/* * EMS-ESP - https://github.com/proddy/EMS-ESP * Copyright 2019 Paul Derbyshire * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include "thermostat.h" namespace emsesp { REGISTER_FACTORY(Thermostat, EMSdevice::DeviceType::THERMOSTAT); uuid::log::Logger Thermostat::logger_{F_(thermostat), uuid::log::Facility::CONSOLE}; Thermostat::Thermostat(uint8_t device_type, uint8_t device_id, uint8_t product_id, const std::string & version, const std::string & name, uint8_t flags, uint8_t brand) : EMSdevice(device_type, device_id, product_id, version, name, flags, brand) { uint8_t actual_master_thermostat = EMSESP::actual_master_thermostat(); // what we're actually using uint8_t master_thermostat = EMSESP_DEFAULT_MASTER_THERMOSTAT; EMSESP::emsespSettingsService.read([&](EMSESPSettings & settings) { master_thermostat = settings.master_thermostat; // what the user has defined }); uint8_t model = this->model(); // if we're on auto mode, register this thermostat if it has a device id of 0x10, 0x17 or 0x18 // or if its the master thermostat we defined // see https://github.com/proddy/EMS-ESP/issues/362#issuecomment-629628161 if ((master_thermostat == device_id) || ((master_thermostat == EMSESP_DEFAULT_MASTER_THERMOSTAT) && (device_id < 0x19) && ((actual_master_thermostat == EMSESP_DEFAULT_MASTER_THERMOSTAT) || (device_id < actual_master_thermostat)))) { EMSESP::actual_master_thermostat(device_id); actual_master_thermostat = device_id; this->reserve_mem(25); // reserve some space for the telegram registries, to avoid memory fragmentation // common telegram handlers register_telegram_type(EMS_TYPE_RCOutdoorTemp, F("RCOutdoorTemp"), false, [&](std::shared_ptr t) { process_RCOutdoorTemp(t); }); register_telegram_type(EMS_TYPE_RCTime, F("RCTime"), false, [&](std::shared_ptr t) { process_RCTime(t); }); } // RC10 if (model == EMSdevice::EMS_DEVICE_FLAG_RC10) { monitor_typeids = {0xB1}; set_typeids = {0xB0}; for (uint8_t i = 0; i < monitor_typeids.size(); i++) { register_telegram_type(monitor_typeids[i], F("RC10Monitor"), false, [&](std::shared_ptr t) { process_RC10Monitor(t); }); register_telegram_type(set_typeids[i], F("RC10Set"), false, [&](std::shared_ptr t) { process_RC10Set(t); }); } // RC35 } else if ((model == EMSdevice::EMS_DEVICE_FLAG_RC35) || (model == EMSdevice::EMS_DEVICE_FLAG_RC30_1)) { monitor_typeids = {0x3E, 0x48, 0x52, 0x5C}; set_typeids = {0x3D, 0x47, 0x51, 0x5B}; timer_typeids = {0x3F, 0x49, 0x53, 0x5D}; for (uint8_t i = 0; i < monitor_typeids.size(); i++) { register_telegram_type(monitor_typeids[i], F("RC35Monitor"), false, [&](std::shared_ptr t) { process_RC35Monitor(t); }); register_telegram_type(set_typeids[i], F("RC35Set"), false, [&](std::shared_ptr t) { process_RC35Set(t); }); } register_telegram_type(EMS_TYPE_IBASettings, F("IBASettings"), true, [&](std::shared_ptr t) { process_IBASettings(t); }); register_telegram_type(EMS_TYPE_wwSettings, F("WWSettings"), true, [&](std::shared_ptr t) { process_RC35wwSettings(t); }); // RC20 } else if (model == EMSdevice::EMS_DEVICE_FLAG_RC20) { monitor_typeids = {0x91}; set_typeids = {0xA8}; if (actual_master_thermostat == device_id) { for (uint8_t i = 0; i < monitor_typeids.size(); i++) { register_telegram_type(monitor_typeids[i], F("RC20Monitor"), false, [&](std::shared_ptr t) { process_RC20Monitor(t); }); register_telegram_type(set_typeids[i], F("RC20Set"), false, [&](std::shared_ptr t) { process_RC20Set(t); }); } } else { register_telegram_type(0xAF, F("RC20Remote"), false, [&](std::shared_ptr t) { process_RC20Remote(t); }); } // RC20 newer } else if (model == EMSdevice::EMS_DEVICE_FLAG_RC20_2) { monitor_typeids = {0xAE}; set_typeids = {0xAD}; if (actual_master_thermostat == device_id) { for (uint8_t i = 0; i < monitor_typeids.size(); i++) { register_telegram_type(monitor_typeids[i], F("RC20Monitor"), false, [&](std::shared_ptr t) { process_RC20Monitor_2(t); }); register_telegram_type(set_typeids[i], F("RC20Set"), false, [&](std::shared_ptr t) { process_RC20Set_2(t); }); } } else { register_telegram_type(0xAF, F("RC20Remote"), false, [&](std::shared_ptr t) { process_RC20Remote(t); }); } // RC30 } else if (model == EMSdevice::EMS_DEVICE_FLAG_RC30) { monitor_typeids = {0x41}; set_typeids = {0xA7}; for (uint8_t i = 0; i < monitor_typeids.size(); i++) { register_telegram_type(monitor_typeids[i], F("RC30Monitor"), false, [&](std::shared_ptr t) { process_RC30Monitor(t); }); register_telegram_type(set_typeids[i], F("RC30Set"), false, [&](std::shared_ptr t) { process_RC30Set(t); }); } // EASY } else if (model == EMSdevice::EMS_DEVICE_FLAG_EASY) { monitor_typeids = {0x0A}; set_typeids = {}; register_telegram_type(monitor_typeids[0], F("EasyMonitor"), true, [&](std::shared_ptr t) { process_EasyMonitor(t); }); // RC300/RC100 } else if ((model == EMSdevice::EMS_DEVICE_FLAG_RC300) || (model == EMSdevice::EMS_DEVICE_FLAG_RC100)) { monitor_typeids = {0x02A5, 0x02A6, 0x02A7, 0x02A8}; set_typeids = {0x02B9, 0x02BA, 0x02BB, 0x02BC}; summer_typeids = {0x02AF, 0x02B0, 0x02B1, 0x02B2}; for (uint8_t i = 0; i < monitor_typeids.size(); i++) { register_telegram_type(monitor_typeids[i], F("RC300Monitor"), false, [&](std::shared_ptr t) { process_RC300Monitor(t); }); register_telegram_type(set_typeids[i], F("RC300Set"), false, [&](std::shared_ptr t) { process_RC300Set(t); }); register_telegram_type(summer_typeids[i], F("RC300Summer"), false, [&](std::shared_ptr t) { process_RC300Summer(t); }); } register_telegram_type(0x2F5, F("RC300WWmode"), false, [&](std::shared_ptr t) { process_RC300WWmode(t); }); register_telegram_type(0x31B, F("RC300WWtemp"), false, [&](std::shared_ptr t) { process_RC300WWtemp(t); }); register_telegram_type(0x31D, F("RC300WWmode2"), false, [&](std::shared_ptr t) { process_RC300WWmode2(t); }); register_telegram_type(0x31E, F("RC300WWmode2"), false, [&](std::shared_ptr t) { process_RC300WWmode2(t); }); // JUNKERS/HT3 } else if (model == EMSdevice::EMS_DEVICE_FLAG_JUNKERS) { monitor_typeids = {0x016F, 0x0170, 0x0171, 0x0172}; set_typeids = {0x0165, 0x0166, 0x0167, 0x0168}; for (uint8_t i = 0; i < monitor_typeids.size(); i++) { register_telegram_type(monitor_typeids[i], F("JunkersMonitor"), false, [&](std::shared_ptr t) { process_JunkersMonitor(t); }); register_telegram_type(set_typeids[i], F("JunkersSet"), false, [&](std::shared_ptr t) { process_JunkersSet(t); }); } // JUNKERS/HT3 older models } else if (model == (EMSdevice::EMS_DEVICE_FLAG_JUNKERS | EMSdevice::EMS_DEVICE_FLAG_JUNKERS_2)) { monitor_typeids = {0x016F, 0x0170, 0x0171, 0x0172}; set_typeids = {0x0179, 0x017A, 0x017B, 0x017C}; for (uint8_t i = 0; i < monitor_typeids.size(); i++) { register_telegram_type(monitor_typeids[i], F("JunkersMonitor"), false, [&](std::shared_ptr t) { process_JunkersMonitor(t); }); register_telegram_type(set_typeids[i], F("JunkersSet"), false, [&](std::shared_ptr t) { process_JunkersSet2(t); }); } } if (actual_master_thermostat != device_id) { LOG_DEBUG(F("Adding new thermostat with device ID 0x%02X"), device_id); return; // don't fetch data if more than 1 thermostat } LOG_DEBUG(F("Adding new thermostat with device ID 0x%02X (as master)"), device_id); add_commands(); // reserve some memory for the heating circuits (max 4 to start with) heating_circuits_.reserve(4); // only for for the master-thermostat, go a query all the heating circuits. This is only done once. // The automatic fetch will from now on only update the active heating circuits for (uint8_t i = 0; i < monitor_typeids.size(); i++) { EMSESP::send_read_request(monitor_typeids[i], device_id); } for (uint8_t i = 0; i < set_typeids.size(); i++) { EMSESP::send_read_request(set_typeids[i], device_id); } for (uint8_t i = 0; i < summer_typeids.size(); i++) { EMSESP::send_read_request(summer_typeids[i], device_id); } } // prepare data for Web UI void Thermostat::device_info_web(JsonArray & root) { StaticJsonDocument doc_main; JsonObject output_main = doc_main.to(); if (export_values_main(output_main)) { print_value_json(root, F("time"), nullptr, F_(time), nullptr, output_main); print_value_json(root, F("display"), nullptr, F_(display), nullptr, output_main); print_value_json(root, F("language"), nullptr, F_(language), nullptr, output_main); print_value_json(root, F("offsetclock"), nullptr, F_(offsetclock), nullptr, output_main); print_value_json(root, F("dampedtemp"), nullptr, F_(dampedtemp), F_(degrees), output_main); print_value_json(root, F("inttemp1"), nullptr, F_(inttemp1), F_(degrees), output_main); print_value_json(root, F("inttemp2"), nullptr, F_(inttemp2), F_(degrees), output_main); print_value_json(root, F("intoffset"), nullptr, F_(intoffset), nullptr, output_main); print_value_json(root, F("minexttemp"), nullptr, F_(minexttemp), F_(degrees), output_main); print_value_json(root, F("building"), nullptr, F_(building), nullptr, output_main); print_value_json(root, F("wwmode"), nullptr, F_(wwmode), nullptr, output_main); print_value_json(root, F("wwcircmode"), nullptr, F_(wwcircmode), nullptr, output_main); } StaticJsonDocument doc_hc; JsonObject output_hc = doc_hc.to(); if (export_values_hc(Mqtt::Format::NESTED, output_hc)) { // display for each active heating circuit for (const auto & hc : heating_circuits_) { if (hc->is_active()) { char prefix_str[10]; snprintf_P(prefix_str, sizeof(prefix_str), PSTR("(hc %d) "), hc->hc_num()); char hc_name[10]; // hc{1-4} strlcpy(hc_name, "hc", 10); char s[3]; strlcat(hc_name, Helpers::itoa(s, hc->hc_num()), 10); JsonObject output = output_hc[hc_name]; print_value_json(root, F("seltemp"), FPSTR(prefix_str), F_(seltemp), F_(degrees), output); print_value_json(root, F("currtemp"), FPSTR(prefix_str), F_(currtemp), F_(degrees), output); print_value_json(root, F("heattemp"), FPSTR(prefix_str), F_(heattemp), F_(degrees), output); print_value_json(root, F("comforttemp"), FPSTR(prefix_str), F_(comforttemp), F_(degrees), output); print_value_json(root, F("daytemp"), FPSTR(prefix_str), F_(daytemp), F_(degrees), output); print_value_json(root, F("ecotemp"), FPSTR(prefix_str), F_(ecotemp), F_(degrees), output); print_value_json(root, F("nighttemp"), FPSTR(prefix_str), F_(nighttemp), F_(degrees), output); print_value_json(root, F("manualtemp"), FPSTR(prefix_str), F_(manualtemp), F_(degrees), output); print_value_json(root, F("holidaytemp"), FPSTR(prefix_str), F_(holidaytemp), F_(degrees), output); print_value_json(root, F("nofrosttemp"), FPSTR(prefix_str), F_(nofrosttemp), F_(degrees), output); print_value_json(root, F("targetflowtemp"), FPSTR(prefix_str), F_(targetflowtemp), F_(degrees), output); print_value_json(root, F("offsettemp"), FPSTR(prefix_str), F_(offsettemp), F_(degrees), output); print_value_json(root, F("designtemp"), FPSTR(prefix_str), F_(designtemp), F_(degrees), output); print_value_json(root, F("summertemp"), FPSTR(prefix_str), F_(summertemp), F_(degrees), output); print_value_json(root, F("summermode"), FPSTR(prefix_str), F_(summermode), F_(degrees), output); print_value_json(root, F("mode"), FPSTR(prefix_str), F_(mode), nullptr, output); print_value_json(root, F("modetype"), FPSTR(prefix_str), F_(modetype), nullptr, output); } } } } // this function is called post the telegram handler function has been executed // we check if any of the thermostat values have changed and then republish if necessary bool Thermostat::updated_values() { // only publish on the master thermostat if (EMSESP::actual_master_thermostat() != this->device_id()) { return false; } if (changed_) { changed_ = false; return true; } return false; } // info API command // returns the same MQTT publish payload in Nested format bool Thermostat::command_info(const char * value, const int8_t id, JsonObject & output) { bool has_value = false; has_value |= export_values_main(output); has_value |= export_values_hc(Mqtt::Format::NESTED, output); return has_value; } // display all thermostat values into the shell console void Thermostat::show_values(uuid::console::Shell & shell) { EMSdevice::show_values(shell); // always call this to show header StaticJsonDocument doc_main; JsonObject output_main = doc_main.to(); if (export_values_main(output_main)) { print_value_json(shell, F("time"), nullptr, F_(time), nullptr, output_main); print_value_json(shell, F("display"), nullptr, F_(display), nullptr, output_main); print_value_json(shell, F("language"), nullptr, F_(language), nullptr, output_main); print_value_json(shell, F("offsetclock"), nullptr, F_(offsetclock), nullptr, output_main); print_value_json(shell, F("dampedtemp"), nullptr, F_(dampedtemp), F_(degrees), output_main); print_value_json(shell, F("inttemp1"), nullptr, F_(inttemp1), F_(degrees), output_main); print_value_json(shell, F("inttemp2"), nullptr, F_(inttemp2), F_(degrees), output_main); print_value_json(shell, F("intoffset"), nullptr, F_(intoffset), nullptr, output_main); print_value_json(shell, F("minexttemp"), nullptr, F_(minexttemp), F_(degrees), output_main); print_value_json(shell, F("building"), nullptr, F_(building), nullptr, output_main); print_value_json(shell, F("wwmode"), nullptr, F_(wwmode), nullptr, output_main); print_value_json(shell, F("wwcircmode"), nullptr, F_(wwcircmode), nullptr, output_main); } StaticJsonDocument doc_hc; JsonObject output_hc = doc_hc.to(); // e.g. {"hc1":{"seltemp":849.4,"currtemp":819.2,"mode":"unknown","modetype":"day"},"hc2":{"seltemp":875.1,"currtemp":409.6,"mode":"unknown","modetype":"day"},"hc3":{"seltemp":0,"currtemp":0,"mode":"unknown","modetype":"day"}} if (export_values_hc(Mqtt::Format::NESTED, output_hc)) { // display for each active heating circuit for (const auto & hc : heating_circuits_) { if (hc->is_active()) { shell.printfln(" Heating Circuit %d:", hc->hc_num()); char hc_name[10]; // hc{1-4} strlcpy(hc_name, "hc", 10); char s[3]; strlcat(hc_name, Helpers::itoa(s, hc->hc_num()), 10); JsonObject output = output_hc[hc_name]; print_value_json(shell, F("seltemp"), F(" "), F_(seltemp), F_(degrees), output); print_value_json(shell, F("currtemp"), F(" "), F_(currtemp), F_(degrees), output); print_value_json(shell, F("heattemp"), F(" "), F_(heattemp), F_(degrees), output); print_value_json(shell, F("comforttemp"), F(" "), F_(comforttemp), F_(degrees), output); print_value_json(shell, F("daytemp"), F(" "), F_(daytemp), F_(degrees), output); print_value_json(shell, F("ecotemp"), F(" "), F_(ecotemp), F_(degrees), output); print_value_json(shell, F("nighttemp"), F(" "), F_(nighttemp), F_(degrees), output); print_value_json(shell, F("manualtemp"), F(" "), F_(manualtemp), F_(degrees), output); print_value_json(shell, F("holidaytemp"), F(" "), F_(holidaytemp), F_(degrees), output); print_value_json(shell, F("nofrosttemp"), F(" "), F_(nofrosttemp), F_(degrees), output); print_value_json(shell, F("targetflowtemp"), F(" "), F_(targetflowtemp), F_(degrees), output); print_value_json(shell, F("offsettemp"), F(" "), F_(offsettemp), F_(degrees), output); print_value_json(shell, F("designtemp"), F(" "), F_(designtemp), F_(degrees), output); print_value_json(shell, F("summertemp"), F(" "), F_(summertemp), F_(degrees), output); print_value_json(shell, F("summermode"), F(" "), F_(summermode), F_(degrees), output); print_value_json(shell, F("mode"), F(" "), F_(mode), nullptr, output); print_value_json(shell, F("modetype"), F(" "), F_(modetype), nullptr, output); } } } shell.println(); } // publish values via MQTT void Thermostat::publish_values() { if (EMSESP::actual_master_thermostat() != this->device_id()) { return; } StaticJsonDocument doc; JsonObject output = doc.to(); bool has_data = false; // if MQTT is in single mode send out the main data to the thermostat_data topic has_data |= export_values_main(output); if (Mqtt::mqtt_format() == Mqtt::Format::SINGLE && has_data) { Mqtt::publish(F("thermostat_data"), output); output.clear(); } // get the thermostat data. // if we're in Single mode this function will also have published each of the heating circuits has_data |= export_values_hc(Mqtt::mqtt_format(), output); // if we're in HA or CUSTOM, send out the complete topic with all the data if (Mqtt::mqtt_format() != Mqtt::Format::SINGLE && has_data) { Mqtt::publish(F("thermostat_data"), output); } } bool Thermostat::export_values_main(JsonObject & rootThermostat) { uint8_t model = this->model(); // Clock time if (datetime_.size()) { rootThermostat["time"] = datetime_.c_str(); } if (model == EMSdevice::EMS_DEVICE_FLAG_RC30_1) { // Display if (Helpers::hasValue(ibaMainDisplay_)) { if (ibaMainDisplay_ == 0) { rootThermostat["display"] = F("internal temperature"); } else if (ibaMainDisplay_ == 1) { rootThermostat["display"] = F("internal setpoint"); } else if (ibaMainDisplay_ == 2) { rootThermostat["display"] = F("external temperature"); } else if (ibaMainDisplay_ == 3) { rootThermostat["display"] = F("burner temperature"); } else if (ibaMainDisplay_ == 4) { rootThermostat["display"] = F("WW temperature"); } else if (ibaMainDisplay_ == 5) { rootThermostat["display"] = F("functioning mode"); } else if (ibaMainDisplay_ == 6) { rootThermostat["display"] = F("time"); } else if (ibaMainDisplay_ == 7) { rootThermostat["display"] = F("date"); } else if (ibaMainDisplay_ == 8) { rootThermostat["display"] = F("smoke temperature"); } } // Language if (Helpers::hasValue(ibaLanguage_)) { if (ibaLanguage_ == 0) { rootThermostat["language"] = F("German"); } else if (ibaLanguage_ == 1) { rootThermostat["language"] = F("Dutch"); } else if (ibaLanguage_ == 2) { rootThermostat["language"] = F("French"); } else if (ibaLanguage_ == 3) { rootThermostat["language"] = F("Italian"); } } // Offset clock if (Helpers::hasValue(ibaClockOffset_)) { rootThermostat["offsetclock"] = ibaClockOffset_; // offset (in sec) to clock, 0xff=-1s, 0x02=2s } } // Damped outdoor temperature if (Helpers::hasValue(dampedoutdoortemp_)) { rootThermostat["dampedtemp"] = dampedoutdoortemp_; } // Temp sensor 1 if (Helpers::hasValue(tempsensor1_)) { rootThermostat["inttemp1"] = (float)tempsensor1_ / 10; } // Temp sensor 2 if (Helpers::hasValue(tempsensor2_)) { rootThermostat["inttemp2"] = (float)tempsensor2_ / 10; } // Offset int. temperature if (Helpers::hasValue(ibaCalIntTemperature_)) { rootThermostat["intoffset"] = (float)ibaCalIntTemperature_ / 2; } // Min ext. temperature if (Helpers::hasValue(ibaMinExtTemperature_)) { rootThermostat["minexttemp"] = (float)ibaMinExtTemperature_; // min ext temp for heating curve, in deg. } // Building if (Helpers::hasValue(ibaBuildingType_)) { char s[10]; rootThermostat["building"] = Helpers::render_enum(s, {"light", "medium", "heavy"}, ibaBuildingType_); } // Warm water mode if (Helpers::hasValue(wwMode_)) { char s[10]; if (model == EMS_DEVICE_FLAG_RC300 || model == EMS_DEVICE_FLAG_RC100) { rootThermostat["wwmode"] = Helpers::render_enum(s, {"off", "low", "high", "auto", "own_prog"}, wwMode_); } else { rootThermostat["wwmode"] = Helpers::render_enum(s, {"off", "on", "auto"}, wwMode_); } } // Warm Water circulation mode if (Helpers::hasValue(wwCircMode_)) { char s[7]; rootThermostat["wwcircmode"] = Helpers::render_enum(s, {"off", "on", "auto"}, wwCircMode_); } return (rootThermostat.size()); } // creates JSON doc from values, for each heating circuit // if the mqtt_format is 0 then it will not perform the MQTT publish // returns false if empty bool Thermostat::export_values_hc(uint8_t mqtt_format, JsonObject & rootThermostat) { uint8_t flags = this->model(); JsonObject dataThermostat; bool has_data = false; // go through all the heating circuits for (const auto & hc : heating_circuits_) { if (hc->is_active()) { has_data = true; // if the MQTT format is 'nested' or 'ha' then create the parent object hc if ((mqtt_format == Mqtt::Format::NESTED) || (mqtt_format == Mqtt::Format::HA)) { char hc_name[10]; // hc{1-4} strlcpy(hc_name, "hc", 10); char s[3]; strlcat(hc_name, Helpers::itoa(s, hc->hc_num()), 10); dataThermostat = rootThermostat.createNestedObject(hc_name); } else { dataThermostat = rootThermostat; } // different logic on how temperature values are stored, depending on model uint8_t setpoint_temp_divider; uint8_t curr_temp_divider; if (flags == EMS_DEVICE_FLAG_EASY) { setpoint_temp_divider = 100; curr_temp_divider = 100; } else if (flags == EMS_DEVICE_FLAG_JUNKERS) { setpoint_temp_divider = 10; curr_temp_divider = 10; } else { setpoint_temp_divider = 2; curr_temp_divider = 10; } // Setpoint room temperature if (Helpers::hasValue(hc->setpoint_roomTemp)) { dataThermostat["seltemp"] = Helpers::round2((float)hc->setpoint_roomTemp / setpoint_temp_divider); } // Current room temperature if (Helpers::hasValue(hc->curr_roomTemp)) { dataThermostat["currtemp"] = Helpers::round2((float)hc->curr_roomTemp / curr_temp_divider); } if (Helpers::hasValue(hc->daytemp)) { if (flags == EMSdevice::EMS_DEVICE_FLAG_JUNKERS) { // Heat temperature dataThermostat["heattemp"] = (float)hc->daytemp / 2; } else if (flags == EMSdevice::EMS_DEVICE_FLAG_RC300 || flags == EMSdevice::EMS_DEVICE_FLAG_RC100) { // Comfort temperature dataThermostat["comforttemp"] = (float)hc->daytemp / 2; } else { // Day temperature dataThermostat["daytemp"] = (float)hc->daytemp / 2; } } if (Helpers::hasValue(hc->nighttemp)) { if (flags == EMSdevice::EMS_DEVICE_FLAG_JUNKERS || flags == EMSdevice::EMS_DEVICE_FLAG_RC300 || flags == EMSdevice::EMS_DEVICE_FLAG_RC100) { // Eco temperature dataThermostat["ecotemp"] = (float)hc->nighttemp / 2; } else { // Night temperature dataThermostat["nighttemp"] = (float)hc->nighttemp / 2; } } // Manual temperature if (Helpers::hasValue(hc->manualtemp)) { dataThermostat["manualtemp"] = (float)hc->manualtemp / 2; } // Holiday temperature if (Helpers::hasValue(hc->holidaytemp)) { dataThermostat["holidaytemp"] = (float)hc->holidaytemp / 2; } // Nofrost temperature if (Helpers::hasValue(hc->nofrosttemp)) { dataThermostat["nofrosttemp"] = (float)hc->nofrosttemp / 2; } // Heating Type if (Helpers::hasValue(hc->heatingtype)) { dataThermostat["heatingtype"] = hc->heatingtype; } // Target flow temperature if (Helpers::hasValue(hc->targetflowtemp)) { dataThermostat["targetflowtemp"] = hc->targetflowtemp; } // Offset temperature if (Helpers::hasValue(hc->offsettemp)) { dataThermostat["offsettemp"] = hc->offsettemp / 2; } // Design temperature if (Helpers::hasValue(hc->designtemp)) { dataThermostat["designtemp"] = hc->designtemp; } // Summer temperature if (Helpers::hasValue(hc->summertemp)) { dataThermostat["summertemp"] = hc->summertemp; } // Summer mode if (Helpers::hasValue(hc->summer_setmode)) { char s[7]; dataThermostat["summermode"] = Helpers::render_enum(s, {"off", "auto", "on"}, hc->summer_setmode); } // mode - always force showing this when in HA so not to break HA's climate component if ((Helpers::hasValue(hc->mode)) || (mqtt_format == Mqtt::Format::HA)) { uint8_t hc_mode = hc->get_mode(flags); // if we're sending to HA the only valid mode types are heat, auto and off if (mqtt_format == Mqtt::Format::HA) { if ((hc_mode == HeatingCircuit::Mode::MANUAL) || (hc_mode == HeatingCircuit::Mode::DAY)) { hc_mode = HeatingCircuit::Mode::HEAT; } else if ((hc_mode == HeatingCircuit::Mode::NIGHT) || (hc_mode == HeatingCircuit::Mode::OFF)) { hc_mode = HeatingCircuit::Mode::OFF; } else { hc_mode = HeatingCircuit::Mode::AUTO; } } // Mode dataThermostat["mode"] = mode_tostring(hc_mode); } // special handling of mode type, for the RC35 replace with summer/holiday if set // https://github.com/proddy/EMS-ESP/issues/373#issuecomment-619810209 // Mode Type if (Helpers::hasValue(hc->summer_mode) && hc->summer_mode) { dataThermostat["modetype"] = F("summer"); } else if (Helpers::hasValue(hc->holiday_mode) && hc->holiday_mode) { dataThermostat["modetype"] = F("holiday"); } else if (Helpers::hasValue(hc->mode_type)) { dataThermostat["modetype"] = mode_tostring(hc->get_mode_type(flags)); } // if format is single, send immediately and clear object for next hc // the topic will have the hc number appended if (mqtt_format == Mqtt::Format::SINGLE) { char topic[30]; char s[3]; strlcpy(topic, "thermostat_data", 30); strlcat(topic, Helpers::itoa(s, hc->hc_num()), 30); // append hc to topic Mqtt::publish(topic, rootThermostat); rootThermostat.clear(); // clear object } else if ((mqtt_format == Mqtt::Format::HA) && (!hc->ha_registered())) { // see if we have already registered this with HA MQTT Discovery, if not send the config register_mqtt_ha_config(hc->hc_num()); hc->ha_registered(true); } } } return (has_data); } // returns the heating circuit object based on the hc number // of nullptr if it doesn't exist yet std::shared_ptr Thermostat::heating_circuit(const uint8_t hc_num) { // if hc_num is 0 then return the first existing hc in the list if (hc_num == AUTO_HEATING_CIRCUIT) { for (const auto & heating_circuit : heating_circuits_) { return heating_circuit; } } // otherwise find a match for (const auto & heating_circuit : heating_circuits_) { if (heating_circuit->hc_num() == hc_num) { return heating_circuit; } } return nullptr; // not found } // determine which heating circuit the type ID is referring too // returns pointer to the HeatingCircuit or nullptr if it can't be found // if its a new one, the object will be created and also the fetch flags set std::shared_ptr Thermostat::heating_circuit(std::shared_ptr telegram) { // look through the Monitor and Set arrays to see if there is a match uint8_t hc_num = 0; bool toggle_ = false; // search set message types for (uint8_t i = 0; i < monitor_typeids.size(); i++) { if (monitor_typeids[i] == telegram->type_id) { hc_num = i + 1; toggle_ = true; break; } } // not found, search status message types if (hc_num == 0) { for (uint8_t i = 0; i < set_typeids.size(); i++) { if (set_typeids[i] == telegram->type_id) { hc_num = i + 1; break; } } } // not found, search summer message types if (hc_num == 0) { for (uint8_t i = 0; i < summer_typeids.size(); i++) { if (summer_typeids[i] == telegram->type_id) { hc_num = i + 1; break; } } } // not found, search timer message types if (hc_num == 0) { for (uint8_t i = 0; i < timer_typeids.size(); i++) { if (timer_typeids[i] == telegram->type_id) { hc_num = i + 1; break; } } } // not found, search device-id types for remote thermostats if (telegram->src >= 0x18 && telegram->src <= 0x1B) { hc_num = telegram->src - 0x17; } // still didn't recognize it, ignore it if (hc_num == 0) { return nullptr; } // if we have the heating circuit already present, returns its object // otherwise create a new object and add it for (const auto & heating_circuit : heating_circuits_) { if (heating_circuit->hc_num() == hc_num) { return heating_circuit; } } // create a new heating circuit object auto new_hc = std::make_shared(hc_num); heating_circuits_.push_back(new_hc); std::sort(heating_circuits_.begin(), heating_circuits_.end()); // sort based on hc number // set the flag saying we want its data during the next auto fetch toggle_fetch(monitor_typeids[hc_num - 1], toggle_); if (set_typeids.size()) { toggle_fetch(set_typeids[hc_num - 1], toggle_); } return heating_circuits_.back(); // even after sorting, this should still point back to the newly created HC } // publish config topic for HA MQTT Discovery // homeassistant/climate/ems-esp/thermostat_hc1/config void Thermostat::register_mqtt_ha_config(uint8_t hc_num) { StaticJsonDocument doc; char str1[40]; snprintf_P(str1, sizeof(str1), PSTR("Thermostat hc%d"), hc_num); doc["name"] = str1; char str2[40]; snprintf_P(str2, sizeof(str2), PSTR("thermostat_hc%d"), hc_num); doc["uniq_id"] = str2; char str3[40]; snprintf_P(str3, sizeof(str3), PSTR("~/%s"), str2); doc["uniq_id"] = str2; doc["~"] = F("ems-esp"); doc["mode_cmd_t"] = str3; doc["temp_cmd_t"] = str3; doc["mode_stat_t"] = F("~/thermostat_data"); doc["temp_stat_t"] = F("~/thermostat_data"); doc["curr_temp_t"] = F("~/thermostat_data"); char mode_str[30]; snprintf_P(mode_str, sizeof(mode_str), PSTR("{{value_json.hc%d.mode}}"), hc_num); doc["mode_stat_tpl"] = mode_str; char seltemp_str[30]; snprintf_P(seltemp_str, sizeof(seltemp_str), PSTR("{{value_json.hc%d.seltemp}}"), hc_num); doc["temp_stat_tpl"] = seltemp_str; char currtemp_str[30]; snprintf_P(currtemp_str, sizeof(currtemp_str), PSTR("{{value_json.hc%d.currtemp}}"), hc_num); doc["curr_temp_tpl"] = currtemp_str; doc["min_temp"] = F("5"); doc["max_temp"] = F("40"); doc["temp_step"] = F("0.5"); JsonArray modes = doc.createNestedArray(F("modes")); modes.add(F("auto")); modes.add(F("heat")); modes.add(F("off")); /* uint8_t model = this->model(); if (model == EMSdevice::EMS_DEVICE_FLAG_RC20_2) { modes.add(F("night")); modes.add(F("day")); } else if ((model == EMSdevice::EMS_DEVICE_FLAG_RC300) || (model == EMSdevice::EMS_DEVICE_FLAG_RC100)) { modes.add(F("eco")); modes.add(F("comfort")); modes.add(F("auto")); } else if (model == EMSdevice::EMS_DEVICE_FLAG_JUNKERS) { modes.add(F("nofrost")); modes.add(F("eco")); modes.add(F("heat")); modes.add(F("auto")); } else { // default for all other thermostats modes.add(F("night")); modes.add(F("day")); modes.add(F("auto")); } */ JsonObject dev = doc.createNestedObject(F("dev")); dev["name"] = F("EMS-ESP Thermostat"); dev["sw"] = EMSESP_APP_VERSION; dev["mf"] = this->brand_to_string(); dev["mdl"] = this->name(); JsonArray ids = dev.createNestedArray(F("ids")); ids.add(F("ems-esp-thermostat")); std::string topic(100, '\0'); snprintf_P(&topic[0], topic.capacity() + 1, PSTR("homeassistant/climate/ems-esp/thermostat_hc%d/config"), hc_num); Mqtt::publish_retain(topic, doc.as(), true); // publish the config payload with retain flag // enable the thermostat topic to take both mode strings and floats // for each of the heating circuits std::string topic2(100, '\0'); snprintf_P(&topic2[0], topic2.capacity() + 1, PSTR("thermostat_hc%d"), hc_num); register_mqtt_topic(topic2, [=](const char * m) { return thermostat_ha_cmd(m, hc_num); }); char hc_name[10]; // hc{1-4} strlcpy(hc_name, "hc", 10); char s[3]; strlcat(hc_name, Helpers::itoa(s, hc_num), 10); Mqtt::register_mqtt_ha_sensor(hc_name, F_(mode), this->device_type(), "mode", nullptr, nullptr); uint8_t model = this->model(); switch (model) { case EMS_DEVICE_FLAG_RC100: case EMS_DEVICE_FLAG_RC300: Mqtt::register_mqtt_ha_sensor(hc_name, F_(modetype), this->device_type(), "modetype", nullptr, nullptr); Mqtt::register_mqtt_ha_sensor(hc_name, F_(ecotemp), this->device_type(), "ecotemp", F_(degrees), F_(icontemperature)); Mqtt::register_mqtt_ha_sensor(hc_name, F_(manualtemp), this->device_type(), "manualtemp", F_(degrees), F_(icontemperature)); Mqtt::register_mqtt_ha_sensor(hc_name, F_(comforttemp), this->device_type(), "comforttemp", F_(degrees), F_(icontemperature)); Mqtt::register_mqtt_ha_sensor(hc_name, F_(summertemp), this->device_type(), "summertemp", F_(degrees), F_(icontemperature)); break; case EMS_DEVICE_FLAG_RC20_2: Mqtt::register_mqtt_ha_sensor(hc_name, F_(daytemp), this->device_type(), "daytemp", F_(degrees), F_(icontemperature)); Mqtt::register_mqtt_ha_sensor(hc_name, F_(nighttemp), this->device_type(), "nighttemp", F_(degrees), F_(icontemperature)); break; case EMS_DEVICE_FLAG_RC30_1: case EMS_DEVICE_FLAG_RC35: Mqtt::register_mqtt_ha_sensor(hc_name, F_(modetype), this->device_type(), "modetype", nullptr, nullptr); Mqtt::register_mqtt_ha_sensor(hc_name, F_(nighttemp), this->device_type(), "nighttemp", F_(degrees), F_(icontemperature)); Mqtt::register_mqtt_ha_sensor(hc_name, F_(daytemp), this->device_type(), "daytemp", F_(degrees), F_(icontemperature)); Mqtt::register_mqtt_ha_sensor(hc_name, F_(designtemp), this->device_type(), "designtemp", F_(degrees), F_(icontemperature)); Mqtt::register_mqtt_ha_sensor(hc_name, F_(offsettemp), this->device_type(), "offsettemp", F_(degrees), F_(icontemperature)); Mqtt::register_mqtt_ha_sensor(hc_name, F_(holidaytemp), this->device_type(), "holidaytemp", F_(degrees), F_(icontemperature)); Mqtt::register_mqtt_ha_sensor(hc_name, F_(targetflowtemp), this->device_type(), "targetflowtemp", F_(degrees), F_(icontemperature)); Mqtt::register_mqtt_ha_sensor(hc_name, F_(summertemp), this->device_type(), "summertemp", F_(degrees), F_(icontemperature)); Mqtt::register_mqtt_ha_sensor(hc_name, F_(nofrosttemp), this->device_type(), "nofrosttemp", F_(degrees), F_(icontemperature)); break; case EMS_DEVICE_FLAG_JUNKERS: Mqtt::register_mqtt_ha_sensor(hc_name, F_(modetype), this->device_type(), "modetype", nullptr, nullptr); Mqtt::register_mqtt_ha_sensor(hc_name, F_(heattemp), this->device_type(), "heattemp", F_(degrees), F_(icontemperature)); Mqtt::register_mqtt_ha_sensor(hc_name, F_(ecotemp), this->device_type(), "ecotemp", F_(degrees), F_(icontemperature)); Mqtt::register_mqtt_ha_sensor(hc_name, F_(nofrosttemp), this->device_type(), "nofrosttemp", F_(degrees), F_(icontemperature)); break; default: break; } } // for HA specifically when receiving over MQTT in the thermostat topic // it could be either a 'mode' or a float value // return true if it parses the message correctly bool Thermostat::thermostat_ha_cmd(const char * message, uint8_t hc_num) { // check if it's json. We know the message isn't empty if (message[0] == '{') { return false; } // check for mode first if (!set_mode(message, hc_num)) { // handle as a numerical temperature value float f = strtof((char *)message, 0); set_temperature(f, HeatingCircuit::Mode::AUTO, hc_num); } return true; } // decodes the thermostat mode for the heating circuit based on the thermostat type // modes are off, manual, auto, day and night uint8_t Thermostat::HeatingCircuit::get_mode(uint8_t flags) const { if (!Helpers::hasValue(mode)) { return HeatingCircuit::Mode::UNKNOWN; } flags &= 0x0F; // strip top 4 bits if (flags == EMSdevice::EMS_DEVICE_FLAG_RC20) { if (mode == 0) { return HeatingCircuit::Mode::OFF; } else if (mode == 1) { return HeatingCircuit::Mode::MANUAL; } else if (mode == 2) { return HeatingCircuit::Mode::AUTO; } } else if ((flags == EMSdevice::EMS_DEVICE_FLAG_RC300) || (flags == EMSdevice::EMS_DEVICE_FLAG_RC100)) { if (mode == 0) { return HeatingCircuit::Mode::MANUAL; } else if (mode == 1) { return HeatingCircuit::Mode::AUTO; } } else if (flags == EMSdevice::EMS_DEVICE_FLAG_JUNKERS) { if (mode == 1) { return HeatingCircuit::Mode::MANUAL; } else if (mode == 2) { return HeatingCircuit::Mode::AUTO; } else if (mode == 3) { return HeatingCircuit::Mode::HOLIDAY; } } else { // default for all other thermostats if (mode == 0) { return HeatingCircuit::Mode::NIGHT; } else if (mode == 1) { return HeatingCircuit::Mode::DAY; } else if (mode == 2) { return HeatingCircuit::Mode::AUTO; } } return HeatingCircuit::Mode::UNKNOWN; } // figures out the thermostat day/night mode depending on the thermostat type // mode types are day, night, eco, comfort uint8_t Thermostat::HeatingCircuit::get_mode_type(uint8_t flags) const { flags &= 0x0F; // strip top 4 bits if (flags == EMS_DEVICE_FLAG_JUNKERS) { if (mode_type == 3) { return HeatingCircuit::Mode::HEAT; } else if (mode_type == 2) { return HeatingCircuit::Mode::ECO; } else if (mode_type == 1) { return HeatingCircuit::Mode::NOFROST; } } else if ((flags == EMS_DEVICE_FLAG_RC35) || (flags == EMS_DEVICE_FLAG_RC30_1)) { if (mode_type == 0) { return HeatingCircuit::Mode::NIGHT; } else if (mode_type == 1) { return HeatingCircuit::Mode::DAY; } } else if (flags == EMS_DEVICE_FLAG_RC300) { if (mode_type == 0) { return HeatingCircuit::Mode::ECO; } else if (mode_type == 1) { return HeatingCircuit::Mode::COMFORT; } } else if (flags == EMS_DEVICE_FLAG_RC100) { return HeatingCircuit::Mode::DAY; // no modes on these devices } return HeatingCircuit::Mode::DAY; } // decodes the thermostat mode based on the thermostat type // works with both modes and mode_types std::string Thermostat::mode_tostring(uint8_t mode) { switch (mode) { case HeatingCircuit::Mode::OFF: return read_flash_string(F("off")); break; case HeatingCircuit::Mode::MANUAL: return read_flash_string(F("manual")); break; case HeatingCircuit::Mode::DAY: return read_flash_string(F("day")); break; case HeatingCircuit::Mode::NIGHT: return read_flash_string(F("night")); break; case HeatingCircuit::Mode::ECO: return read_flash_string(F("eco")); break; case HeatingCircuit::Mode::COMFORT: return read_flash_string(F("comfort")); break; case HeatingCircuit::Mode::HEAT: return read_flash_string(F("heat")); break; case HeatingCircuit::Mode::HOLIDAY: return read_flash_string(F("holiday")); break; case HeatingCircuit::Mode::NOFROST: return read_flash_string(F("nofrost")); break; case HeatingCircuit::Mode::AUTO: return read_flash_string(F("auto")); break; case HeatingCircuit::Mode::SUMMER: return read_flash_string(F("summer")); break; case HeatingCircuit::Mode::OFFSET: return read_flash_string(F("offset")); break; case HeatingCircuit::Mode::DESIGN: return read_flash_string(F("design")); break; default: case HeatingCircuit::Mode::UNKNOWN: return read_flash_string(F("unknown")); break; } } // 0xA8 - for reading the mode from the RC20 thermostat (0x17) void Thermostat::process_RC20Set(std::shared_ptr telegram) { std::shared_ptr hc = heating_circuit(telegram); changed_ |= telegram->read_value(hc->mode, 23); } // type 0xAE - data from the RC20 thermostat (0x17) void Thermostat::process_RC20Monitor_2(std::shared_ptr telegram) { std::shared_ptr hc = heating_circuit(telegram); changed_ |= telegram->read_bitvalue(hc->mode_type, 0, 7); // day/night MSB 7th bit is day changed_ |= telegram->read_value(hc->setpoint_roomTemp, 2, 1); // is * 2, force as single byte changed_ |= telegram->read_value(hc->curr_roomTemp, 3); // is * 10 } // 0xAD - for reading the mode from the RC20/ES72 thermostat (0x17) // see https://github.com/proddy/EMS-ESP/issues/334#issuecomment-611698259 void Thermostat::process_RC20Set_2(std::shared_ptr telegram) { std::shared_ptr hc = heating_circuit(telegram); changed_ |= telegram->read_value(hc->mode, 3); } // 0xAF - for reading the roomtemperature from the RC20/ES72 thermostat (0x18, 0x19, ..) void Thermostat::process_RC20Remote(std::shared_ptr telegram) { std::shared_ptr hc = heating_circuit(telegram); changed_ |= telegram->read_value(hc->curr_roomTemp, 0); } // type 0xB1 - data from the RC10 thermostat (0x17) void Thermostat::process_RC10Monitor(std::shared_ptr telegram) { std::shared_ptr hc = heating_circuit(telegram); changed_ |= telegram->read_value(hc->setpoint_roomTemp, 1, 1); // is * 2, force as single byte changed_ |= telegram->read_value(hc->curr_roomTemp, 2); // is * 10 } #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wunused-parameter" // type 0xB0 - for reading the mode from the RC10 thermostat (0x17) void Thermostat::process_RC10Set(std::shared_ptr telegram) { // mode not implemented yet } #pragma GCC diagnostic pop // type 0x0165, ff void Thermostat::process_JunkersSet(std::shared_ptr telegram) { std::shared_ptr hc = heating_circuit(telegram); changed_ |= telegram->read_value(hc->daytemp, 17); // is * 2 changed_ |= telegram->read_value(hc->nighttemp, 16); // is * 2 changed_ |= telegram->read_value(hc->nofrosttemp, 15); // is * 2 } // type 0x0179, ff void Thermostat::process_JunkersSet2(std::shared_ptr telegram) { std::shared_ptr hc = heating_circuit(telegram); changed_ |= telegram->read_value(hc->daytemp, 7); // is * 2 changed_ |= telegram->read_value(hc->nighttemp, 6); // is * 2 changed_ |= telegram->read_value(hc->nofrosttemp, 5); // is * 2 } // type 0xA3 - for external temp settings from the the RC* thermostats (e.g. RC35) void Thermostat::process_RCOutdoorTemp(std::shared_ptr telegram) { changed_ |= telegram->read_value(dampedoutdoortemp_, 0); if (dampedoutdoortemp_ == 0) { dampedoutdoortemp_ = EMS_VALUE_INT_NOTSET; // special case for RC20's where the value is always 0 } changed_ |= telegram->read_value(tempsensor1_, 3); // sensor 1 - is * 10 changed_ |= telegram->read_value(tempsensor2_, 5); // sensor 2 - is * 10 } // 0x91 - data from the RC20 thermostat (0x17) - 15 bytes long void Thermostat::process_RC20Monitor(std::shared_ptr telegram) { std::shared_ptr hc = heating_circuit(telegram); changed_ |= telegram->read_value(hc->setpoint_roomTemp, 1, 1); // is * 2, force as single byte changed_ |= telegram->read_value(hc->curr_roomTemp, 2); // is * 10 } // type 0x0A - data from the Nefit Easy/TC100 thermostat (0x18) - 31 bytes long void Thermostat::process_EasyMonitor(std::shared_ptr telegram) { std::shared_ptr hc = heating_circuit(telegram); changed_ |= telegram->read_value(hc->curr_roomTemp, 8); // is * 100 changed_ |= telegram->read_value(hc->setpoint_roomTemp, 10); // is * 100 } // Settings Parameters - 0xA5 - RC30_1 void Thermostat::process_IBASettings(std::shared_ptr telegram) { // 22 - display line on RC35 changed_ |= telegram->read_value(ibaMainDisplay_, 0); // display on Thermostat: 0 int. temp, 1 int. setpoint, 2 ext. temp., 3 burner temp., 4 ww temp, 5 functioning mode, 6 time, 7 data, 8 smoke temp changed_ |= telegram->read_value(ibaLanguage_, 1); // language on Thermostat: 0 german, 1 dutch, 2 french, 3 italian changed_ |= telegram->read_value(ibaCalIntTemperature_, 2); // offset int. temperature sensor, by * 0.1 Kelvin changed_ |= telegram->read_value(ibaBuildingType_, 6); // building type: 0 = light, 1 = medium, 2 = heavy changed_ |= telegram->read_value(ibaMinExtTemperature_, 5); // min ext temp for heating curve, in deg., 0xF6=-10, 0x0 = 0, 0xFF=-1 changed_ |= telegram->read_value(ibaClockOffset_, 12); // offset (in sec) to clock, 0xff = -1 s, 0x02 = 2 s } // Settings WW 0x37 - RC35 void Thermostat::process_RC35wwSettings(std::shared_ptr telegram) { changed_ |= telegram->read_value(wwMode_, 2); // 0 off, 1-on, 2-auto changed_ |= telegram->read_value(wwCircMode_, 3); // 0 off, 1-on, 2-auto } // type 0x6F - FR10/FR50/FR100 Junkers void Thermostat::process_JunkersMonitor(std::shared_ptr telegram) { // ignore single byte telegram messages if (telegram->message_length <= 1) { return; } std::shared_ptr hc = heating_circuit(telegram); changed_ |= telegram->read_value(hc->curr_roomTemp, 4); // value is * 10 changed_ |= telegram->read_value(hc->setpoint_roomTemp, 2); // value is * 10 changed_ |= telegram->read_value(hc->mode_type, 0); // 1 = nofrost, 2 = eco, 3 = heat changed_ |= telegram->read_value(hc->mode, 1); // 1 = manual, 2 = auto } // type 0x02A5 - data from the Nefit RC1010/3000 thermostat (0x18) and RC300/310s on 0x10 void Thermostat::process_RC300Monitor(std::shared_ptr telegram) { std::shared_ptr hc = heating_circuit(telegram); changed_ |= telegram->read_value(hc->curr_roomTemp, 0); // is * 10 changed_ |= telegram->read_bitvalue(hc->mode_type, 10, 1); changed_ |= telegram->read_bitvalue(hc->mode, 10, 0); // bit 1, mode (auto=1 or manual=0) // if manual, take the current setpoint temp at pos 6 // if auto, take the next setpoint temp at pos 7 // pos 3 is the current target temp and sometimes can be 0 // see https://github.com/proddy/EMS-ESP/issues/256#issuecomment-585171426 // pos 3 actual setpoint (optimized), i.e. changes with temporary change, summer/holiday-modes // pos 6 actual setpoint according to programmed changes eco/comfort // pos 7 next setpoint in the future, time to next setpoint in pos 8/9 changed_ |= telegram->read_value(hc->setpoint_roomTemp, 3, 1); // is * 2, force as single byte changed_ |= telegram->read_bitvalue(hc->summer_mode, 2, 4); changed_ |= telegram->read_value(hc->targetflowtemp, 4); } // type 0x02B9 EMS+ for reading from RC300/RC310 thermostat void Thermostat::process_RC300Set(std::shared_ptr telegram) { std::shared_ptr hc = heating_circuit(telegram); // NOTE when setting the room temp we pick from two values, hopefully one is correct! // manual is position 10 // comfort is position 2, there are 3 levels in pos 3, 2, 1 // eco is position 4 // auto is position 8, temporary until next switch // actual setpoint taken from RC300Monitor (Michael 12.06.2020) // changed_ |= telegram->read_value(hc->setpoint_roomTemp, 8, 1); // single byte conversion, value is * 2 - auto? // changed_ |= telegram->read_value(hc->setpoint_roomTemp, 10, 1); // single byte conversion, value is * 2 - manual // check why mode is both in the Monitor and Set for the RC300. It'll be read twice! // changed_ |= telegram->read_value(hc->mode, 0); // Auto = xFF, Manual = x00 eg. 10 00 FF 08 01 B9 FF changed_ |= telegram->read_value(hc->daytemp, 2); // is * 2 changed_ |= telegram->read_value(hc->nighttemp, 4); // is * 2 changed_ |= telegram->read_value(hc->manualtemp, 10); // is * 2 } // types 0x2AF ff void Thermostat::process_RC300Summer(std::shared_ptr telegram) { std::shared_ptr hc = heating_circuit(telegram); changed_ |= telegram->read_value(hc->summertemp, 6); changed_ |= telegram->read_value(hc->summer_setmode, 7); } // types 0x31B (and 0x31C?) void Thermostat::process_RC300WWtemp(std::shared_ptr telegram) { changed_ |= telegram->read_value(wwTemp_, 0); changed_ |= telegram->read_value(wwTempLow_, 1); } // type 02F5 void Thermostat::process_RC300WWmode(std::shared_ptr telegram) { changed_ |= telegram->read_value(wwMode_, 2); // 0=off, 1=low, 2=high, 3=auto, 4=own prog } // types 0x31D and 0x31E void Thermostat::process_RC300WWmode2(std::shared_ptr telegram) { // 0x31D for WW system 1, 0x31E for WW system 2 if (telegram->type_id == 0x031D) { changed_ |= telegram->read_value(wwExtra1_, 0); // 0=no, 1=yes } else { changed_ |= telegram->read_value(wwExtra2_, 0); // 0=no, 1=yes } // pos 1 = holiday mode // pos 2 = current status of DHW setpoint // pos 3 = current status of DHW circulation pump } // type 0x41 - data from the RC30 thermostat(0x10) - 14 bytes long void Thermostat::process_RC30Monitor(std::shared_ptr telegram) { std::shared_ptr hc = heating_circuit(telegram); changed_ |= telegram->read_value(hc->setpoint_roomTemp, 1, 1); // is * 2, force as single byte changed_ |= telegram->read_value(hc->curr_roomTemp, 2); } // type 0xA7 - for reading the mode from the RC30 thermostat (0x10) void Thermostat::process_RC30Set(std::shared_ptr telegram) { std::shared_ptr hc = heating_circuit(telegram); changed_ |= telegram->read_value(hc->mode, 23); } // type 0x3E (HC1), 0x48 (HC2), 0x52 (HC3), 0x5C (HC4) - data from the RC35 thermostat (0x10) - 16 bytes void Thermostat::process_RC35Monitor(std::shared_ptr telegram) { // exit if the 15th byte (second from last) is 0x00, which I think is calculated flow setpoint temperature // with weather controlled RC35s this value is >=5, otherwise can be zero and our setpoint temps will be incorrect // see https://github.com/proddy/EMS-ESP/issues/373#issuecomment-627907301 if (telegram->message_data[14] == 0x00) { return; } std::shared_ptr hc = heating_circuit(telegram); changed_ |= telegram->read_value(hc->setpoint_roomTemp, 2, 1); // is * 2, force to single byte, is 0 in summermode changed_ |= telegram->read_value(hc->curr_roomTemp, 3); // is * 10 - or 0x7D00 if thermostat is mounted on boiler changed_ |= telegram->read_bitvalue(hc->mode_type, 1, 1); changed_ |= telegram->read_bitvalue(hc->summer_mode, 1, 0); changed_ |= telegram->read_bitvalue(hc->holiday_mode, 0, 5); changed_ |= telegram->read_value(hc->targetflowtemp, 14); } // type 0x3D (HC1), 0x47 (HC2), 0x51 (HC3), 0x5B (HC4) - Working Mode Heating - for reading the mode from the RC35 thermostat (0x10) void Thermostat::process_RC35Set(std::shared_ptr telegram) { // check to see we have a valid type. heating: 1 radiator, 2 convectors, 3 floors, 4 room supply if (telegram->message_data[0] == 0x00) { return; } std::shared_ptr hc = heating_circuit(telegram); changed_ |= telegram->read_value(hc->mode, 7); // night, day, auto changed_ |= telegram->read_value(hc->daytemp, 2); // is * 2 changed_ |= telegram->read_value(hc->nighttemp, 1); // is * 2 changed_ |= telegram->read_value(hc->holidaytemp, 3); // is * 2 changed_ |= telegram->read_value(hc->heatingtype, 0); // 0- off, 1-radiator, 2-convector, 3-floor changed_ |= telegram->read_value(hc->summertemp, 22); // is * 1 changed_ |= telegram->read_value(hc->nofrosttemp, 23); // is * 1 changed_ |= telegram->read_value(hc->designtemp, 17); // is * 1 changed_ |= telegram->read_value(hc->offsettemp, 6); // is * 2 } // process_RCTime - type 0x06 - date and time from a thermostat - 14 bytes long void Thermostat::process_RCTime(std::shared_ptr telegram) { if (this->flags() == EMS_DEVICE_FLAG_EASY) { return; // not supported } if (telegram->message_length < 7) { return; } if (telegram->message_data[7] & 0x0C) { // date and time not valid set_datetime("ntp", -1); // set from NTP return; } if (datetime_.empty()) { datetime_.resize(25, '\0'); } auto timeold = datetime_; // render time to HH:MM:SS DD/MM/YYYY // had to create separate buffers because of how printf works char buf1[6]; char buf2[6]; char buf3[6]; char buf4[6]; char buf5[6]; char buf6[6]; snprintf_P(&datetime_[0], datetime_.capacity() + 1, PSTR("%s:%s:%s %s/%s/%s"), Helpers::smallitoa(buf1, telegram->message_data[2]), // hour Helpers::smallitoa(buf2, telegram->message_data[4]), // minute Helpers::smallitoa(buf3, telegram->message_data[5]), // second Helpers::smallitoa(buf4, telegram->message_data[3]), // day Helpers::smallitoa(buf5, telegram->message_data[1]), // month Helpers::itoa(buf6, telegram->message_data[0] + 2000, 10) // year ); if (timeold != datetime_) { changed_ = true; } } // 0xA5 - Set minimum external temperature bool Thermostat::set_minexttemp(const char * value, const int8_t id) { int mt = 0; if (!Helpers::value2number(value, mt)) { LOG_WARNING(F("Set min external temperature: Invalid value")); return false; } LOG_INFO(F("Setting min external temperature to %d"), mt); write_command(EMS_TYPE_IBASettings, 5, mt, EMS_TYPE_IBASettings); return true; } // 0xA5 - Clock offset bool Thermostat::set_clockoffset(const char * value, const int8_t id) { int co = 0; if (!Helpers::value2number(value, co)) { LOG_WARNING(F("Set clock offset: Invalid value")); return false; } LOG_INFO(F("Setting clock offset to %d"), co); write_command(EMS_TYPE_IBASettings, 12, co, EMS_TYPE_IBASettings); return true; } // 0xA5 - Calibrate internal temperature bool Thermostat::set_calinttemp(const char * value, const int8_t id) { int ct = 0; if (!Helpers::value2number(value, ct)) { LOG_WARNING(F("Cal internal temperature: Invalid value")); return false; } LOG_INFO(F("Calibrating internal temperature to %d.%d"), ct / 10, ct < 0 ? -ct % 10 : ct % 10); write_command(EMS_TYPE_IBASettings, 2, ct, EMS_TYPE_IBASettings); return true; } // 0xA5 - Set the display settings bool Thermostat::set_display(const char * value, const int8_t id) { int ds = 0; if (!Helpers::value2number(value, ds)) { LOG_WARNING(F("Set display: Invalid value")); return false; } LOG_INFO(F("Setting display to %d"), ds); write_command(EMS_TYPE_IBASettings, 0, ds, EMS_TYPE_IBASettings); return true; } bool Thermostat::set_remotetemp(const char * value, const int8_t id) { float f = 0; if (!Helpers::value2float(value, f)) { LOG_WARNING(F("Set remote temperature: Invalid value")); return false; } uint8_t hc_num = (id == -1) ? AUTO_HEATING_CIRCUIT : id; if (f > 100 || f < 0) { Roomctrl::set_remotetemp(hc_num - 1, EMS_VALUE_SHORT_NOTSET); } else { Roomctrl::set_remotetemp(hc_num - 1, (int16_t)(f * 10)); } return true; } // 0xA5 - Set the building settings bool Thermostat::set_building(const char * value, const int8_t id) { uint8_t bd = 0; if (!Helpers::value2enum(value, bd, {"light", "medium", "heavy"})) { LOG_WARNING(F("Set building: Invalid value")); return false; } LOG_INFO(F("Setting building to %s"), value); write_command(EMS_TYPE_IBASettings, 6, bd, EMS_TYPE_IBASettings); return true; } // 0xA5 Set the language settings bool Thermostat::set_language(const char * value, const int8_t id) { uint8_t lg = 0; if (!Helpers::value2enum(value, lg, {"german", "dutch", "french", "italian"})) { LOG_WARNING(F("Set language: Invalid value")); return false; } LOG_INFO(F("Setting language to %d"), lg); write_command(EMS_TYPE_IBASettings, 1, lg, EMS_TYPE_IBASettings); return true; } // Set the control-mode for hc 0-off, 1-RC20, 2-RC3x bool Thermostat::set_control(const char * value, const int8_t id) { int ctrl = 0; if (!Helpers::value2number(value, ctrl)) { LOG_WARNING(F("Set control: Invalid value")); return false; } uint8_t hc_num = (id == -1) ? AUTO_HEATING_CIRCUIT : id; std::shared_ptr hc = heating_circuit(hc_num); if (hc == nullptr || ctrl > 2) { return false; } LOG_INFO(F("Setting circuit-control for hc%d to %d"), hc_num, ctrl); write_command(set_typeids[hc->hc_num() - 1], 26, ctrl); return true; } // sets the thermostat ww working mode, where mode is a string, ems and ems+ bool Thermostat::set_wwmode(const char * value, const int8_t id) { uint8_t set = 0xFF; if ((this->model() == EMS_DEVICE_FLAG_RC300) || (this->model() == EMS_DEVICE_FLAG_RC100)) { if (!Helpers::value2enum(value, set, {"off", "low", "high", "auto", "own"})) { LOG_WARNING(F("Set warm water mode: Invalid mode")); return false; } LOG_INFO(F("Setting warm water mode to %s"), value); write_command(0x02F5, 2, set, 0x02F5); } else { if (!Helpers::value2enum(value, set, {"off", "on", "auto"})) { LOG_WARNING(F("Set warm water mode: Invalid mode")); return false; } LOG_INFO(F("Setting warm water mode to %s"), value); write_command(EMS_TYPE_wwSettings, 2, set, EMS_TYPE_wwSettings); } return true; } // Set wwhigh temperature, ems+ bool Thermostat::set_wwtemp(const char * value, const int8_t id) { int t = 0; if (!Helpers::value2number(value, t)) { LOG_WARNING(F("Set warm water high temperature: Invalid value")); return false; } LOG_INFO(F("Setting warm water high temperature to %d"), t); write_command(0x031B, 0, t, 0x031B); return true; } // Set ww low temperature, ems+ bool Thermostat::set_wwtemplow(const char * value, const int8_t id) { int t = 0; if (!Helpers::value2number(value, t)) { LOG_WARNING(F("Set warm water low temperature: Invalid value")); return false; } LOG_INFO(F("Setting warm water low temperature to %d"), t); write_command(0x031B, 1, t, 0x031B); return true; } // sets the thermostat ww circulation working mode, where mode is a string bool Thermostat::set_wwcircmode(const char * value, const int8_t id) { uint8_t set = 0xFF; if (!Helpers::value2enum(value, set, {"off", "on", "auto"})) { LOG_WARNING(F("Set warm water circulation mode: Invalid mode")); return false; } LOG_INFO(F("Setting warm water circulation mode to %s"), value); write_command(EMS_TYPE_wwSettings, 3, set, EMS_TYPE_wwSettings); return true; } // set the holiday as string dd.mm.yyyy-dd.mm.yyyy bool Thermostat::set_holiday(const char * value, const int8_t id) { std::string hd(30, '\0'); if (!Helpers::value2string(value, hd)) { LOG_WARNING(F("Set holiday: Invalid value")); return false; } uint8_t hc_num = (id == -1) ? AUTO_HEATING_CIRCUIT : id; std::shared_ptr hc = heating_circuit(hc_num); if (hc == nullptr) { LOG_WARNING(F("Set holiday: Heating Circuit %d not found or activated for device ID 0x%02X"), hc_num, this->device_id()); return false; } uint8_t data[6]; data[0] = (hd[0] - '0') * 10 + (hd[1] - '0'); data[1] = (hd[3] - '0') * 10 + (hd[4] - '0'); data[2] = (hd[7] - '0') * 100 + (hd[8] - '0') * 10 + (hd[9] - '0'); data[3] = (hd[11] - '0') * 10 + (hd[11] - '0'); data[4] = (hd[14] - '0') * 10 + (hd[15] - '0'); data[5] = (hd[18] - '0') * 100 + (hd[19] - '0') * 10 + (hd[20] - '0'); LOG_INFO(F("Setting holiday for hc %d"), hc->hc_num()); write_command(timer_typeids[hc->hc_num() - 1], 87, data, 6, 0); return true; } // set pause in hours bool Thermostat::set_pause(const char * value, const int8_t id) { int hrs = 0; if (!Helpers::value2number(value, hrs)) { LOG_WARNING(F("Set pause: Invalid value")); return false; } uint8_t hc_num = (id == -1) ? AUTO_HEATING_CIRCUIT : id; std::shared_ptr hc = heating_circuit(hc_num); if (hc == nullptr) { LOG_WARNING(F("Set pause: Heating Circuit %d not found or activated for device ID 0x%02X"), hc_num, this->device_id()); return false; } LOG_INFO(F("Setting pause: %d hours, hc: %d"), hrs, hc->hc_num()); write_command(timer_typeids[hc->hc_num() - 1], 85, hrs); return true; } // set partymode in hours bool Thermostat::set_party(const char * value, const int8_t id) { int hrs = 0; if (!Helpers::value2number(value, hrs)) { LOG_WARNING(F("Set party: Invalid value")); return false; } uint8_t hc_num = (id == -1) ? AUTO_HEATING_CIRCUIT : id; std::shared_ptr hc = heating_circuit(hc_num); if (hc == nullptr) { LOG_WARNING(F("Set party: Heating Circuit %d not found or activated for device ID 0x%02X"), hc_num, this->device_id()); return false; } LOG_INFO(F("Setting party: %d hours, hc: %d"), hrs, hc->hc_num()); write_command(timer_typeids[hc->hc_num() - 1], 86, hrs); return true; } // set date&time as string hh:mm:ss-dd.mm.yyyy-dw-dst or "NTP" for setting to internet-time // dw - day of week (0..6), dst- summertime (0/1) // id is ignored bool Thermostat::set_datetime(const char * value, const int8_t id) { std::string dt(30, '\0'); if (!Helpers::value2string(value, dt)) { LOG_WARNING(F("Set date: Invalid value")); return false; } uint8_t data[9]; if (dt == "ntp") { time_t now = time(nullptr); tm * tm_ = localtime(&now); if (tm_->tm_year < 110) { // no NTP time LOG_WARNING(F("No NTP time. Cannot set RCtime")); return false; } data[0] = tm_->tm_year - 100; // Bosch counts from 2000 data[1] = tm_->tm_mon; data[2] = tm_->tm_hour; data[3] = tm_->tm_mday; data[4] = tm_->tm_min; data[5] = tm_->tm_sec; data[6] = (tm_->tm_wday + 6) % 7; // Bosch counts from Mo, time from Su data[7] = tm_->tm_isdst + 2; // set DST and flag for ext. clock char time_string[25]; strftime(time_string, 25, "%FT%T%z", tm_); LOG_INFO(F("Date and time: %s"), time_string); } else { data[0] = (dt[16] - '0') * 100 + (dt[17] - '0') * 10 + (dt[18] - '0'); // year data[1] = (dt[12] - '0') * 10 + (dt[13] - '0'); // month data[2] = (dt[0] - '0') * 10 + (dt[1] - '0'); // hour data[3] = (dt[9] - '0') * 10 + (dt[10] - '0'); // day data[4] = (dt[3] - '0') * 10 + (dt[4] - '0'); // min data[5] = (dt[6] - '0') * 10 + (dt[7] - '0'); // sec data[6] = (dt[20] - '0'); // day of week data[7] = (dt[22] - '0') + 2; // DST and flag } LOG_INFO(F("Setting date and time")); write_command(EMS_TYPE_time, 0, data, 8, EMS_TYPE_time); return true; } // sets the thermostat working mode, where mode is a string // converts string mode to HeatingCircuit::Mode bool Thermostat::set_mode(const char * value, const int8_t id) { // quit if its numerical, as it could be mistaken as a temperature value if (value[0] <= 'A') { return false; } std::string mode(10, '\0'); if (!Helpers::value2string(value, mode)) { LOG_WARNING(F("Set mode: Invalid mode")); return false; } uint8_t hc_num = (id == -1) ? AUTO_HEATING_CIRCUIT : id; if (mode_tostring(HeatingCircuit::Mode::OFF) == mode) { return set_mode_n(HeatingCircuit::Mode::OFF, hc_num); } if (mode_tostring(HeatingCircuit::Mode::MANUAL) == mode) { return set_mode_n(HeatingCircuit::Mode::MANUAL, hc_num); } if (mode_tostring(HeatingCircuit::Mode::AUTO) == mode) { return set_mode_n(HeatingCircuit::Mode::AUTO, hc_num); } if (mode_tostring(HeatingCircuit::Mode::DAY) == mode) { return set_mode_n(HeatingCircuit::Mode::DAY, hc_num); } if (mode_tostring(HeatingCircuit::Mode::NIGHT) == mode) { return set_mode_n(HeatingCircuit::Mode::NIGHT, hc_num); } if (mode_tostring(HeatingCircuit::Mode::HEAT) == mode) { return set_mode_n(HeatingCircuit::Mode::HEAT, hc_num); } if (mode_tostring(HeatingCircuit::Mode::NOFROST) == mode) { return set_mode_n(HeatingCircuit::Mode::NOFROST, hc_num); } if (mode_tostring(HeatingCircuit::Mode::ECO) == mode) { return set_mode_n(HeatingCircuit::Mode::ECO, hc_num); } if (mode_tostring(HeatingCircuit::Mode::HOLIDAY) == mode) { return set_mode_n(HeatingCircuit::Mode::HOLIDAY, hc_num); } if (mode_tostring(HeatingCircuit::Mode::COMFORT) == mode) { return set_mode_n(HeatingCircuit::Mode::COMFORT, hc_num); } LOG_WARNING(F("Set mode: Invalid mode %s"), value); return false; } // Set the thermostat working mode // mode is HeatingCircuit::Mode bool Thermostat::set_mode_n(const uint8_t mode, const uint8_t hc_num) { // get hc based on number std::shared_ptr hc = heating_circuit(hc_num); if (hc == nullptr) { LOG_WARNING(F("Set mode: Heating Circuit %d not found or activated"), hc_num); return false; } uint8_t set_mode_value, offset; uint16_t validate_typeid = 0; uint8_t hc_p = hc->hc_num() - 1; // set the value to send via EMS depending on the mode type switch (mode) { case HeatingCircuit::Mode::NIGHT: case HeatingCircuit::Mode::OFF: set_mode_value = 0; break; case HeatingCircuit::Mode::DAY: case HeatingCircuit::Mode::HEAT: case HeatingCircuit::Mode::MANUAL: case HeatingCircuit::Mode::NOFROST: set_mode_value = 1; break; default: case HeatingCircuit::Mode::AUTO: case HeatingCircuit::Mode::ECO: set_mode_value = 2; break; } switch (this->model()) { case EMSdevice::EMS_DEVICE_FLAG_RC20: offset = EMS_OFFSET_RC20Set_mode; validate_typeid = set_typeids[hc_p]; break; case EMSdevice::EMS_DEVICE_FLAG_RC20_2: // ES72 offset = EMS_OFFSET_RC20_2_Set_mode; validate_typeid = set_typeids[hc_p]; break; case EMSdevice::EMS_DEVICE_FLAG_RC30: offset = EMS_OFFSET_RC30Set_mode; validate_typeid = set_typeids[hc_p]; break; case EMSdevice::EMS_DEVICE_FLAG_RC35: case EMSdevice::EMS_DEVICE_FLAG_RC30_1: offset = EMS_OFFSET_RC35Set_mode; validate_typeid = set_typeids[hc_p]; break; case EMSdevice::EMS_DEVICE_FLAG_RC300: case EMSdevice::EMS_DEVICE_FLAG_RC100: offset = EMS_OFFSET_RCPLUSSet_mode; validate_typeid = monitor_typeids[hc_p]; if (mode == HeatingCircuit::Mode::AUTO) { set_mode_value = 0xFF; // special value for auto } else { set_mode_value = 0; // everything else, like manual/day etc.. } break; case EMSdevice::EMS_DEVICE_FLAG_JUNKERS: if (this->has_flags(EMS_DEVICE_FLAG_JUNKERS_2)) { offset = EMS_OFFSET_JunkersSetMessage2_set_mode; } else { offset = EMS_OFFSET_JunkersSetMessage_set_mode; } validate_typeid = monitor_typeids[hc_p]; if (mode == HeatingCircuit::Mode::NOFROST) { set_mode_value = 0x01; } else if (mode == HeatingCircuit::Mode::ECO || (mode == HeatingCircuit::Mode::NIGHT)) { set_mode_value = 0x02; } else if ((mode == HeatingCircuit::Mode::DAY) || (mode == HeatingCircuit::Mode::HEAT)) { set_mode_value = 0x03; // comfort } else if (mode == HeatingCircuit::Mode::AUTO) { set_mode_value = 0x04; } break; default: offset = 0; break; } LOG_INFO(F("Setting thermostat mode to %s for heating circuit %d"), mode_tostring(mode).c_str(), hc->hc_num()); // add the write command to the Tx queue // post validate is the corresponding monitor or set type IDs as they can differ per model write_command(set_typeids[hc->hc_num() - 1], offset, set_mode_value, validate_typeid); return true; } // sets the thermostat summermode for RC300 bool Thermostat::set_summermode(const char * value, const int8_t id) { uint8_t hc_num = (id == -1) ? AUTO_HEATING_CIRCUIT : id; std::shared_ptr hc = heating_circuit(hc_num); if (hc == nullptr) { LOG_WARNING(F("Setting summer mode: Heating Circuit %d not found or activated"), hc_num); return false; } uint8_t set = 0xFF; if (!Helpers::value2enum(value, set, {"off", "auto", "on"})) { LOG_WARNING(F("Setting summer mode: Invalid mode")); return false; } LOG_INFO(F("Setting summer mode to %s for heating circuit %d"), value, hc->hc_num()); write_command(summer_typeids[hc->hc_num() - 1], 7, set, summer_typeids[hc->hc_num() - 1]); return true; } // sets the thermostat temp, where mode is a string bool Thermostat::set_temperature(const float temperature, const std::string & mode, const uint8_t hc_num) { if (mode_tostring(HeatingCircuit::Mode::MANUAL) == mode) { return set_temperature(temperature, HeatingCircuit::Mode::MANUAL, hc_num); } if (mode_tostring(HeatingCircuit::Mode::AUTO) == mode) { return set_temperature(temperature, HeatingCircuit::Mode::AUTO, hc_num); } if (mode_tostring(HeatingCircuit::Mode::DAY) == mode) { return set_temperature(temperature, HeatingCircuit::Mode::DAY, hc_num); } if (mode_tostring(HeatingCircuit::Mode::NIGHT) == mode) { return set_temperature(temperature, HeatingCircuit::Mode::NIGHT, hc_num); } if (mode_tostring(HeatingCircuit::Mode::COMFORT) == mode) { return set_temperature(temperature, HeatingCircuit::Mode::COMFORT, hc_num); } if (mode_tostring(HeatingCircuit::Mode::HEAT) == mode) { return set_temperature(temperature, HeatingCircuit::Mode::HEAT, hc_num); } if (mode_tostring(HeatingCircuit::Mode::ECO) == mode) { return set_temperature(temperature, HeatingCircuit::Mode::ECO, hc_num); } if (mode_tostring(HeatingCircuit::Mode::NOFROST) == mode) { return set_temperature(temperature, HeatingCircuit::Mode::NOFROST, hc_num); } if (mode_tostring(HeatingCircuit::Mode::SUMMER) == mode) { return set_temperature(temperature, HeatingCircuit::Mode::SUMMER, hc_num); } if (mode_tostring(HeatingCircuit::Mode::HOLIDAY) == mode) { return set_temperature(temperature, HeatingCircuit::Mode::HOLIDAY, hc_num); } if (mode_tostring(HeatingCircuit::Mode::OFFSET) == mode) { return set_temperature(temperature, HeatingCircuit::Mode::OFFSET, hc_num); } if (mode_tostring(HeatingCircuit::Mode::DESIGN) == mode) { return set_temperature(temperature, HeatingCircuit::Mode::DESIGN, hc_num); } LOG_WARNING(F("Set temperature: Invalid mode")); return false; } // Set the temperature of the thermostat // the id passed into this function is the heating circuit number bool Thermostat::set_temperature(const float temperature, const uint8_t mode, const uint8_t hc_num) { // get hc based on number std::shared_ptr hc = heating_circuit(hc_num); if (hc == nullptr) { LOG_WARNING(F("Set temperature: Heating Circuit %d not found or activated for device ID 0x%02X"), hc_num, this->device_id()); return false; } uint8_t model = this->model(); int8_t offset = -1; // we use -1 to check if there is a value uint8_t factor = 2; // some temperatures only use 1 uint16_t validate_typeid = monitor_typeids[hc->hc_num() - 1]; uint16_t set_typeid = set_typeids[hc->hc_num() - 1]; if (model == EMS_DEVICE_FLAG_RC10) { offset = EMS_OFFSET_RC10Set_temp; } else if (model == EMS_DEVICE_FLAG_RC20) { offset = EMS_OFFSET_RC20Set_temp; } else if (model == EMS_DEVICE_FLAG_RC30) { offset = EMS_OFFSET_RC30Set_temp; } else if ((model == EMS_DEVICE_FLAG_RC300) || (model == EMS_DEVICE_FLAG_RC100)) { validate_typeid = set_typeids[hc->hc_num() - 1]; switch (mode) { case HeatingCircuit::Mode::SUMMER: offset = 0x06; set_typeid = summer_typeids[hc->hc_num() - 1]; validate_typeid = set_typeid; factor = 1; break; case HeatingCircuit::Mode::MANUAL: offset = 0x0A; // manual offset break; case HeatingCircuit::Mode::COMFORT: offset = 0x02; // comfort offset level 2 break; case HeatingCircuit::Mode::ECO: offset = 0x04; // eco offset break; default: case HeatingCircuit::Mode::AUTO: uint8_t mode_ = hc->get_mode(this->flags()); if (mode_ == HeatingCircuit::Mode::MANUAL) { offset = 0x0A; // manual offset } else { offset = 0x08; // auto offset } validate_typeid = monitor_typeids[hc->hc_num() - 1]; // get setpoint roomtemp back break; } } else if (model == EMS_DEVICE_FLAG_RC20_2) { switch (mode) { case HeatingCircuit::Mode::NIGHT: // change the night temp offset = EMS_OFFSET_RC20_2_Set_temp_night; break; case HeatingCircuit::Mode::DAY: // change the day temp offset = EMS_OFFSET_RC20_2_Set_temp_day; break; default: case HeatingCircuit::Mode::AUTO: // automatic selection, if no type is defined, we use the standard code uint8_t mode_type = hc->get_mode_type(this->flags()); offset = (mode_type == HeatingCircuit::Mode::NIGHT) ? EMS_OFFSET_RC20_2_Set_temp_night : EMS_OFFSET_RC20_2_Set_temp_day; break; } } else if ((model == EMS_DEVICE_FLAG_RC35) || (model == EMS_DEVICE_FLAG_RC30_1)) { validate_typeid = set_typeids[hc->hc_num() - 1]; switch (mode) { case HeatingCircuit::Mode::NIGHT: // change the night temp offset = EMS_OFFSET_RC35Set_temp_night; break; case HeatingCircuit::Mode::DAY: // change the day temp offset = EMS_OFFSET_RC35Set_temp_day; break; case HeatingCircuit::Mode::HOLIDAY: // change the holiday temp offset = EMS_OFFSET_RC35Set_temp_holiday; break; case HeatingCircuit::Mode::OFFSET: // change the offset temp offset = EMS_OFFSET_RC35Set_temp_offset; break; case HeatingCircuit::Mode::DESIGN: offset = EMS_OFFSET_RC35Set_temp_design; factor = 1; break; case HeatingCircuit::Mode::SUMMER: offset = EMS_OFFSET_RC35Set_temp_summer; factor = 1; break; case HeatingCircuit::Mode::NOFROST: offset = EMS_OFFSET_RC35Set_temp_nofrost; factor = 1; break; default: case HeatingCircuit::Mode::AUTO: // automatic selection, if no type is defined, we use the standard code validate_typeid = monitor_typeids[hc->hc_num() - 1]; //get setpoint roomtemp back if (model == EMS_DEVICE_FLAG_RC35) { uint8_t mode_ = hc->get_mode(this->flags()); if (mode_ == HeatingCircuit::Mode::NIGHT) { offset = EMS_OFFSET_RC35Set_temp_night; } else if (mode_ == HeatingCircuit::Mode::DAY) { offset = EMS_OFFSET_RC35Set_temp_day; } else { offset = EMS_OFFSET_RC35Set_seltemp; // https://github.com/proddy/EMS-ESP/issues/310 } } else { uint8_t mode_type = hc->get_mode_type(this->flags()); offset = (mode_type == HeatingCircuit::Mode::NIGHT) ? EMS_OFFSET_RC35Set_temp_night : EMS_OFFSET_RC35Set_temp_day; } break; } } else if (model == EMS_DEVICE_FLAG_JUNKERS) { // figure out if we have older or new thermostats, Heating Circuits on 0x65 or 0x79 // see https://github.com/proddy/EMS-ESP/issues/335#issuecomment-593324716) bool old_junkers = (this->has_flags(EMS_DEVICE_FLAG_JUNKERS_2)); if (!old_junkers) { switch (mode) { case HeatingCircuit::Mode::NOFROST: offset = EMS_OFFSET_JunkersSetMessage_no_frost_temp; break; case HeatingCircuit::Mode::NIGHT: case HeatingCircuit::Mode::ECO: offset = EMS_OFFSET_JunkersSetMessage_night_temp; break; case HeatingCircuit::Mode::HEAT: case HeatingCircuit::Mode::DAY: offset = EMS_OFFSET_JunkersSetMessage_day_temp; break; default: case HeatingCircuit::Mode::AUTO: // automatic selection, if no type is defined, we use the standard code uint8_t mode_type = hc->get_mode_type(this->flags()); if (mode_type == HeatingCircuit::Mode::NIGHT || mode_type == HeatingCircuit::Mode::ECO) { offset = EMS_OFFSET_JunkersSetMessage_night_temp; } else if (mode_type == HeatingCircuit::Mode::DAY || mode_type == HeatingCircuit::Mode::HEAT) { offset = EMS_OFFSET_JunkersSetMessage_day_temp; } else { offset = EMS_OFFSET_JunkersSetMessage_no_frost_temp; } break; } } else { // older, like the FR100 switch (mode) { case HeatingCircuit::Mode::NOFROST: offset = EMS_OFFSET_JunkersSetMessage2_no_frost_temp; break; case HeatingCircuit::Mode::ECO: case HeatingCircuit::Mode::NIGHT: offset = EMS_OFFSET_JunkersSetMessage2_eco_temp; break; case HeatingCircuit::Mode::HEAT: case HeatingCircuit::Mode::DAY: offset = EMS_OFFSET_JunkersSetMessage2_heat_temp; break; default: case HeatingCircuit::Mode::AUTO: // automatic selection, if no type is defined, we use the standard code uint8_t mode_type = hc->get_mode_type(this->flags()); if (mode_type == HeatingCircuit::Mode::NIGHT || mode_type == HeatingCircuit::Mode::ECO) { offset = EMS_OFFSET_JunkersSetMessage2_eco_temp; } else if (mode_type == HeatingCircuit::Mode::DAY || mode_type == HeatingCircuit::Mode::HEAT) { offset = EMS_OFFSET_JunkersSetMessage2_heat_temp; } else { offset = EMS_OFFSET_JunkersSetMessage2_no_frost_temp; } break; } } } // if we know what to send and to where, go and do it if (offset != -1) { char s[10]; LOG_INFO(F("Setting thermostat temperature to %s for heating circuit %d, mode %s"), Helpers::render_value(s, temperature, 2), hc->hc_num(), mode_tostring(mode).c_str()); // add the write command to the Tx queue. value is *2 // post validate is the corresponding monitor or set type IDs as they can differ per model write_command(set_typeid, offset, (uint8_t)((float)temperature * (float)factor), validate_typeid); return true; } LOG_WARNING(F("Set temperature: Invalid value")); return false; } bool Thermostat::set_temperature_value(const char * value, const int8_t id, const uint8_t mode) { float f = 0; uint8_t hc_num = (id == -1) ? AUTO_HEATING_CIRCUIT : id; if (Helpers::value2float(value, f)) { return set_temperature(f, mode, hc_num); } else { LOG_WARNING(F("Set temperature: Invalid value")); return false; } } bool Thermostat::set_temp(const char * value, const int8_t id) { return set_temperature_value(value, id, HeatingCircuit::Mode::AUTO); } bool Thermostat::set_nighttemp(const char * value, const int8_t id) { return set_temperature_value(value, id, HeatingCircuit::Mode::NIGHT); } bool Thermostat::set_daytemp(const char * value, const int8_t id) { return set_temperature_value(value, id, HeatingCircuit::Mode::DAY); } bool Thermostat::set_comforttemp(const char * value, const int8_t id) { return set_temperature_value(value, id, HeatingCircuit::Mode::COMFORT); } bool Thermostat::set_nofrosttemp(const char * value, const int8_t id) { return set_temperature_value(value, id, HeatingCircuit::Mode::NOFROST); } bool Thermostat::set_ecotemp(const char * value, const int8_t id) { return set_temperature_value(value, id, HeatingCircuit::Mode::ECO); } bool Thermostat::set_heattemp(const char * value, const int8_t id) { return set_temperature_value(value, id, HeatingCircuit::Mode::HEAT); } bool Thermostat::set_summertemp(const char * value, const int8_t id) { return set_temperature_value(value, id, HeatingCircuit::Mode::SUMMER); } bool Thermostat::set_designtemp(const char * value, const int8_t id) { return set_temperature_value(value, id, HeatingCircuit::Mode::DESIGN); } bool Thermostat::set_offsettemp(const char * value, const int8_t id) { return set_temperature_value(value, id, HeatingCircuit::Mode::OFFSET); } bool Thermostat::set_holidaytemp(const char * value, const int8_t id) { return set_temperature_value(value, id, HeatingCircuit::Mode::HOLIDAY); } bool Thermostat::set_manualtemp(const char * value, const int8_t id) { return set_temperature_value(value, id, HeatingCircuit::Mode::MANUAL); } // API commands for MQTT and Console void Thermostat::add_commands() { // API call Command::add_with_json(this->device_type(), F("info"), [&](const char * value, const int8_t id, JsonObject & object) { return command_info(value, id, object); }); // if this thermostat doesn't support write, don't add the commands if ((this->flags() & EMSdevice::EMS_DEVICE_FLAG_NO_WRITE) == EMSdevice::EMS_DEVICE_FLAG_NO_WRITE) { return; } // common to all thermostats register_mqtt_cmd(F("temp"), [&](const char * value, const int8_t id) { return set_temp(value, id); }); register_mqtt_cmd(F("mode"), [&](const char * value, const int8_t id) { return set_mode(value, id); }); register_mqtt_cmd(F("datetime"), [&](const char * value, const int8_t id) { return set_datetime(value, id); }); uint8_t model = this->model(); switch (model) { case EMS_DEVICE_FLAG_RC100: case EMS_DEVICE_FLAG_RC300: register_mqtt_cmd(F("manualtemp"), [&](const char * value, const int8_t id) { return set_manualtemp(value, id); }); register_mqtt_cmd(F("ecotemp"), [&](const char * value, const int8_t id) { return set_ecotemp(value, id); }); register_mqtt_cmd(F("comforttemp"), [&](const char * value, const int8_t id) { return set_comforttemp(value, id); }); register_mqtt_cmd(F("summermode"), [&](const char * value, const int8_t id) { return set_summermode(value, id); }); register_mqtt_cmd(F("summertemp"), [&](const char * value, const int8_t id) { return set_summertemp(value, id); }); register_mqtt_cmd(F("wwmode"), [&](const char * value, const int8_t id) { return set_wwmode(value, id); }); register_mqtt_cmd(F("wwtemp"), [&](const char * value, const int8_t id) { return set_wwtemp(value, id); }); register_mqtt_cmd(F("wwtemplow"), [&](const char * value, const int8_t id) { return set_wwtemplow(value, id); }); break; case EMS_DEVICE_FLAG_RC20_2: register_mqtt_cmd(F("nighttemp"), [&](const char * value, const int8_t id) { return set_nighttemp(value, id); }); register_mqtt_cmd(F("daytemp"), [&](const char * value, const int8_t id) { return set_daytemp(value, id); }); break; case EMS_DEVICE_FLAG_RC30_1: // only RC30_1 register_mqtt_cmd(F("clockoffset"), [&](const char * value, const int8_t id) { return set_clockoffset(value, id); }); register_mqtt_cmd(F("language"), [&](const char * value, const int8_t id) { return set_language(value, id); }); register_mqtt_cmd(F("display"), [&](const char * value, const int8_t id) { return set_display(value, id); }); case EMS_DEVICE_FLAG_RC35: // RC30 and RC35 register_mqtt_cmd(F("nighttemp"), [&](const char * value, const int8_t id) { return set_nighttemp(value, id); }); register_mqtt_cmd(F("daytemp"), [&](const char * value, const int8_t id) { return set_daytemp(value, id); }); register_mqtt_cmd(F("nofrosttemp"), [&](const char * value, const int8_t id) { return set_nofrosttemp(value, id); }); register_mqtt_cmd(F("remotetemp"), [&](const char * value, const int8_t id) { return set_remotetemp(value, id); }); register_mqtt_cmd(F("minexttemp"), [&](const char * value, const int8_t id) { return set_minexttemp(value, id); }); register_mqtt_cmd(F("calinttemp"), [&](const char * value, const int8_t id) { return set_calinttemp(value, id); }); register_mqtt_cmd(F("building"), [&](const char * value, const int8_t id) { return set_building(value, id); }); register_mqtt_cmd(F("control"), [&](const char * value, const int8_t id) { return set_control(value, id); }); register_mqtt_cmd(F("pause"), [&](const char * value, const int8_t id) { return set_pause(value, id); }); register_mqtt_cmd(F("party"), [&](const char * value, const int8_t id) { return set_party(value, id); }); register_mqtt_cmd(F("holiday"), [&](const char * value, const int8_t id) { return set_holiday(value, id); }); register_mqtt_cmd(F("summertemp"), [&](const char * value, const int8_t id) { return set_summertemp(value, id); }); register_mqtt_cmd(F("designtemp"), [&](const char * value, const int8_t id) { return set_designtemp(value, id); }); register_mqtt_cmd(F("offsettemp"), [&](const char * value, const int8_t id) { return set_offsettemp(value, id); }); register_mqtt_cmd(F("holidaytemp"), [&](const char * value, const int8_t id) { return set_holidaytemp(value, id); }); register_mqtt_cmd(F("wwmode"), [&](const char * value, const int8_t id) { return set_wwmode(value, id); }); register_mqtt_cmd(F("wwcircmode"), [&](const char * value, const int8_t id) { return set_wwcircmode(value, id); }); break; case EMS_DEVICE_FLAG_JUNKERS: register_mqtt_cmd(F("nofrosttemp"), [&](const char * value, const int8_t id) { return set_nofrosttemp(value, id); }); register_mqtt_cmd(F("ecotemp"), [&](const char * value, const int8_t id) { return set_ecotemp(value, id); }); register_mqtt_cmd(F("heattemp"), [&](const char * value, const int8_t id) { return set_heattemp(value, id); }); break; default: break; } } } // namespace emsesp