Helpers::value2enum(value, s, FL_(enum_syslog_level))) {
bool changed = false;
EMSESP::webSettingsService.update(
[&](WebSettings & settings) {
if (settings.syslog_level != (int8_t)s - 1) {
settings.syslog_level = (int8_t)s - 1;
changed = true;
}
return StateUpdateResult::CHANGED;
},
"local");
if (changed) {
EMSESP::system_.syslog_init();
}
return true;
}
return false;
}
// watch
bool System::command_watch(const char * value, const int8_t id) {
uint8_t w = 0xff;
uint16_t i = Helpers::hextoint(value);
if (Helpers::value2enum(value, w, FL_(enum_watch))) {
if (w == 0 || EMSESP::watch() == EMSESP::Watch::WATCH_OFF) {
EMSESP::watch_id(0);
}
if (Mqtt::publish_single() && w != EMSESP::watch()) {
if (Mqtt::publish_single2cmd()) {
Mqtt::publish(F("system/watch"),
EMSESP::system_.enum_format() == ENUM_FORMAT_INDEX ? Helpers::itoa(w) : read_flash_string(FL_(enum_watch)[w]).c_str());
} else {
Mqtt::publish(F("system_data/watch"),
EMSESP::system_.enum_format() == ENUM_FORMAT_INDEX ? Helpers::itoa(w) : read_flash_string(FL_(enum_watch)[w]).c_str());
}
}
EMSESP::watch(w);
return true;
} else if (i) {
if (Mqtt::publish_single() && i != EMSESP::watch_id()) {
if (Mqtt::publish_single2cmd()) {
Mqtt::publish(F("system/watch"), Helpers::hextoa(i));
} else {
Mqtt::publish(F("system_data/watch"), Helpers::hextoa(i));
}
}
EMSESP::watch_id(i);
if (EMSESP::watch() == EMSESP::Watch::WATCH_OFF) {
EMSESP::watch(EMSESP::Watch::WATCH_ON);
}
return true;
}
return false;
}
// restart EMS-ESP
void System::system_restart() {
LOG_INFO(F("Restarting EMS-ESP..."));
Shell::loop_all();
delay(1000); // wait a second
#ifndef EMSESP_STANDALONE
ESP.restart();
#endif
}
// saves all settings
void System::wifi_reconnect() {
LOG_INFO(F("WiFi reconnecting..."));
Shell::loop_all();
EMSESP::console_.loop();
delay(1000); // wait a second
EMSESP::webSettingsService.save(); // local settings
EMSESP::esp8266React.getNetworkSettingsService()->callUpdateHandlers("local"); // in case we've changed ssid or password
}
// format the FS. Wipes everything.
void System::format(uuid::console::Shell & shell) {
auto msg = F("Formatting file system. This will reset all settings to their defaults");
shell.logger().warning(msg);
shell.flush();
EMSuart::stop();
#ifndef EMSESP_STANDALONE
LITTLEFS.format();
#endif
System::system_restart();
}
void System::syslog_init() {
#ifndef EMSESP_STANDALONE
bool was_enabled = syslog_enabled_;
#endif
EMSESP::webSettingsService.read([&](WebSettings & settings) {
syslog_enabled_ = settings.syslog_enabled;
syslog_level_ = settings.syslog_level;
syslog_mark_interval_ = settings.syslog_mark_interval;
syslog_host_ = settings.syslog_host;
syslog_port_ = settings.syslog_port;
});
#ifndef EMSESP_STANDALONE
if (syslog_enabled_) {
// start & configure syslog
if (!was_enabled) {
syslog_.start();
EMSESP::logger().info(F("Starting Syslog"));
}
syslog_.log_level((uuid::log::Level)syslog_level_);
syslog_.mark_interval(syslog_mark_interval_);
syslog_.destination(syslog_host_.c_str(), syslog_port_);
syslog_.hostname(hostname().c_str());
// register the command
Command::add(EMSdevice::DeviceType::SYSTEM, F_(syslog), System::command_syslog_level, F("change the syslog level"), CommandFlag::ADMIN_ONLY);
} else if (was_enabled) {
// in case service is still running, this flushes the queue
// https://github.com/emsesp/EMS-ESP/issues/496
EMSESP::logger().info(F("Stopping Syslog"));
syslog_.log_level((uuid::log::Level)-1);
syslog_.mark_interval(0);
syslog_.destination("");
}
if (Mqtt::publish_single()) {
if (Mqtt::publish_single2cmd()) {
Mqtt::publish(F("system/syslog"), syslog_enabled_ ? read_flash_string(FL_(enum_syslog_level)[syslog_level_ + 1]).c_str() : "off");
if (EMSESP::watch_id() == 0 || EMSESP::watch() == 0) {
Mqtt::publish(F("system/watch"),
EMSESP::system_.enum_format() == ENUM_FORMAT_INDEX ? Helpers::itoa(EMSESP::watch())
: read_flash_string(FL_(enum_watch)[EMSESP::watch()]).c_str());
} else {
Mqtt::publish(F("system/watch"), Helpers::hextoa(EMSESP::watch_id()));
}
} else {
Mqtt::publish(F("system_data/syslog"), syslog_enabled_ ? read_flash_string(FL_(enum_syslog_level)[syslog_level_ + 1]).c_str() : "off");
if (EMSESP::watch_id() == 0 || EMSESP::watch() == 0) {
Mqtt::publish(F("system_data/watch"),
EMSESP::system_.enum_format() == ENUM_FORMAT_INDEX ? Helpers::itoa(EMSESP::watch())
: read_flash_string(FL_(enum_watch)[EMSESP::watch()]).c_str());
} else {
Mqtt::publish(F("system_data/watch"), Helpers::hextoa(EMSESP::watch_id()));
}
}
}
#endif
}
// read some specific system settings to store locally for faster access
void System::reload_settings() {
EMSESP::webSettingsService.read([&](WebSettings & settings) {
pbutton_gpio_ = settings.pbutton_gpio;
analog_enabled_ = settings.analog_enabled;
low_clock_ = settings.low_clock;
hide_led_ = settings.hide_led;
led_gpio_ = settings.led_gpio;
board_profile_ = settings.board_profile;
telnet_enabled_ = settings.telnet_enabled;
rx_gpio_ = settings.rx_gpio;
tx_gpio_ = settings.tx_gpio;
dallas_gpio_ = settings.dallas_gpio;
syslog_enabled_ = settings.syslog_enabled;
syslog_level_ = settings.syslog_level;
syslog_mark_interval_ = settings.syslog_mark_interval;
syslog_host_ = settings.syslog_host;
syslog_port_ = settings.syslog_port;
fahrenheit_ = settings.fahrenheit;
bool_format_ = settings.bool_format;
enum_format_ = settings.enum_format;
readonly_mode_ = settings.readonly_mode;
phy_type_ = settings.phy_type;
eth_power_ = settings.eth_power;
eth_phy_addr_ = settings.eth_phy_addr;
eth_clock_mode_ = settings.eth_clock_mode;
});
}
// adjust WiFi settings
// this for problem solving mesh and connection issues, and also get EMS bus-powered more stable by lowering power
void System::wifi_tweak() {
#if defined(EMSESP_WIFI_TWEAK)
// Default Tx Power is 80 = 20dBm <-- default
// WIFI_POWER_19_5dBm = 78,// 19.5dBm
// WIFI_POWER_19dBm = 76,// 19dBm
// WIFI_POWER_18_5dBm = 74,// 18.5dBm
// WIFI_POWER_17dBm = 68,// 17dBm
// WIFI_POWER_15dBm = 60,// 15dBm
// WIFI_POWER_13dBm = 52,// 13dBm
// WIFI_POWER_11dBm = 44,// 11dBm
// WIFI_POWER_8_5dBm = 34,// 8.5dBm
// WIFI_POWER_7dBm = 28,// 7dBm
// WIFI_POWER_5dBm = 20,// 5dBm
// WIFI_POWER_2dBm = 8,// 2dBm
// WIFI_POWER_MINUS_1dBm = -4// -1dBm
wifi_power_t p1 = WiFi.getTxPower();
(void)WiFi.setTxPower(WIFI_POWER_17dBm);
wifi_power_t p2 = WiFi.getTxPower();
bool s1 = WiFi.getSleep();
WiFi.setSleep(false); // turn off sleep - WIFI_PS_NONE
bool s2 = WiFi.getSleep();
#if defined(EMSESP_DEBUG)
LOG_DEBUG(F("[DEBUG] Adjusting WiFi - Tx power %d->%d, Sleep %d->%d"), p1, p2, s1, s2);
#endif
#endif
}
// check for valid ESP32 pins. This is very dependent on which ESP32 board is being used.
// Typically you can't use 1, 6-11, 12, 14, 15, 20, 24, 28-31 and 40+
// we allow 0 as it has a special function on the NodeMCU apparently
// See https://diyprojects.io/esp32-how-to-use-gpio-digital-io-arduino-code/#.YFpVEq9KhjG
// and https://nodemcu.readthedocs.io/en/dev-esp32/modules/gpio/
bool System::is_valid_gpio(uint8_t pin) {
if ((pin == 1) || (pin >= 6 && pin <= 12) || (pin >= 14 && pin <= 15) || (pin == 20) || (pin == 24) || (pin >= 28 && pin <= 31) || (pin > 40)) {
return false; // bad pin
}
return true;
}
// Starts up the UART Serial bridge
void System::start() {
#ifndef EMSESP_STANDALONE
// disable bluetooth module
// periph_module_disable(PERIPH_BT_MODULE);
if (low_clock_) {
setCpuFrequencyMhz(160);
}
#endif
EMSESP::esp8266React.getNetworkSettingsService()->read([&](NetworkSettings & networkSettings) {
hostname(networkSettings.hostname.c_str()); // sets the hostname
});
commands_init(); // console & api commands
led_init(false); // init LED
button_init(false); // the special button
network_init(false); // network
syslog_init(); // start Syslog
EMSESP::uart_init(); // start UART
}
// button single click
void System::button_OnClick(PButton & b) {
LOG_DEBUG(F("Button pressed - single click"));
}
// button double click
void System::button_OnDblClick(PButton & b) {
LOG_DEBUG(F("Button pressed - double click - reconnect"));
EMSESP::system_.wifi_reconnect();
}
// button long press
void System::button_OnLongPress(PButton & b) {
LOG_DEBUG(F("Button pressed - long press"));
}
// button indefinite press
void System::button_OnVLongPress(PButton & b) {
LOG_DEBUG(F("Button pressed - very long press"));
#ifndef EMSESP_STANDALONE
LOG_WARNING(F("Performing factory reset..."));
EMSESP::console_.loop();
#ifdef EMSESP_DEBUG
Test::listDir(LITTLEFS, FS_CONFIG_DIRECTORY, 3);
#endif
EMSESP::esp8266React.factoryReset();
#endif
}
// push button
void System::button_init(bool refresh) {
if (refresh) {
reload_settings();
}
if (is_valid_gpio(pbutton_gpio_)) {
if (!myPButton_.init(pbutton_gpio_, HIGH)) {
LOG_DEBUG(F("Multi-functional button not detected"));
} else {
LOG_DEBUG(F("Multi-functional button enabled"));
}
} else {
LOG_WARNING(F("Invalid button GPIO. Check config."));
}
myPButton_.onClick(BUTTON_Debounce, button_OnClick);
myPButton_.onDblClick(BUTTON_DblClickDelay, button_OnDblClick);
myPButton_.onLongPress(BUTTON_LongPressDelay, button_OnLongPress);
myPButton_.onVLongPress(BUTTON_VLongPressDelay, button_OnVLongPress);
}
// set the LED to on or off when in normal operating mode
void System::led_init(bool refresh) {
if (refresh) {
reload_settings();
}
if ((led_gpio_ != 0) && is_valid_gpio(led_gpio_)) {
pinMode(led_gpio_, OUTPUT); // 0 means disabled
digitalWrite(led_gpio_, !LED_ON); // start with LED off
}
}
// returns true if OTA is uploading
bool System::upload_status() {
#if defined(EMSESP_STANDALONE)
return false;
#else
return upload_status_ || Update.isRunning();
#endif
}
void System::upload_status(bool in_progress) {
// if we've just started an upload
if (!upload_status_ && in_progress) {
EMSuart::stop();
}
upload_status_ = in_progress;
}
// checks system health and handles LED flashing wizardry
void System::loop() {
// check if we're supposed to do a reset/restart
if (restart_requested()) {
this->system_restart();
}
#ifndef EMSESP_STANDALONE
myPButton_.check(); // check button press
if (syslog_enabled_) {
syslog_.loop();
}
led_monitor(); // check status and report back using the LED
system_check(); // check system health
// send out heartbeat
uint32_t currentMillis = uuid::get_uptime();
if (!last_heartbeat_ || (currentMillis - last_heartbeat_ > SYSTEM_HEARTBEAT_INTERVAL)) {
last_heartbeat_ = currentMillis;
send_heartbeat();
}
#ifndef EMSESP_STANDALONE
#if defined(EMSESP_DEBUG)
/*
static uint32_t last_memcheck_ = 0;
if (currentMillis - last_memcheck_ > 10000) { // 10 seconds
last_memcheck_ = currentMillis;
show_mem("core");
}
*/
#endif
#endif
#endif
}
// create the json for heartbeat
bool System::heartbeat_json(JsonObject & output) {
uint8_t bus_status = EMSESP::bus_status();
if (bus_status == EMSESP::BUS_STATUS_TX_ERRORS) {
output["bus_status"] = FJSON("txerror");
} else if (bus_status == EMSESP::BUS_STATUS_CONNECTED) {
output["bus_status"] = FJSON("connected");
} else {
output["bus_status"] = FJSON("disconnected");
}
output["uptime"] = uuid::log::format_timestamp_ms(uuid::get_uptime_ms(), 3);
output["uptime_sec"] = uuid::get_uptime_sec();
bool value_b = EMSESP::system_.ntp_connected();
if (Mqtt::ha_enabled()) {
char s[7];
output["ntp_status"] = Helpers::render_boolean(s, value_b); // for HA always render as string
} else if (EMSESP::system_.bool_format() == BOOL_FORMAT_TRUEFALSE) {
output["ntp_status"] = value_b;
} else if (EMSESP::system_.bool_format() == BOOL_FORMAT_10) {
output["ntp_status"] = value_b ? 1 : 0;
} else {
char s[7];
output["ntp_status"] = Helpers::render_boolean(s, value_b);
}
output["rxreceived"] = EMSESP::rxservice_.telegram_count();
output["rxfails"] = EMSESP::rxservice_.telegram_error_count();
output["txreads"] = EMSESP::txservice_.telegram_read_count();
output["txwrites"] = EMSESP::txservice_.telegram_write_count();
output["txfails"] = EMSESP::txservice_.telegram_read_fail_count() + EMSESP::txservice_.telegram_write_fail_count();
if (Mqtt::enabled()) {
output["mqttcount"] = Mqtt::publish_count();
output["mqttfails"] = Mqtt::publish_fails();
}
output["apicalls"] = WebAPIService::api_count(); // + WebAPIService::api_fails();
output["apifails"] = WebAPIService::api_fails();
if (EMSESP::dallas_enabled() || EMSESP::analog_enabled()) {
output["sensorreads"] = EMSESP::dallassensor_.reads() + EMSESP::analogsensor_.reads();
output["sensorfails"] = EMSESP::dallassensor_.fails() + EMSESP::analogsensor_.fails();
}
#ifndef EMSESP_STANDALONE
output["freemem"] = ESP.getFreeHeap() / 1000L; // kilobytes
#endif
#ifndef EMSESP_STANDALONE
if (!ethernet_connected_) {
int8_t rssi = WiFi.RSSI();
output["rssi"] = rssi;
output["wifistrength"] = wifi_quality(rssi);
}
#endif
return true;
}
// send periodic MQTT message with system information
void System::send_heartbeat() {
// don't send heartbeat if WiFi or MQTT is not connected
if (!Mqtt::connected()) {
return;
}
StaticJsonDocument doc;
JsonObject json = doc.to();
if (heartbeat_json(json)) {
Mqtt::publish(F_(heartbeat), json); // send to MQTT with retain off. This will add to MQTT queue.
}
}
// initializes network
void System::network_init(bool refresh) {
if (refresh) {
reload_settings();
}
last_system_check_ = 0; // force the LED to go from fast flash to pulse
send_heartbeat();
if (phy_type_ == PHY_type::PHY_TYPE_NONE) {
return;
}
// configure Ethernet
int mdc = 23; // Pin# of the I²C clock signal for the Ethernet PHY - hardcoded
int mdio = 18; // Pin# of the I²C IO signal for the Ethernet PHY - hardcoded
uint8_t phy_addr = eth_phy_addr_; // I²C-address of Ethernet PHY (0 or 1 for LAN8720, 31 for TLK110)
int8_t power = eth_power_; // Pin# of the enable signal for the external crystal oscillator (-1 to disable for internal APLL source)
eth_phy_type_t type = (phy_type_ == PHY_type::PHY_TYPE_LAN8720) ? ETH_PHY_LAN8720 : ETH_PHY_TLK110; // Type of the Ethernet PHY (LAN8720 or TLK110)
// clock mode
// ETH_CLOCK_GPIO0_IN = 0 RMII clock input to GPIO0
// ETH_CLOCK_GPIO0_OUT = 1 RMII clock output from GPIO0
// ETH_CLOCK_GPIO16_OUT = 2 RMII clock output from GPIO16
// ETH_CLOCK_GPIO17_OUT = 3 RMII clock output from GPIO17, for 50hz inverted clock
auto clock_mode = (eth_clock_mode_t)eth_clock_mode_;
ETH.begin(phy_addr, power, mdc, mdio, type, clock_mode);
}
// check health of system, done every 5 seconds
void System::system_check() {
if (!last_system_check_ || ((uint32_t)(uuid::get_uptime() - last_system_check_) >= SYSTEM_CHECK_FREQUENCY)) {
last_system_check_ = uuid::get_uptime();
// check if we have a valid network connection
if (!ethernet_connected() && (WiFi.status() != WL_CONNECTED)) {
healthcheck_ |= HEALTHCHECK_NO_NETWORK;
} else {
healthcheck_ &= ~HEALTHCHECK_NO_NETWORK;
}
// check if we have a bus connection
if (!EMSbus::bus_connected()) {
healthcheck_ |= HEALTHCHECK_NO_BUS;
} else {
healthcheck_ &= ~HEALTHCHECK_NO_BUS;
}
// see if the healthcheck state has changed
static uint8_t last_healthcheck_ = 0;
if (healthcheck_ != last_healthcheck_) {
last_healthcheck_ = healthcheck_;
// see if we're better now
if (healthcheck_ == 0) {
// everything is healthy, show LED permanently on or off depending on setting
if (led_gpio_) {
digitalWrite(led_gpio_, hide_led_ ? !LED_ON : LED_ON);
}
send_heartbeat();
} else {
// turn off LED so we're ready to the flashes
if (led_gpio_) {
digitalWrite(led_gpio_, !LED_ON);
}
}
}
}
}
// commands - takes static function pointers
void System::commands_init() {
// Command::add(EMSdevice::DeviceType::SYSTEM, F_(pin), System::command_pin, F("set a GPIO on/off"), CommandFlag::ADMIN_ONLY);
Command::add(EMSdevice::DeviceType::SYSTEM, F_(send), System::command_send, F("send a telegram"), CommandFlag::ADMIN_ONLY);
Command::add(EMSdevice::DeviceType::SYSTEM, F_(fetch), System::command_fetch, F("refresh all EMS values"), CommandFlag::ADMIN_ONLY);
Command::add(EMSdevice::DeviceType::SYSTEM, F_(restart), System::command_restart, F("restart EMS-ESP"), CommandFlag::ADMIN_ONLY);
Command::add(EMSdevice::DeviceType::SYSTEM, F_(watch), System::command_watch, F("watch incoming telegrams"));
// register syslog command in syslog init
// Command::add(EMSdevice::DeviceType::SYSTEM, F_(syslog), System::command_syslog_level, F("set syslog level"), CommandFlag::ADMIN_ONLY);
if (Mqtt::enabled()) {
Command::add(EMSdevice::DeviceType::SYSTEM, F_(publish), System::command_publish, F("force a MQTT publish"));
}
// these commands will return data in JSON format
Command::add(EMSdevice::DeviceType::SYSTEM, F_(info), System::command_info, F("show system status"));
Command::add(EMSdevice::DeviceType::SYSTEM, F_(settings), System::command_settings, F("fetch system settings"));
Command::add(EMSdevice::DeviceType::SYSTEM, F_(customizations), System::command_customizations, F("fetch system customizations"));
Command::add(EMSdevice::DeviceType::SYSTEM, F_(commands), System::command_commands, F("fetch system commands"));
#if defined(EMSESP_DEBUG)
Command::add(EMSdevice::DeviceType::SYSTEM, F("test"), System::command_test, F("run a specific test"));
#endif
// MQTT subscribe "ems-esp/system/#"
Mqtt::subscribe(EMSdevice::DeviceType::SYSTEM, "system/#", nullptr); // use empty function callback
}
// uses LED to show system health
void System::led_monitor() {
// we only need to run the LED healthcheck if there are errors
if (!healthcheck_) {
return; // all good
}
static uint32_t led_long_timer_ = 1; // 1 will kick it off immediately
static uint32_t led_short_timer_ = 0;
static uint8_t led_flash_step_ = 0; // 0 means we're not in the short flash timer
auto current_time = uuid::get_uptime();
// first long pause before we start flashing
if (led_long_timer_ && (uint32_t)(current_time - led_long_timer_) >= HEALTHCHECK_LED_LONG_DUARATION) {
// Serial.println("starting the flash check");
led_short_timer_ = current_time; // start the short timer
led_long_timer_ = 0; // stop long timer
led_flash_step_ = 1; // enable the short flash timer
}
// the flash timer which starts after the long pause
if (led_flash_step_ && (uint32_t)(current_time - led_short_timer_) >= HEALTHCHECK_LED_FLASH_DUARATION) {
led_long_timer_ = 0; // stop the long timer
led_short_timer_ = current_time;
static bool led_on_ = false;
if (++led_flash_step_ == 8) {
// reset the whole sequence
// Serial.println("resetting flash check");
led_long_timer_ = uuid::get_uptime();
led_flash_step_ = 0;
digitalWrite(led_gpio_, !LED_ON); // LED off
} else if (led_flash_step_ % 2) {
// handle the step events (on odd numbers 3,5,7,etc). see if we need to turn on a LED
// 1 flash is the EMS bus is not connected
// 2 flashes if the network (wifi or ethernet) is not connected
// 3 flashes is both the bus and the network are not connected. Then you know you're truly f*cked.
if ((led_flash_step_ == 3)
&& (((healthcheck_ & HEALTHCHECK_NO_NETWORK) == HEALTHCHECK_NO_NETWORK) || ((healthcheck_ & HEALTHCHECK_NO_BUS) == HEALTHCHECK_NO_BUS))) {
led_on_ = true;
}
if ((led_flash_step_ == 5) && ((healthcheck_ & HEALTHCHECK_NO_NETWORK) == HEALTHCHECK_NO_NETWORK)) {
led_on_ = true;
}
if ((led_flash_step_ == 7) && ((healthcheck_ & HEALTHCHECK_NO_NETWORK) == HEALTHCHECK_NO_NETWORK)
&& ((healthcheck_ & HEALTHCHECK_NO_BUS) == HEALTHCHECK_NO_BUS)) {
led_on_ = true;
}
if (led_on_ && led_gpio_) {
digitalWrite(led_gpio_, LED_ON);
}
} else {
// turn the led off after the flash, on even number count
if (led_on_ && led_gpio_) {
digitalWrite(led_gpio_, !LED_ON);
led_on_ = false;
}
}
}
}
// Return the quality (Received Signal Strength Indicator) of the WiFi network as a %
// High quality: 90% ~= -55dBm
// Medium quality: 50% ~= -75dBm
// Low quality: 30% ~= -85dBm
// Unusable quality: 8% ~= -96dBm
int8_t System::wifi_quality(int8_t dBm) {
if (dBm <= -100) {
return 0;
}
if (dBm >= -50) {
return 100;
}
return 2 * (dBm + 100);
}
// print users to console
void System::show_users(uuid::console::Shell & shell) {
shell.printfln(F("Users:"));
#ifndef EMSESP_STANDALONE
EMSESP::esp8266React.getSecuritySettingsService()->read([&](SecuritySettings & securitySettings) {
for (const User & user : securitySettings.users) {
shell.printfln(F(" username: %s, password: %s, is_admin: %s"), user.username.c_str(), user.password.c_str(), user.admin ? F("yes") : F("no"));
}
});
#endif
shell.println();
}
void System::show_system(uuid::console::Shell & shell) {
shell.println("System:");
shell.printfln(F(" Board profile: %s"), board_profile().c_str());
shell.printfln(F(" Uptime: %s"), uuid::log::format_timestamp_ms(uuid::get_uptime_ms(), 3).c_str());
#ifndef EMSESP_STANDALONE
shell.printfln(F(" SDK version: %s"), ESP.getSdkVersion());
shell.printfln(F(" CPU frequency: %lu MHz"), ESP.getCpuFreqMHz());
shell.printfln(F(" Free heap: %lu bytes"), (uint32_t)ESP.getFreeHeap());
shell.println();
shell.println("Network:");
switch (WiFi.status()) {
case WL_IDLE_STATUS:
shell.printfln(F(" Network: Idle"));
break;
case WL_NO_SSID_AVAIL:
shell.printfln(F(" Network: Network not found"));
break;
case WL_SCAN_COMPLETED:
shell.printfln(F(" Network: Network scan complete"));
break;
case WL_CONNECTED:
shell.printfln(F(" Network: connected"));
shell.printfln(F(" SSID: %s"), WiFi.SSID().c_str());
shell.printfln(F(" BSSID: %s"), WiFi.BSSIDstr().c_str());
shell.printfln(F(" RSSI: %d dBm (%d %%)"), WiFi.RSSI(), wifi_quality(WiFi.RSSI()));
shell.printfln(F(" MAC address: %s"), WiFi.macAddress().c_str());
shell.printfln(F(" Hostname: %s"), WiFi.getHostname());
shell.printfln(F(" IPv4 address: %s/%s"), uuid::printable_to_string(WiFi.localIP()).c_str(), uuid::printable_to_string(WiFi.subnetMask()).c_str());
shell.printfln(F(" IPv4 gateway: %s"), uuid::printable_to_string(WiFi.gatewayIP()).c_str());
shell.printfln(F(" IPv4 nameserver: %s"), uuid::printable_to_string(WiFi.dnsIP()).c_str());
if (WiFi.localIPv6().toString() != "0000:0000:0000:0000:0000:0000:0000:0000") {
shell.printfln(F(" IPv6 address: %s"), uuid::printable_to_string(WiFi.localIPv6()).c_str());
}
break;
case WL_CONNECT_FAILED:
shell.printfln(F(" WiFi Network: Connection failed"));
break;
case WL_CONNECTION_LOST:
shell.printfln(F(" WiFi Network: Connection lost"));
break;
case WL_DISCONNECTED:
shell.printfln(F(" WiFi Network: Disconnected"));
break;
case WL_NO_SHIELD:
default:
shell.printfln(F(" WiFi Network: Unknown"));
break;
}
// show Ethernet if connected
if (ethernet_connected_) {
shell.println();
shell.printfln(F(" Ethernet Network: connected"));
shell.printfln(F(" MAC address: %s"), ETH.macAddress().c_str());
shell.printfln(F(" Hostname: %s"), ETH.getHostname());
shell.printfln(F(" IPv4 address: %s/%s"), uuid::printable_to_string(ETH.localIP()).c_str(), uuid::printable_to_string(ETH.subnetMask()).c_str());
shell.printfln(F(" IPv4 gateway: %s"), uuid::printable_to_string(ETH.gatewayIP()).c_str());
shell.printfln(F(" IPv4 nameserver: %s"), uuid::printable_to_string(ETH.dnsIP()).c_str());
if (ETH.localIPv6().toString() != "0000:0000:0000:0000:0000:0000:0000:0000") {
shell.printfln(F(" IPv6 address: %s"), uuid::printable_to_string(ETH.localIPv6()).c_str());
}
}
shell.println();
shell.println("Syslog:");
if (!syslog_enabled_) {
shell.printfln(F(" Syslog: disabled"));
} else {
shell.printfln(F(" Syslog: %s"), syslog_.started() ? "started" : "stopped");
shell.print(F(" "));
shell.printfln(F_(host_fmt), !syslog_host_.isEmpty() ? syslog_host_.c_str() : read_flash_string(F_(unset)).c_str());
shell.printfln(F(" IP: %s"), uuid::printable_to_string(syslog_.ip()).c_str());
shell.print(F(" "));
shell.printfln(F_(port_fmt), syslog_port_);
shell.print(F(" "));
shell.printfln(F_(log_level_fmt), uuid::log::format_level_lowercase(static_cast(syslog_level_)));
shell.print(F(" "));
shell.printfln(F_(mark_interval_fmt), syslog_mark_interval_);
shell.printfln(F(" Queued: %d"), syslog_.queued());
}
#endif
}
// upgrade from previous versions of EMS-ESP
// returns true if an upgrade was done
bool System::check_upgrade() {
return false;
}
// list commands
bool System::command_commands(const char * value, const int8_t id, JsonObject & output) {
return Command::list(EMSdevice::DeviceType::SYSTEM, output);
}
// export all settings to JSON text
// http://ems-esp/api/system/settings
// value and id are ignored
// note: ssid and passwords are excluded
bool System::command_settings(const char * value, const int8_t id, JsonObject & output) {
output["label"] = "settings";
JsonObject node = output.createNestedObject("System");
node["version"] = EMSESP_APP_VERSION;
EMSESP::esp8266React.getNetworkSettingsService()->read([&](NetworkSettings & settings) {
node = output.createNestedObject("Network");
node["hostname"] = settings.hostname;
node["static_ip_config"] = settings.staticIPConfig;
node["enableIPv6"] = settings.enableIPv6;
node["low_bandwidth"] = settings.bandwidth20;
node["disable_sleep"] = settings.nosleep;
JsonUtils::writeIP(node, "local_ip", settings.localIP);
JsonUtils::writeIP(node, "gateway_ip", settings.gatewayIP);
JsonUtils::writeIP(node, "subnet_mask", settings.subnetMask);
JsonUtils::writeIP(node, "dns_ip_1", settings.dnsIP1);
JsonUtils::writeIP(node, "dns_ip_2", settings.dnsIP2);
});
#ifndef EMSESP_STANDALONE
EMSESP::esp8266React.getAPSettingsService()->read([&](APSettings & settings) {
node = output.createNestedObject("AP");
const char * pM[] = {"always", "disconnected", "never"};
node["provision_mode"] = pM[settings.provisionMode];
node["security"] = settings.password.length() ? "wpa2" : "open";
node["ssid"] = settings.ssid;
node["local_ip"] = settings.localIP.toString();
node["gateway_ip"] = settings.gatewayIP.toString();
node["subnet_mask"] = settings.subnetMask.toString();
node["channel"] = settings.channel;
node["ssid_hidden"] = settings.ssidHidden;
node["max_clients"] = settings.maxClients;
});
#endif
EMSESP::esp8266React.getMqttSettingsService()->read([&](MqttSettings & settings) {
node = output.createNestedObject("MQTT");
node["enabled"] = settings.enabled;
node["host"] = settings.host;
node["port"] = settings.port;
node["username"] = settings.username;
node["client_id"] = settings.clientId;
node["keep_alive"] = settings.keepAlive;
node["clean_session"] = settings.cleanSession;
node["base"] = settings.base;
node["discovery_prefix"] = settings.discovery_prefix;
node["nested_format"] = settings.nested_format;
node["ha_enabled"] = settings.ha_enabled;
node["mqtt_qos"] = settings.mqtt_qos;
node["mqtt_retain"] = settings.mqtt_retain;
node["publish_time_boiler"] = settings.publish_time_boiler;
node["publish_time_thermostat"] = settings.publish_time_thermostat;
node["publish_time_solar"] = settings.publish_time_solar;
node["publish_time_mixer"] = settings.publish_time_mixer;
node["publish_time_other"] = settings.publish_time_other;
node["publish_time_sensor"] = settings.publish_time_sensor;
node["publish_single"] = settings.publish_single;
node["send_response"] = settings.send_response;
});
#ifndef EMSESP_STANDALONE
EMSESP::esp8266React.getNTPSettingsService()->read([&](NTPSettings & settings) {
node = output.createNestedObject("NTP");
node["enabled"] = settings.enabled;
node["server"] = settings.server;
node["tz_label"] = settings.tzLabel;
node["tz_format"] = settings.tzFormat;
});
EMSESP::esp8266React.getOTASettingsService()->read([&](OTASettings & settings) {
node = output.createNestedObject("OTA");
node["enabled"] = settings.enabled;
node["port"] = settings.port;
});
#endif
EMSESP::webSettingsService.read([&](WebSettings & settings) {
node = output.createNestedObject("Settings");
node["board_profile"] = settings.board_profile;
node["tx_mode"] = settings.tx_mode;
node["ems_bus_id"] = settings.ems_bus_id;
node["syslog_enabled"] = settings.syslog_enabled;
node["syslog_level"] = settings.syslog_level;
node["syslog_mark_interval"] = settings.syslog_mark_interval;
node["syslog_host"] = settings.syslog_host;
node["syslog_port"] = settings.syslog_port;
node["master_thermostat"] = settings.master_thermostat;
node["shower_timer"] = settings.shower_timer;
node["shower_alert"] = settings.shower_alert;
node["rx_gpio"] = settings.rx_gpio;
node["tx_gpio"] = settings.tx_gpio;
node["dallas_gpio"] = settings.dallas_gpio;
node["pbutton_gpio"] = settings.pbutton_gpio;
node["led_gpio"] = settings.led_gpio;
node["hide_led"] = settings.hide_led;
node["notoken_api"] = settings.notoken_api;
node["readonly_mode"] = settings.readonly_mode;
node["fahrenheit"] = settings.fahrenheit;
node["dallas_parasite"] = settings.dallas_parasite;
node["bool_format"] = settings.bool_format;
node["enum_format"] = settings.enum_format;
node["analog_enabled"] = settings.analog_enabled;
node["telnet_enabled"] = settings.telnet_enabled;
node["phy_type"] = settings.phy_type;
node["eth_power"] = settings.eth_power;
node["eth_phy_addr"] = settings.eth_phy_addr;
node["eth_clock_mode"] = settings.eth_clock_mode;
});
return true;
}
// http://ems-esp/api/system/customizations
bool System::command_customizations(const char * value, const int8_t id, JsonObject & output) {
output["label"] = "customizations";
JsonObject node = output.createNestedObject("Customizations");
EMSESP::webCustomizationService.read([&](WebCustomization & settings) {
// sensors
JsonArray sensorsJson = node.createNestedArray("sensors");
for (const auto & sensor : settings.sensorCustomizations) {
JsonObject sensorJson = sensorsJson.createNestedObject();
sensorJson["id_str"] = sensor.id_str; // key, is
sensorJson["name"] = sensor.name; // n
sensorJson["offset"] = sensor.offset; // o
}
JsonArray analogJson = node.createNestedArray("analogs");
for (const AnalogCustomization & sensor : settings.analogCustomizations) {
JsonObject sensorJson = analogJson.createNestedObject();
sensorJson["gpio"] = sensor.id;
sensorJson["name"] = sensor.name;
if (EMSESP::system_.enum_format() == ENUM_FORMAT_INDEX) {
sensorJson["type"] = sensor.type;
} else {
sensorJson["type"] = FL_(enum_sensortype)[sensor.type];
}
if (sensor.type == AnalogSensor::AnalogType::ADC) {
sensorJson["offset"] = sensor.offset;
sensorJson["factor"] = sensor.factor;
sensorJson["uom"] = EMSdevice::uom_to_string(sensor.uom);
} else if (sensor.type == AnalogSensor::AnalogType::COUNTER || sensor.type == AnalogSensor::AnalogType::TIMER
|| sensor.type == AnalogSensor::AnalogType::RATE) {
sensorJson["factor"] = sensor.factor;
sensorJson["uom"] = EMSdevice::uom_to_string(sensor.uom);
} else if (sensor.type >= AnalogSensor::AnalogType::PWM_0) {
sensorJson["frequency"] = sensor.factor;
sensorJson["factor"] = sensor.factor;
}
}
// masked entities
JsonArray mask_entitiesJson = node.createNestedArray("masked_entities");
for (const auto & entityCustomization : settings.entityCustomizations) {
JsonObject entityJson = mask_entitiesJson.createNestedObject();
entityJson["product_id"] = entityCustomization.product_id;
entityJson["device_id"] = entityCustomization.device_id;
JsonArray mask_entityJson = entityJson.createNestedArray("entities");
for (std::string entity_id : entityCustomization.entity_ids) {
mask_entityJson.add(entity_id);
}
}
});
return true;
}
// export status information including the device information
// http://ems-esp/api/system/info
bool System::command_info(const char * value, const int8_t id, JsonObject & output) {
JsonObject node;
// System
node = output.createNestedObject("System");
node["version"] = EMSESP_APP_VERSION;
node["uptime"] = uuid::log::format_timestamp_ms(uuid::get_uptime_ms(), 3);
node["uptime (seconds)"] = uuid::get_uptime_sec();
node["network time"] = EMSESP::system_.ntp_connected() ? "connected" : "disconnected";
#ifndef EMSESP_STANDALONE
node["freemem"] = ESP.getFreeHeap() / 1000L; // kilobytes
#endif
node["reset reason"] = EMSESP::system_.reset_reason(0) + " / " + EMSESP::system_.reset_reason(1);
if (EMSESP::dallas_enabled()) {
node["temperature sensors"] = EMSESP::dallassensor_.no_sensors();
}
if (EMSESP::analog_enabled()) {
node["analog sensors"] = EMSESP::analogsensor_.no_sensors();
}
#ifndef EMSESP_STANDALONE
// Network
node = output.createNestedObject("Network");
if (WiFi.status() == WL_CONNECTED) {
node["connection"] = F("WiFi");
node["hostname"] = WiFi.getHostname();
node["SSID"] = WiFi.SSID();
node["BSSID"] = WiFi.BSSIDstr();
node["RSSI"] = WiFi.RSSI();
node["MAC"] = WiFi.macAddress();
node["IPv4 address"] = uuid::printable_to_string(WiFi.localIP()) + "/" + uuid::printable_to_string(WiFi.subnetMask());
node["IPv4 gateway"] = uuid::printable_to_string(WiFi.gatewayIP());
node["IPv4 nameserver"] = uuid::printable_to_string(WiFi.dnsIP());
if (WiFi.localIPv6().toString() != "0000:0000:0000:0000:0000:0000:0000:0000") {
node["IPv6 address"] = uuid::printable_to_string(WiFi.localIPv6());
}
} else if (EMSESP::system_.ethernet_connected()) {
node["connection"] = F("Ethernet");
node["hostname"] = ETH.getHostname();
node["MAC"] = ETH.macAddress();
node["IPv4 address"] = uuid::printable_to_string(ETH.localIP()) + "/" + uuid::printable_to_string(ETH.subnetMask());
node["IPv4 gateway"] = uuid::printable_to_string(ETH.gatewayIP());
node["IPv4 nameserver"] = uuid::printable_to_string(ETH.dnsIP());
if (ETH.localIPv6().toString() != "0000:0000:0000:0000:0000:0000:0000:0000") {
node["IPv6 address"] = uuid::printable_to_string(ETH.localIPv6());
}
}
#endif
// Status
node = output.createNestedObject("Status");
switch (EMSESP::bus_status()) {
case EMSESP::BUS_STATUS_OFFLINE:
node["bus status"] = (F("disconnected"));
break;
case EMSESP::BUS_STATUS_TX_ERRORS:
node["bus status"] = (F("connected, tx issues - try a different tx-mode"));
break;
case EMSESP::BUS_STATUS_CONNECTED:
node["bus status"] = (F("connected"));
break;
default:
node["bus status"] = (F("unknown"));
break;
}
if (EMSESP::bus_status() != EMSESP::BUS_STATUS_OFFLINE) {
node["bus protocol"] = EMSbus::is_ht3() ? F("HT3") : F("Buderus");
node["bus telegrams received (rx)"] = EMSESP::rxservice_.telegram_count();
node["bus reads (tx)"] = EMSESP::txservice_.telegram_read_count();
node["bus writes (tx)"] = EMSESP::txservice_.telegram_write_count();
node["bus incomplete telegrams"] = EMSESP::rxservice_.telegram_error_count();
node["bus reads failed"] = EMSESP::txservice_.telegram_read_fail_count();
node["bus writes failed"] = EMSESP::txservice_.telegram_write_fail_count();
node["bus rx line quality"] = EMSESP::rxservice_.quality();
node["bus tx line quality"] = (EMSESP::txservice_.read_quality() + EMSESP::txservice_.read_quality()) / 2;
if (Mqtt::enabled()) {
node["MQTT status"] = Mqtt::connected() ? F_(connected) : F_(disconnected);
node["MQTT publishes"] = Mqtt::publish_count();
node["MQTT publish fails"] = Mqtt::publish_fails();
}
node["temperature sensors"] = EMSESP::dallassensor_.no_sensors();
if (EMSESP::dallas_enabled()) {
node["temperature sensor reads"] = EMSESP::dallassensor_.reads();
node["temperature sensor fails"] = EMSESP::dallassensor_.fails();
}
node["analog sensors"] = EMSESP::analogsensor_.no_sensors();
if (EMSESP::analog_enabled()) {
node["analog sensor reads"] = EMSESP::analogsensor_.reads();
node["analog sensor fails"] = EMSESP::analogsensor_.fails();
}
node["API calls"] = WebAPIService::api_count();
node["API fails"] = WebAPIService::api_fails();
#ifndef EMSESP_STANDALONE
if (EMSESP::system_.syslog_enabled_) {
node["syslog started"] = syslog_.started();
node["syslog level"] = FL_(enum_syslog_level)[syslog_.log_level() + 1];
node["syslog ip"] = syslog_.ip();
node["syslog queue"] = syslog_.queued();
}
#endif
}
// Devices - show EMS devices
JsonArray devices = output.createNestedArray("Devices");
for (const auto & device_class : EMSFactory::device_handlers()) {
for (const auto & emsdevice : EMSESP::emsdevices) {
if (emsdevice && (emsdevice->device_type() == device_class.first)) {
JsonObject obj = devices.createNestedObject();
obj["type"] = emsdevice->device_type_name();
// obj["name"] = emsdevice->to_string();
obj["name"] = emsdevice->name();
obj["device id"] = Helpers::hextoa(emsdevice->device_id());
obj["product id"] = emsdevice->product_id();
obj["version"] = emsdevice->version();
obj["entities"] = emsdevice->count_entities();
char result[250];
(void)emsdevice->show_telegram_handlers(result, sizeof(result), EMSdevice::Handlers::RECEIVED);
if (result[0] != '\0') {
obj["handlers received"] = result; // don't show handlers if there aren't any
}
(void)emsdevice->show_telegram_handlers(result, sizeof(result), EMSdevice::Handlers::FETCHED);
if (result[0] != '\0') {
obj["handlers fetched"] = result;
}
(void)emsdevice->show_telegram_handlers(result, sizeof(result), EMSdevice::Handlers::PENDING);
if (result[0] != '\0') {
obj["handlers pending"] = result;
}
}
}
}
return true;
}
#if defined(EMSESP_DEBUG)
// run a test, e.g. http://ems-esp/api?device=system&cmd=test&data=boiler
bool System::command_test(const char * value, const int8_t id) {
Test::run_test(value, id);
return true;
}
#endif
// takes a board profile and populates a data array with GPIO configurations
// returns false if profile is unknown
//
// data = led, dallas, rx, tx, button, phy_type, eth_power, eth_phy_addr, eth_clock_mode
//
// clock modes:
// 0 = RMII clock input to GPIO0
// 1 = RMII clock output from GPIO0
// 2 = RMII clock output from GPIO16
// 3 = RMII clock output from GPIO17, for 50hz inverted clock
bool System::load_board_profile(std::vector & data, const std::string & board_profile) {
if (board_profile == "S32") {
data = {2, 18, 23, 5, 0, PHY_type::PHY_TYPE_NONE, 0, 0, 0}; // BBQKees Gateway S32
} else if (board_profile == "E32") {
data = {2, 4, 5, 17, 33, PHY_type::PHY_TYPE_LAN8720, 16, 1, 0}; // BBQKees Gateway E32
} else if (board_profile == "MH-ET") {
data = {2, 18, 23, 5, 0, PHY_type::PHY_TYPE_NONE, 0, 0, 0}; // MH-ET Live D1 Mini
} else if (board_profile == "NODEMCU") {
data = {2, 18, 23, 5, 0, PHY_type::PHY_TYPE_NONE, 0, 0, 0}; // NodeMCU 32S
} else if (board_profile == "LOLIN") {
data = {2, 18, 17, 16, 0, PHY_type::PHY_TYPE_NONE, 0, 0, 0}; // Lolin D32
} else if (board_profile == "OLIMEX") {
data = {0, 0, 36, 4, 34, PHY_type::PHY_TYPE_LAN8720, -1, 0, 0}; // Olimex ESP32-EVB (uses U1TXD/U1RXD/BUTTON, no LED or Dallas)
} else if (board_profile == "OLIMEXPOE") {
data = {0, 0, 36, 4, 34, PHY_type::PHY_TYPE_LAN8720, 12, 0, 3}; // Olimex ESP32-POE
} else if (board_profile == "CUSTOM") {
// send back current values
data = {(int8_t)EMSESP::system_.led_gpio_,
(int8_t)EMSESP::system_.dallas_gpio_,
(int8_t)EMSESP::system_.rx_gpio_,
(int8_t)EMSESP::system_.tx_gpio_,
(int8_t)EMSESP::system_.pbutton_gpio_,
(int8_t)EMSESP::system_.phy_type_,
EMSESP::system_.eth_power_,
(int8_t)EMSESP::system_.eth_phy_addr_,
(int8_t)EMSESP::system_.eth_clock_mode_};
} else {
// unknown, use defaults and return false
data = {
EMSESP_DEFAULT_LED_GPIO,
EMSESP_DEFAULT_DALLAS_GPIO,
EMSESP_DEFAULT_RX_GPIO,
EMSESP_DEFAULT_TX_GPIO,
EMSESP_DEFAULT_PBUTTON_GPIO,
EMSESP_DEFAULT_PHY_TYPE,
-1, // power
0, // phy_addr,
0 // clock_mode
};
return false;
}
return true;
}
// restart command - perform a hard reset by setting flag
bool System::command_restart(const char * value, const int8_t id) {
restart_requested(true);
return true;
}
std::string System::reset_reason(uint8_t cpu) const {
#ifndef EMSESP_STANDALONE
switch (rtc_get_reset_reason(cpu)) {
case 1:
return ("Power on reset");
// case 2 :reset pin not on esp32
case 3:
return ("Software reset");
case 4:
return ("Legacy watch dog reset");
case 5:
return ("Deep sleep reset");
case 6:
return ("Reset by SDIO");
case 7:
return ("Timer group0 watch dog reset");
case 8:
return ("Timer group1 watch dog reset");
case 9:
return ("RTC watch dog reset");
case 10:
return ("Intrusion reset CPU");
case 11:
return ("Timer group reset CPU");
case 12:
return ("Software reset CPU");
case 13:
return ("RTC watch dog reset: CPU");
case 14:
return ("APP CPU reset by PRO CPU");
case 15:
return ("Brownout reset");
case 16:
return ("RTC watch dog reset: CPU+RTC");
default:
break;
}
#endif
return ("Unkonwn");
}
// set NTP status
void System::ntp_connected(bool b) {
if (b != ntp_connected_) {
LOG_INFO(b ? F("NTP connected") : F("NTP disconnected"));
}
ntp_connected_ = b;
ntp_last_check_ = b ? uuid::get_uptime_sec() : 0;
}
} // namespace emsesp