/* * EMS-ESP - https://github.com/proddy/EMS-ESP * Copyright 2019 Paul Derbyshire * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include "emsesp.h" namespace emsesp { AsyncWebServer webServer(80); #if defined(ESP32) ESP8266React EMSESP::esp8266React(&webServer, &SPIFFS); EMSESPSettingsService EMSESP::emsespSettingsService = EMSESPSettingsService(&webServer, &SPIFFS, EMSESP::esp8266React.getSecurityManager()); #elif defined(ESP8266) ESP8266React EMSESP::esp8266React(&webServer, &LittleFS); EMSESPSettingsService EMSESP::emsespSettingsService = EMSESPSettingsService(&webServer, &LittleFS, EMSESP::esp8266React.getSecurityManager()); #elif defined(EMSESP_STANDALONE) FS dummyFS; ESP8266React EMSESP::esp8266React(&webServer, &dummyFS); EMSESPSettingsService EMSESP::emsespSettingsService = EMSESPSettingsService(&webServer, &dummyFS, EMSESP::esp8266React.getSecurityManager()); #endif EMSESPStatusService EMSESP::emsespStatusService = EMSESPStatusService(&webServer, EMSESP::esp8266React.getSecurityManager()); EMSESPDevicesService EMSESP::emsespDevicesService = EMSESPDevicesService(&webServer, EMSESP::esp8266React.getSecurityManager()); using DeviceFlags = emsesp::EMSdevice; using DeviceType = emsesp::EMSdevice::DeviceType; std::vector> EMSESP::emsdevices; // array of all the detected EMS devices std::vector EMSESP::device_library_; // libary of all our known EMS devices so far uuid::log::Logger EMSESP::logger_{F_(emsesp), uuid::log::Facility::KERN}; // The services RxService EMSESP::rxservice_; // incoming Telegram Rx handler TxService EMSESP::txservice_; // outgoing Telegram Tx handler Mqtt EMSESP::mqtt_; // mqtt handler System EMSESP::system_; // core system services Console EMSESP::console_; // telnet and serial console Sensors EMSESP::sensors_; // Dallas sensors Shower EMSESP::shower_; // Shower logic // static/common variables uint8_t EMSESP::actual_master_thermostat_ = EMSESP_DEFAULT_MASTER_THERMOSTAT; // which thermostat leads when multiple found uint16_t EMSESP::watch_id_ = WATCH_ID_NONE; // for when log is TRACE. 0 means no trace set uint8_t EMSESP::watch_ = 0; // trace off uint16_t EMSESP::read_id_ = WATCH_ID_NONE; bool EMSESP::tap_water_active_ = false; // for when Boiler states we having running warm water. used in Shower() uint32_t EMSESP::last_fetch_ = 0; uint8_t EMSESP::unique_id_count_ = 0; // for a specific EMS device go and request data values // or if device_id is 0 it will fetch from all our known and active devices void EMSESP::fetch_device_values(const uint8_t device_id) { for (const auto & emsdevice : emsdevices) { if (emsdevice) { if ((device_id == 0) || emsdevice->is_device_id(device_id)) { emsdevice->fetch_values(); if (device_id != 0) { return; // quit, we only want to return the selected device } } } } } // clears list of recognized devices void EMSESP::clear_all_devices() { emsdevices.clear(); // or use empty to release memory too } // return number of devices of a known type uint8_t EMSESP::count_devices(const uint8_t device_type) { uint8_t count = 0; for (const auto & emsdevice : emsdevices) { if (emsdevice) { count += (emsdevice->device_type() == device_type); } } return count; } // scans for new devices void EMSESP::scan_devices() { EMSESP::clear_all_devices(); EMSESP::send_read_request(EMSdevice::EMS_TYPE_UBADevices, EMSdevice::EMS_DEVICE_ID_BOILER); } /** * if thermostat master is 0x18 it handles only ww and hc1, hc2..hc4 handled by devices 0x19..0x1B * we send to right device and match all reads to 0x18 */ uint8_t EMSESP::check_master_device(const uint8_t device_id, const uint16_t type_id, const bool read) { uint16_t mon_id[4] = {0x02A5, 0x02A6, 0x02A7, 0x02A8}; uint16_t set_id[4] = {0x02B9, 0x02BA, 0x02BB, 0x02BC}; if (actual_master_thermostat_ == 0x18) { for (uint8_t i = 0; i < 4; i++) { if (type_id == mon_id[i] || type_id == set_id[i]) { if (read) { return 0x18; } else { return 0x18 + i; } } } } return device_id; } void EMSESP::actual_master_thermostat(const uint8_t device_id) { actual_master_thermostat_ = device_id; } uint8_t EMSESP::actual_master_thermostat() { return actual_master_thermostat_; } // to watch both type IDs and device IDs void EMSESP::watch_id(uint16_t watch_id) { // if it's a device ID, which is a single byte, remove the MSB so to support both Buderus and HT3 protocols if (watch_id <= 0xFF) { watch_id_ = (watch_id & 0x7F); } else { watch_id_ = watch_id; } } // change the tx_mode // resets all counters and bumps the UART // this is called when the tx_mode is persisted in the FS either via Web UI or the console void EMSESP::init_tx() { uint8_t tx_mode; EMSESP::emsespSettingsService.read([&](EMSESPSettings & settings) { tx_mode = settings.tx_mode; #ifndef EMSESP_FORCE_SERIAL EMSuart::stop(); EMSuart::start(tx_mode, settings.rx_gpio, settings.tx_gpio); #endif }); txservice_.start(); // sends out request to EMS bus for all devices // force a fetch for all new values, unless Tx is set to off if (tx_mode != 0) { EMSESP::fetch_device_values(); } } // return status of bus: connected, connected but Tx is broken, disconnected uint8_t EMSESP::bus_status() { if (!rxservice_.bus_connected()) { return BUS_STATUS_OFFLINE; } // check if we have Tx issues. uint32_t total_sent = txservice_.telegram_read_count() + txservice_.telegram_write_count(); // nothing sent successfully, also no errors - must be ok if ((total_sent == 0) && (txservice_.telegram_fail_count() == 0)) { return BUS_STATUS_CONNECTED; } // nothing sent successfully, but have Tx errors if ((total_sent == 0) && (txservice_.telegram_fail_count() != 0)) { return BUS_STATUS_TX_ERRORS; } // Tx Failure rate > 5% if (((txservice_.telegram_fail_count() * 100) / total_sent) > EMSbus::EMS_TX_ERROR_LIMIT) { return BUS_STATUS_TX_ERRORS; } return BUS_STATUS_CONNECTED; } // show the EMS bus status plus both Rx and Tx queues void EMSESP::show_ems(uuid::console::Shell & shell) { // EMS bus information switch (bus_status()) { case BUS_STATUS_OFFLINE: shell.printfln(F("EMS Bus is disconnected.")); break; case BUS_STATUS_TX_ERRORS: shell.printfln(F("EMS Bus is connected, but Tx is not stable.")); break; case BUS_STATUS_CONNECTED: default: shell.printfln(F("EMS Bus is connected.")); break; } shell.println(); if (bus_status() != BUS_STATUS_OFFLINE) { uint8_t success_rate = 0; if (rxservice_.telegram_error_count()) { success_rate = ((float)rxservice_.telegram_error_count() / (float)rxservice_.telegram_count()) * 100; } shell.printfln(F("EMS Bus info:")); EMSESP::emsespSettingsService.read([&](EMSESPSettings & settings) { shell.printfln(F(" Tx mode: %d"), settings.tx_mode); }); shell.printfln(F(" Bus protocol: %s"), EMSbus::is_ht3() ? F("HT3") : F("Buderus")); shell.printfln(F(" #telegrams received: %d"), rxservice_.telegram_count()); shell.printfln(F(" #read requests sent: %d"), txservice_.telegram_read_count()); shell.printfln(F(" #write requests sent: %d"), txservice_.telegram_write_count()); shell.printfln(F(" #incomplete telegrams: %d (%d%%)"), rxservice_.telegram_error_count(), success_rate); shell.printfln(F(" #tx fails (after %d retries): %d"), TxService::MAXIMUM_TX_RETRIES, txservice_.telegram_fail_count()); } shell.println(); // Rx queue auto rx_telegrams = rxservice_.queue(); if (rx_telegrams.empty()) { shell.printfln(F("Rx Queue is empty")); } else { shell.printfln(F("Rx Queue (%ld telegram%s):"), rx_telegrams.size(), rx_telegrams.size() == 1 ? "" : "s"); for (const auto & it : rx_telegrams) { shell.printfln(F(" [%02d] %s"), it.id_, pretty_telegram(it.telegram_).c_str()); } } shell.println(); // Tx queue auto tx_telegrams = txservice_.queue(); if (tx_telegrams.empty()) { shell.printfln(F("Tx Queue is empty")); } else { shell.printfln(F("Tx Queue (%ld telegram%s):"), tx_telegrams.size(), tx_telegrams.size() == 1 ? "" : "s"); std::string op(10, '\0'); for (const auto & it : tx_telegrams) { if ((it.telegram_->operation) == Telegram::Operation::TX_RAW) { op = read_flash_string(F("RAW ")); } else if ((it.telegram_->operation) == Telegram::Operation::TX_READ) { op = read_flash_string(F("READ ")); } else if ((it.telegram_->operation) == Telegram::Operation::TX_WRITE) { op = read_flash_string(F("WRITE")); } shell.printfln(F(" [%02d%c] %s %s"), it.id_, ((it.retry_) ? '*' : ' '), op.c_str(), pretty_telegram(it.telegram_).c_str()); } } shell.println(); } // show EMS device values void EMSESP::show_device_values(uuid::console::Shell & shell) { if (emsdevices.empty()) { shell.printfln(F("No EMS devices detected. Try using 'scan devices' from the ems menu.")); shell.println(); return; } // do this in the order of factory classes to keep a consistent order when displaying for (const auto & device_class : EMSFactory::device_handlers()) { for (const auto & emsdevice : emsdevices) { if ((emsdevice) && (emsdevice->device_type() == device_class.first)) { emsdevice->show_values(shell); } } } } // show Dallas temperature sensors void EMSESP::show_sensor_values(uuid::console::Shell & shell) { if (sensor_devices().empty()) { return; } char valuestr[8] = {0}; // for formatting temp shell.printfln(F("Dallas temperature sensors:")); for (const auto & device : sensor_devices()) { shell.printfln(F(" ID: %s, Temperature: %s°C"), device.to_string().c_str(), Helpers::render_value(valuestr, device.temperature_c, 1)); } shell.println(); } // publish all values from each EMS device to MQTT // plus the heartbeat and sensor if activated void EMSESP::publish_all_values() { if (Mqtt::connected()) { // Dallas sensors first sensors_.publish_values(); // all the connected EMS devices we known about for (const auto & emsdevice : emsdevices) { if (emsdevice) { emsdevice->publish_values(); } } } } // search for recognized device_ids : Me, All, otherwise print hex value std::string EMSESP::device_tostring(const uint8_t device_id) { if ((device_id & 0x7F) == rxservice_.ems_bus_id()) { return read_flash_string(F("Me")); } else if (device_id == 0x00) { return read_flash_string(F("All")); } else { char buffer[5]; return Helpers::hextoa(buffer, device_id); } } // created a pretty print telegram as a text string // e.g. Boiler(0x08) -> Me(0x0B), Version(0x02), data: 7B 06 01 00 00 00 00 00 00 04 (offset 1) std::string EMSESP::pretty_telegram(std::shared_ptr telegram) { uint8_t src = telegram->src & 0x7F; uint8_t dest = telegram->dest & 0x7F; uint8_t offset = telegram->offset; // find name for src and dest by looking up known devices std::string src_name(20, '\0'); std::string dest_name(20, '\0'); std::string type_name(20, '\0'); for (const auto & emsdevice : emsdevices) { if (emsdevice) { // get src & dest if (emsdevice->is_device_id(src)) { src_name = emsdevice->device_type_name(); } else if (emsdevice->is_device_id(dest)) { dest_name = emsdevice->device_type_name(); } // get the type name, any match will do if (type_name.empty()) { type_name = emsdevice->telegram_type_name(telegram); } } } // if we can't find names for the devices, use their hex values if (src_name.empty()) { src_name = device_tostring(src); } if (dest_name.empty()) { dest_name = device_tostring(dest); } // check for global/common types like Version if (telegram->type_id == EMSdevice::EMS_TYPE_VERSION) { type_name = read_flash_string(F("Version")); } // if we don't know the type show if (type_name.empty()) { type_name = read_flash_string(F("?")); } std::string str(200, '\0'); if (offset) { snprintf_P(&str[0], str.capacity() + 1, PSTR("%s(0x%02X) -> %s(0x%02X), %s(0x%02X), data: %s (offset %d)"), src_name.c_str(), src, dest_name.c_str(), dest, type_name.c_str(), telegram->type_id, telegram->to_string_message().c_str(), offset); } else { snprintf_P(&str[0], str.capacity() + 1, PSTR("%s(0x%02X) -> %s(0x%02X), %s(0x%02X), data: %s"), src_name.c_str(), src, dest_name.c_str(), dest, type_name.c_str(), telegram->type_id, telegram->to_string_message().c_str()); } return str; } /* * Type 0x07 - UBADevices - shows us the connected EMS devices * e.g. 08 00 07 00 0B 80 00 00 00 00 00 00 00 00 00 00 00 * Junkers has 15 bytes of data * each byte is a bitmask for which devices are active * byte 1 = range 0x08 - 0x0F, byte 2=0x10 - 0x17 etc... */ void EMSESP::process_UBADevices(std::shared_ptr telegram) { // exit it length is incorrect (must be 13 or 15 bytes long) if (telegram->message_length > 15) { return; } // for each byte, check the bits and determine the device_id for (uint8_t data_byte = 0; data_byte < telegram->message_length; data_byte++) { uint8_t next_byte = telegram->message_data[data_byte]; if (next_byte) { for (uint8_t bit = 0; bit < 8; bit++) { if (next_byte & 0x01) { uint8_t device_id = ((data_byte + 1) * 8) + bit; // if we haven't already detected this device, request it's version details, unless its us (EMS-ESP) // when the version info is received, it will automagically add the device if ((device_id != EMSbus::ems_bus_id()) && !(EMSESP::device_exists(device_id))) { LOG_DEBUG(F("New EMS device detected with ID 0x%02X. Requesting version information."), device_id); send_read_request(EMSdevice::EMS_TYPE_VERSION, device_id); } } next_byte = next_byte >> 1; // advance 1 bit } } } } // process the Version telegram (type 0x02), which is a common type // e.g. 09 0B 02 00 PP V1 V2 void EMSESP::process_version(std::shared_ptr telegram) { // check for valid telegram, just in case if (telegram->message_length < 3) { return; } // check for 2nd subscriber, e.g. 18 0B 02 00 00 00 00 5E 02 01 uint8_t offset = 0; if (telegram->message_data[0] == 0x00) { // see if we have a 2nd subscriber if (telegram->message_data[3] != 0x00) { offset = 3; } else { return; // ignore whole telegram } } // extra details from the telegram uint8_t device_id = telegram->src; // device ID uint8_t product_id = telegram->message_data[offset]; // product ID // get version as XX.XX std::string version(5, '\0'); snprintf_P(&version[0], version.capacity() + 1, PSTR("%02d.%02d"), telegram->message_data[offset + 1], telegram->message_data[offset + 2]); // some devices store the protocol type (HT3, Buderus) in the last byte uint8_t brand; if (telegram->message_length >= 10) { brand = EMSdevice::decode_brand(telegram->message_data[9]); } else { brand = EMSdevice::Brand::NO_BRAND; // unknown } // add it - will be overwritten if device already exists (void)add_device(device_id, product_id, version, brand); } // find the device object that matches the device ID and see if it has a matching telegram type handler // but only process if the telegram is sent to us or it's a broadcast (dest=0x00=all) // We also check for common telgram types, like the Version(0x02) // returns false if there are none found bool EMSESP::process_telegram(std::shared_ptr telegram) { // if watching... if (telegram->type_id == read_id_) { LOG_NOTICE(pretty_telegram(telegram).c_str()); read_id_ = WATCH_ID_NONE; } else if (watch() == WATCH_ON) { if ((watch_id_ == WATCH_ID_NONE) || (telegram->src == watch_id_) || (telegram->dest == watch_id_) || (telegram->type_id == watch_id_)) { LOG_NOTICE(pretty_telegram(telegram).c_str()); } } // only process broadcast telegrams or ones sent to us on request if ((telegram->dest != 0x00) && (telegram->dest != rxservice_.ems_bus_id())) { return false; } // check for common types, like the Version(0x02) if (telegram->type_id == EMSdevice::EMS_TYPE_VERSION) { process_version(telegram); return true; } else if (telegram->type_id == EMSdevice::EMS_TYPE_UBADevices) { process_UBADevices(telegram); return true; } // match device_id and type_id // calls the associated process function for that EMS device // returns false if the device_id doesn't recognize it // after the telegram has been processed, call the updated_values() function to see if we need to force an MQTT publish bool found = false; for (const auto & emsdevice : emsdevices) { if (emsdevice) { if (emsdevice->is_device_id(telegram->src)) { found = emsdevice->handle_telegram(telegram); // check to see if we need to follow up after the telegram has been processed if (found) { if (emsdevice->updated_values()) { emsdevice->publish_values(); // publish to MQTT if we explicitly have too } } break; } } } if (!found) { LOG_DEBUG(F("No telegram type handler found for ID 0x%02X (src 0x%02X)"), telegram->type_id, telegram->src); } return found; } // calls the device handler's function to populate a json doc with device info void EMSESP::device_info(const uint8_t unique_id, JsonObject & root) { for (const auto & emsdevice : emsdevices) { if (emsdevice) { if (emsdevice->unique_id() == unique_id) { root["deviceName"] = emsdevice->to_string_short(); // can;t use c_str() because of scope JsonArray data = root.createNestedArray("deviceData"); emsdevice->device_info(data); return; } } } } // return true if we have this device already registered bool EMSESP::device_exists(const uint8_t device_id) { for (const auto & emsdevice : emsdevices) { if (emsdevice) { if (emsdevice->is_device_id(device_id)) { return true; } } } return false; // not found } // for each device add its context menu for the console void EMSESP::add_context_menus() { for (const auto & emsdevice : emsdevices) { if (emsdevice) { emsdevice->add_context_menu(); } } } // for each associated EMS device go and get its system information void EMSESP::show_devices(uuid::console::Shell & shell) { if (emsdevices.empty()) { shell.printfln(F("No EMS devices detected. Try using 'scan devices' from the ems menu.")); shell.println(); return; } shell.printfln(F("These EMS devices are currently active:")); shell.println(); // for all device objects from emsdevice.h (UNKNOWN, SERVICEKEY, BOILER, THERMOSTAT, MIXING, SOLAR, HEATPUMP, GATEWAY, SWITCH, CONTROLLER, CONNECT) // so we keep a consistent order for (const auto & device_class : EMSFactory::device_handlers()) { // shell.printf(F("[factory ID: %d] "), device_class.first); for (const auto & emsdevice : emsdevices) { if ((emsdevice) && (emsdevice->device_type() == device_class.first)) { shell.printf(F("%s: %s"), emsdevice->device_type_name().c_str(), emsdevice->to_string().c_str()); if ((emsdevice->device_type() == EMSdevice::DeviceType::THERMOSTAT) && (emsdevice->get_device_id() == actual_master_thermostat())) { shell.printf(F(" ** master device **")); } shell.println(); emsdevice->show_telegram_handlers(shell); // emsdevice->show_mqtt_handlers(shell); shell.println(); } } } } // add a new or update existing EMS device to our list of active EMS devices // if its not in our database, we don't add it bool EMSESP::add_device(const uint8_t device_id, const uint8_t product_id, std::string & version, const uint8_t brand) { // don't add ourselves! if (device_id == rxservice_.ems_bus_id()) { return false; } // first check to see if we already have it, if so update the record for (const auto & emsdevice : emsdevices) { if (emsdevice) { if (emsdevice->is_device_id(device_id)) { LOG_DEBUG(F("Updating details on already existing device ID 0x%02X"), device_id); emsdevice->product_id(product_id); emsdevice->version(version); // only set brand if it doesn't already exist if (emsdevice->brand() == EMSdevice::Brand::NO_BRAND) { emsdevice->brand(brand); } // find the name and flags in our database for (const auto & device : device_library_) { if (device.product_id == product_id) { emsdevice->name(uuid::read_flash_string(device.name)); emsdevice->flags(device.flags); } } return true; // finish up } } } // look up the rest of the details using the product_id and create the new device object Device_record * device_p = nullptr; for (auto & device : device_library_) { if (device.product_id == product_id) { // sometimes boilers share the same product id as controllers // so only add boilers if the device_id is 0x08, which is fixed for EMS if (device.device_type == DeviceType::BOILER) { if (device_id == EMSdevice::EMS_DEVICE_ID_BOILER) { device_p = &device; break; } } else { // it's not a boiler, but we have a match device_p = &device; break; } } } // if we don't recognize the product ID report it, but don't add it. if (device_p == nullptr) { LOG_NOTICE(F("Unrecognized EMS device with device ID 0x%02X with product ID %d. Please report on GitHub."), device_id, product_id); return false; // not found } else { std::string name = uuid::read_flash_string(device_p->name); emsdevices.push_back(EMSFactory::add(device_p->device_type, device_id, device_p->product_id, version, name, device_p->flags, brand)); emsdevices.back()->unique_id(++unique_id_count_); LOG_DEBUG(F("Adding new device with device ID 0x%02X with product ID %d and version %s"), device_id, product_id, version.c_str()); fetch_device_values(device_id); // go and fetch its data, } return true; } // send a read request, passing it into to the Tx Service, with no offset void EMSESP::send_read_request(const uint16_t type_id, const uint8_t dest) { txservice_.read_request(type_id, dest, 0); // 0 = no offset } // sends write request void EMSESP::send_write_request(const uint16_t type_id, const uint8_t dest, const uint8_t offset, uint8_t * message_data, const uint8_t message_length, const uint16_t validate_typeid) { txservice_.add(Telegram::Operation::TX_WRITE, dest, type_id, offset, message_data, message_length); txservice_.set_post_send_query(validate_typeid); // store which type_id to send Tx read after a write } void EMSESP::send_write_request(const uint16_t type_id, const uint8_t dest, const uint8_t offset, const uint8_t value) { send_write_request(type_id, dest, offset, value, 0); } // send Tx write with a single value void EMSESP::send_write_request(const uint16_t type_id, const uint8_t dest, const uint8_t offset, const uint8_t value, const uint16_t validate_typeid) { uint8_t message_data[1]; message_data[0] = value; EMSESP::send_write_request(type_id, dest, offset, message_data, 1, validate_typeid); } // this is main entry point when data is received on the Rx line, via emsuart library // we check if its a complete telegram or just a single byte (which could be a poll or a return status) // the CRC check is not done here, only when it's added to the Rx queue with add() void EMSESP::incoming_telegram(uint8_t * data, const uint8_t length) { #ifdef EMSESP_DEBUG static uint32_t rx_time_ = 0; #endif // check first for echo uint8_t first_value = data[0]; if (((first_value & 0x7F) == txservice_.ems_bus_id()) && (length > 1)) { // if we ask ourself at roomcontrol for version e.g. 0B 98 02 00 20 Roomctrl::check((data[1] ^ 0x80 ^ rxservice_.ems_mask()), data); #ifdef EMSESP_DEBUG // get_uptime is only updated once per loop, does not give the right time LOG_TRACE(F("[DEBUG] Echo after %d ms: %s"), ::millis() - rx_time_, Helpers::data_to_hex(data, length).c_str()); #endif return; // it's an echo } // are we waiting for a response from a recent Tx Read or Write? uint8_t tx_state = EMSbus::tx_state(); if (tx_state != Telegram::Operation::NONE) { bool tx_successful = false; EMSbus::tx_state(Telegram::Operation::NONE); // reset Tx wait state // txservice_.print_last_tx(); // if we're waiting on a Write operation, we want a single byte 1 or 4 if ((tx_state == Telegram::Operation::TX_WRITE) && (length == 1)) { if (first_value == TxService::TX_WRITE_SUCCESS) { LOG_DEBUG(F("Last Tx write successful")); txservice_.increment_telegram_write_count(); // last tx/write was confirmed ok txservice_.send_poll(); // close the bus txservice_.post_send_query(); // follow up with any post-read txservice_.reset_retry_count(); tx_successful = true; } else if (first_value == TxService::TX_WRITE_FAIL) { LOG_ERROR(F("Last Tx write rejected by host")); txservice_.send_poll(); // close the bus txservice_.reset_retry_count(); } } else if (tx_state == Telegram::Operation::TX_READ) { // got a telegram with data in it. See if the src/dest matches that from the last one we sent and continue to process it uint8_t src = data[0]; uint8_t dest = data[1]; if (txservice_.is_last_tx(src, dest)) { LOG_DEBUG(F("Last Tx read successful")); txservice_.increment_telegram_read_count(); txservice_.send_poll(); // close the bus txservice_.reset_retry_count(); tx_successful = true; } } // if Tx wasn't successful, retry or just give up if (!tx_successful) { txservice_.retry_tx(tx_state, data, length); return; } } // check for poll if (length == 1) { EMSbus::last_bus_activity(uuid::get_uptime()); // set the flag indication the EMS bus is active #ifdef EMSESP_DEBUG char s[4]; if (first_value & 0x80) { LOG_TRACE(F("[DEBUG] next Poll %s after %d ms"), Helpers::hextoa(s, first_value), ::millis() - rx_time_); // time measurement starts here, use millis because get_uptime is only updated once per loop rx_time_ = ::millis(); } else { LOG_TRACE(F("[DEBUG] Poll ack %s after %d ms"), Helpers::hextoa(s, first_value), ::millis() - rx_time_); } #endif // check for poll to us, if so send top message from Tx queue immediately and quit // if ht3 poll must be ems_bus_id else if Buderus poll must be (ems_bus_id | 0x80) if ((first_value ^ 0x80 ^ rxservice_.ems_mask()) == txservice_.ems_bus_id()) { txservice_.send(); } // send remote room temperature if active Roomctrl::send(first_value ^ 0x80 ^ rxservice_.ems_mask()); return; } else { #ifdef EMSESP_DEBUG LOG_TRACE(F("[DEBUG] Reply after %d ms: %s"), ::millis() - rx_time_, Helpers::data_to_hex(data, length).c_str()); #endif // check if there is a message for the roomcontroller Roomctrl::check((data[1] ^ 0x80 ^ rxservice_.ems_mask()), data); // add to RxQueue, what ever it is. // in add() the CRC will be checked rxservice_.add(data, length); } } // sends raw data of bytes along the Tx line void EMSESP::send_raw_telegram(const char * data) { txservice_.send_raw(data); } // start all the core services // the services must be loaded in the correct order void EMSESP::start() { // see if we need to migrate from previous versions if (!system_.check_upgrade()) { #ifdef ESP32 SPIFFS.begin(true); #elif defined(ESP8266) LittleFS.begin(); #endif esp8266React.begin(); // loads system settings (wifi, mqtt, etc) emsespSettingsService.begin(); // load EMS-ESP specific settings } // Load our library of known devices. Names are stored in Flash mem. device_library_.reserve(80); device_library_ = { #include "device_library.h" }; console_.start(); // telnet and serial console mqtt_.start(); // mqtt init system_.start(); // starts syslog, uart, sets version, initializes LED. Requires pre-loaded settings. shower_.start(); // initialize shower timer and shower alert sensors_.start(); // dallas external sensors webServer.begin(); // start web server emsdevices.reserve(5); // reserve space for initially 5 devices to avoid mem LOG_INFO("EMS Device library loaded with %d records", device_library_.size()); #if defined(EMSESP_STANDALONE) mqtt_.on_connect(); // simulate an MQTT connection #endif } // main loop calling all services void EMSESP::loop() { esp8266React.loop(); // web // if we're doing an OTA upload, skip MQTT and EMS if (system_.upload_status()) { return; } system_.loop(); // does LED and checks system health, and syslog service shower_.loop(); // check for shower on/off sensors_.loop(); // this will also send out via MQTT mqtt_.loop(); // sends out anything in the queue via MQTT console_.loop(); // telnet/serial console rxservice_.loop(); // process any incoming Rx telegrams // force a query on the EMS devices to fetch latest data at a set interval (1 min) if ((uuid::get_uptime() - last_fetch_ > EMS_FETCH_FREQUENCY)) { last_fetch_ = uuid::get_uptime(); fetch_device_values(); } delay(1); // helps telnet catch up } } // namespace emsesp