/* * EMS-ESP - https://github.com/emsesp/EMS-ESP * Copyright 2020 Paul Derbyshire * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include "emsesp.h" namespace emsesp { #if defined(EMSESP_STANDALONE) uint32_t heap_start = 0; #else uint32_t heap_start = ESP.getFreeHeap(); // get initial available heap memory #endif AsyncWebServer webServer(80); #if defined(EMSESP_STANDALONE) FS dummyFS; ESP8266React EMSESP::esp8266React(&webServer, &dummyFS); WebSettingsService EMSESP::webSettingsService = WebSettingsService(&webServer, &dummyFS, EMSESP::esp8266React.getSecurityManager()); #else ESP8266React EMSESP::esp8266React(&webServer, &LITTLEFS); WebSettingsService EMSESP::webSettingsService = WebSettingsService(&webServer, &LITTLEFS, EMSESP::esp8266React.getSecurityManager()); #endif WebStatusService EMSESP::webStatusService = WebStatusService(&webServer, EMSESP::esp8266React.getSecurityManager()); WebDataService EMSESP::webDataService = WebDataService(&webServer, EMSESP::esp8266React.getSecurityManager()); WebAPIService EMSESP::webAPIService = WebAPIService(&webServer, EMSESP::esp8266React.getSecurityManager()); WebLogService EMSESP::webLogService = WebLogService(&webServer, EMSESP::esp8266React.getSecurityManager()); using DeviceFlags = EMSdevice; using DeviceType = EMSdevice::DeviceType; std::vector> EMSESP::emsdevices; // array of all the detected EMS devices std::vector EMSESP::device_library_; // library of all our known EMS devices, in heap uuid::log::Logger EMSESP::logger_{F_(emsesp), uuid::log::Facility::KERN}; uuid::log::Logger EMSESP::logger() { return logger_; } // The services RxService EMSESP::rxservice_; // incoming Telegram Rx handler TxService EMSESP::txservice_; // outgoing Telegram Tx handler Mqtt EMSESP::mqtt_; // mqtt handler System EMSESP::system_; // core system services Console EMSESP::console_; // telnet and serial console DallasSensor EMSESP::dallassensor_; // Dallas sensors Shower EMSESP::shower_; // Shower logic // static/common variables uint8_t EMSESP::actual_master_thermostat_ = EMSESP_DEFAULT_MASTER_THERMOSTAT; // which thermostat leads when multiple found uint16_t EMSESP::watch_id_ = WATCH_ID_NONE; // for when log is TRACE. 0 means no trace set uint8_t EMSESP::watch_ = 0; // trace off uint16_t EMSESP::read_id_ = WATCH_ID_NONE; bool EMSESP::read_next_ = false; uint16_t EMSESP::publish_id_ = 0; bool EMSESP::tap_water_active_ = false; // for when Boiler states we having running warm water. used in Shower() uint32_t EMSESP::last_fetch_ = 0; uint8_t EMSESP::publish_all_idx_ = 0; uint8_t EMSESP::unique_id_count_ = 0; bool EMSESP::trace_raw_ = false; uint8_t EMSESP::bool_format_ = 1; uint8_t EMSESP::enum_format_ = 1; uint16_t EMSESP::wait_validate_ = 0; // for a specific EMS device go and request data values // or if device_id is 0 it will fetch from all our known and active devices void EMSESP::fetch_device_values(const uint8_t device_id) { for (const auto & emsdevice : emsdevices) { if (emsdevice) { if ((device_id == 0) || emsdevice->is_device_id(device_id)) { emsdevice->fetch_values(); if (device_id != 0) { return; // quit, we only want to return the selected device } } } } } // for a specific EMS device type go and request data values void EMSESP::fetch_device_values_type(const uint8_t device_type) { for (const auto & emsdevice : emsdevices) { if ((emsdevice) && (emsdevice->device_type() == device_type)) { emsdevice->fetch_values(); } } } // clears list of recognized devices void EMSESP::clear_all_devices() { // temporary removed: clearing the list causes a crash, the associated commands and mqtt should also be removed. // emsdevices.clear(); // remove entries, but doesn't delete actual devices } // return number of devices of a known type uint8_t EMSESP::count_devices(const uint8_t device_type) { uint8_t count = 0; for (const auto & emsdevice : emsdevices) { if (emsdevice) { count += (emsdevice->device_type() == device_type); } } return count; } // scans for new devices void EMSESP::scan_devices() { EMSESP::clear_all_devices(); EMSESP::send_read_request(EMSdevice::EMS_TYPE_UBADevices, EMSdevice::EMS_DEVICE_ID_BOILER); } /** * if thermostat master is 0x18 it handles only ww and hc1, hc2..hc4 handled by devices 0x19..0x1B * we send to right device and match all reads to 0x18 */ uint8_t EMSESP::check_master_device(const uint8_t device_id, const uint16_t type_id, const bool read) { if (actual_master_thermostat_ == 0x18) { uint16_t mon_ids[4] = {0x02A5, 0x02A6, 0x02A7, 0x02A8}; uint16_t set_ids[4] = {0x02B9, 0x02BA, 0x02BB, 0x02BC}; uint16_t summer_ids[4] = {0x02AF, 0x02B0, 0x02B1, 0x02B2}; uint16_t curve_ids[4] = {0x029B, 0x029C, 0x029D, 0x029E}; uint16_t master_ids[] = {0x02F5, 0x031B, 0x031D, 0x031E, 0x023A, 0x0267, 0x0240}; // look for heating circuits for (uint8_t i = 0; i < 4; i++) { if (type_id == mon_ids[i] || type_id == set_ids[i] || type_id == summer_ids[i] || type_id == curve_ids[i]) { if (read) { // receiving telegrams and map all to master thermostat at 0x18 (src manipulated) return 0x18; } else { // sending telegrams to the individual thermostats (dst manipulated) return 0x18 + i; } } } // look for ids that are only handled by master for (uint8_t i = 0; i < sizeof(master_ids) / 2; i++) { if (type_id == master_ids[i]) { return 0x18; } } } return device_id; } void EMSESP::actual_master_thermostat(const uint8_t device_id) { actual_master_thermostat_ = device_id; } uint8_t EMSESP::actual_master_thermostat() { return actual_master_thermostat_; } // to watch both type IDs and device IDs void EMSESP::watch_id(uint16_t watch_id) { watch_id_ = watch_id; } // resets all counters and bumps the UART // this is called when the tx_mode is persisted in the FS either via Web UI or the console void EMSESP::init_uart() { uint8_t tx_mode; uint8_t rx_gpio; uint8_t tx_gpio; EMSESP::webSettingsService.read([&](WebSettings & settings) { tx_mode = settings.tx_mode; rx_gpio = settings.rx_gpio; tx_gpio = settings.tx_gpio; }); EMSuart::stop(); // don't start UART if we have invalid GPIOs if (System::is_valid_gpio(rx_gpio) && System::is_valid_gpio(tx_gpio)) { EMSuart::start(tx_mode, rx_gpio, tx_gpio); // start UART } else { LOG_WARNING(F("Invalid UART Rx/Tx GPIOs. Check config.")); } txservice_.start(); // sends out request to EMS bus for all devices // force a fetch for all new values, unless Tx is set to off if (tx_mode != 0) { EMSESP::fetch_device_values(); } } // return status of bus: connected (0), connected but Tx is broken (1), disconnected (2) uint8_t EMSESP::bus_status() { if (!rxservice_.bus_connected()) { return BUS_STATUS_OFFLINE; } // check if we have Tx issues. uint32_t total_sent = txservice_.telegram_read_count() + txservice_.telegram_write_count(); // nothing sent and also no errors - must be ok if ((total_sent == 0) && (txservice_.telegram_fail_count() == 0)) { return BUS_STATUS_CONNECTED; } // nothing sent, but have Tx errors if ((total_sent == 0) && (txservice_.telegram_fail_count() != 0)) { return BUS_STATUS_TX_ERRORS; } // Tx Failure rate > 10% if (txservice_.telegram_fail_count() < total_sent) { if (((txservice_.telegram_fail_count() * 100) / total_sent) > EMSbus::EMS_TX_ERROR_LIMIT) { return BUS_STATUS_TX_ERRORS; } } return BUS_STATUS_CONNECTED; } // show the EMS bus status plus both Rx and Tx queues void EMSESP::show_ems(uuid::console::Shell & shell) { // EMS bus information switch (bus_status()) { case BUS_STATUS_OFFLINE: shell.printfln(F("EMS Bus is disconnected.")); break; case BUS_STATUS_TX_ERRORS: shell.printfln(F("EMS Bus is connected, but Tx is not stable.")); break; case BUS_STATUS_CONNECTED: default: shell.printfln(F("EMS Bus is connected.")); break; } shell.println(); if (bus_status() != BUS_STATUS_OFFLINE) { shell.printfln(F("EMS Bus info:")); EMSESP::webSettingsService.read([&](WebSettings & settings) { shell.printfln(F(" Tx mode: %d"), settings.tx_mode); }); shell.printfln(F(" Bus protocol: %s"), EMSbus::is_ht3() ? F("HT3") : F("Buderus")); shell.printfln(F(" #telegrams received: %d"), rxservice_.telegram_count()); shell.printfln(F(" #read requests sent: %d"), txservice_.telegram_read_count()); shell.printfln(F(" #write requests sent: %d"), txservice_.telegram_write_count()); shell.printfln(F(" #incomplete telegrams: %d"), rxservice_.telegram_error_count()); shell.printfln(F(" #tx fails (after %d retries): %d"), TxService::MAXIMUM_TX_RETRIES, txservice_.telegram_fail_count()); shell.printfln(F(" Rx line quality: %d%%"), rxservice_.quality()); shell.printfln(F(" Tx line quality: %d%%"), txservice_.quality()); shell.println(); } // Rx queue auto rx_telegrams = rxservice_.queue(); if (rx_telegrams.empty()) { shell.printfln(F("Rx Queue is empty")); } else { shell.printfln(F("Rx Queue (%ld telegram%s):"), rx_telegrams.size(), rx_telegrams.size() == 1 ? "" : "s"); for (const auto & it : rx_telegrams) { shell.printfln(F(" [%02d] %s"), it.id_, pretty_telegram(it.telegram_).c_str()); } } shell.println(); // Tx queue auto tx_telegrams = txservice_.queue(); if (tx_telegrams.empty()) { shell.printfln(F("Tx Queue is empty")); } else { shell.printfln(F("Tx Queue (%ld telegram%s):"), tx_telegrams.size(), tx_telegrams.size() == 1 ? "" : "s"); std::string op; for (const auto & it : tx_telegrams) { if ((it.telegram_->operation) == Telegram::Operation::TX_RAW) { op = read_flash_string(F("RAW ")); } else if ((it.telegram_->operation) == Telegram::Operation::TX_READ) { op = read_flash_string(F("READ ")); } else if ((it.telegram_->operation) == Telegram::Operation::TX_WRITE) { op = read_flash_string(F("WRITE")); } shell.printfln(F(" [%02d%c] %s %s"), it.id_, ((it.retry_) ? '*' : ' '), op.c_str(), pretty_telegram(it.telegram_).c_str()); } } shell.println(); } // show EMS device values to the shell console // generate_values_json is called in verbose mode void EMSESP::show_device_values(uuid::console::Shell & shell) { if (emsdevices.empty()) { shell.printfln(F("No EMS devices detected. Try using 'scan devices' from the ems menu.")); shell.println(); return; } // do this in the order of factory classes to keep a consistent order when displaying for (const auto & device_class : EMSFactory::device_handlers()) { for (const auto & emsdevice : emsdevices) { if ((emsdevice) && (emsdevice->device_type() == device_class.first)) { // print header shell.printfln(F("%s: %s"), emsdevice->device_type_name().c_str(), emsdevice->to_string().c_str()); DynamicJsonDocument doc(EMSESP_JSON_SIZE_XLARGE_DYN); // use max size JsonObject json = doc.to(); emsdevice->generate_values_json(json, DeviceValueTAG::TAG_NONE, true, EMSdevice::OUTPUT_TARGET::API_VERBOSE); // verbose mode and nested // print line uint8_t id = 0; for (JsonPair p : json) { const char * key = p.key().c_str(); shell.printf(" %s: ", key); JsonVariant data = p.value(); shell.print(COLOR_BRIGHT_GREEN); if (data.is()) { shell.print(data.as()); } else if (data.is()) { shell.print(data.as()); } else if (data.is()) { char s[10]; shell.print(Helpers::render_value(s, (float)data.as(), 1)); } else if (data.is()) { shell.print(data.as() ? F_(on) : F_(off)); } // if there is a uom print it std::string uom = emsdevice->get_value_uom(key); if (!uom.empty()) { shell.print(' '); shell.print(uom); } shell.print(COLOR_RESET); shell.println(); id++; } shell.println(); } } } } // show Dallas temperature sensors void EMSESP::show_sensor_values(uuid::console::Shell & shell) { if (!have_sensors()) { return; } shell.printfln(F("Dallas temperature sensors:")); uint8_t i = 1; char s[7]; char s2[7]; for (const auto & device : sensor_devices()) { shell.printfln(F(" Sensor %d, ID: %s, Temperature: %s °C (offset %s)"), i++, device.to_string().c_str(), Helpers::render_value(s, device.temperature_c, 10), Helpers::render_value(s2, device.offset(), 10)); } shell.println(); } // MQTT publish everything, immediately void EMSESP::publish_all(bool force) { if (force) { publish_all_idx_ = 1; reset_mqtt_ha(); return; } if (Mqtt::connected()) { publish_device_values(EMSdevice::DeviceType::BOILER); publish_device_values(EMSdevice::DeviceType::THERMOSTAT); publish_device_values(EMSdevice::DeviceType::SOLAR); publish_device_values(EMSdevice::DeviceType::MIXER); publish_other_values(); publish_sensor_values(true); system_.send_heartbeat(); } } // on command "publish HA" loop and wait between devices for publishing all sensors void EMSESP::publish_all_loop() { if (!Mqtt::connected() || !publish_all_idx_) { return; } // wait for free queue before sending next message, v3 queues HA-messages if (!Mqtt::is_empty()) { return; } switch (publish_all_idx_++) { case 1: publish_device_values(EMSdevice::DeviceType::BOILER); break; case 2: publish_device_values(EMSdevice::DeviceType::THERMOSTAT); break; case 3: publish_device_values(EMSdevice::DeviceType::SOLAR); break; case 4: publish_device_values(EMSdevice::DeviceType::MIXER); break; case 5: publish_other_values(); break; case 6: publish_sensor_values(true, true); break; case 7: if (Mqtt::ha_enabled()) { Mqtt::ha_status(); } system_.send_heartbeat(); shower_.send_mqtt_stat(false, true); break; default: // all finished publish_all_idx_ = 0; } } // force HA to re-create all the devices void EMSESP::reset_mqtt_ha() { if (!Mqtt::ha_enabled()) { return; } for (const auto & emsdevice : emsdevices) { emsdevice->ha_config_clear(); } dallassensor_.reload(); } // create json doc for the devices values and add to MQTT publish queue // generate_values_json is called without verbose mode (defaults to false) void EMSESP::publish_device_values(uint8_t device_type) { DynamicJsonDocument doc(EMSESP_JSON_SIZE_XLARGE_DYN); // use max size JsonObject json = doc.to(); bool need_publish = false; bool nested = (Mqtt::nested_format() == 1); // 1 is nested, 2 is single // group by device type for (const auto & emsdevice : emsdevices) { if (emsdevice && (emsdevice->device_type() == device_type)) { // if we're using HA, done is checked for each sensor in devices if (Mqtt::ha_enabled()) { emsdevice->publish_mqtt_ha_sensor(); // create the configs for each value as a sensor } // if its a boiler, generate json for each group and publish it directly. not nested if (device_type == DeviceType::BOILER) { if (emsdevice->generate_values_json(json, DeviceValueTAG::TAG_BOILER_DATA, false, EMSdevice::OUTPUT_TARGET::MQTT)) { Mqtt::publish(Mqtt::tag_to_topic(device_type, DeviceValueTAG::TAG_BOILER_DATA), json); } doc.clear(); if (emsdevice->generate_values_json(json, DeviceValueTAG::TAG_DEVICE_DATA_WW, false, EMSdevice::OUTPUT_TARGET::MQTT)) { Mqtt::publish(Mqtt::tag_to_topic(device_type, DeviceValueTAG::TAG_DEVICE_DATA_WW), json); } need_publish = false; } // Thermostat else if (device_type == DeviceType::THERMOSTAT) { // only publish the single master thermostat if (emsdevice->device_id() == EMSESP::actual_master_thermostat()) { if (nested) { need_publish |= emsdevice->generate_values_json(json, DeviceValueTAG::TAG_NONE, true, EMSdevice::OUTPUT_TARGET::MQTT); // nested } else { if (emsdevice->generate_values_json(json, DeviceValueTAG::TAG_THERMOSTAT_DATA, false, EMSdevice::OUTPUT_TARGET::MQTT)) { // not nested Mqtt::publish(Mqtt::tag_to_topic(device_type, DeviceValueTAG::TAG_NONE), json); } doc.clear(); for (uint8_t hc_tag = TAG_HC1; hc_tag <= DeviceValueTAG::TAG_HC4; hc_tag++) { if (emsdevice->generate_values_json(json, hc_tag, false, EMSdevice::OUTPUT_TARGET::MQTT)) { // not nested Mqtt::publish(Mqtt::tag_to_topic(device_type, hc_tag), json); } doc.clear(); } need_publish = false; } } } // Mixer else if (device_type == DeviceType::MIXER) { if (nested) { need_publish |= emsdevice->generate_values_json(json, DeviceValueTAG::TAG_NONE, true, EMSdevice::OUTPUT_TARGET::MQTT); // nested } else { for (uint8_t hc_tag = TAG_HC1; hc_tag <= DeviceValueTAG::TAG_WWC4; hc_tag++) { if (emsdevice->generate_values_json(json, hc_tag, false, EMSdevice::OUTPUT_TARGET::MQTT)) { // not nested Mqtt::publish(Mqtt::tag_to_topic(device_type, hc_tag), json); } doc.clear(); } need_publish = false; } } else { // for all other devices add the values to the json need_publish |= emsdevice->generate_values_json(json, DeviceValueTAG::TAG_NONE, true, EMSdevice::OUTPUT_TARGET::MQTT); // nested } } } // publish it under a single topic, only if we have data to publish if (need_publish) { char topic[Mqtt::MQTT_TOPIC_MAX_SIZE]; snprintf(topic, sizeof(topic), "%s_data", EMSdevice::device_type_2_device_name(device_type).c_str()); Mqtt::publish(topic, json); } } // call the devices that don't need special attention void EMSESP::publish_other_values() { publish_device_values(EMSdevice::DeviceType::SWITCH); publish_device_values(EMSdevice::DeviceType::HEATPUMP); } void EMSESP::publish_sensor_values(const bool time, const bool force) { if (!dallas_enabled()) { return; } if (dallassensor_.updated_values() || time || force) { dallassensor_.publish_values(force); } } // MQTT publish a telegram as raw data void EMSESP::publish_response(std::shared_ptr telegram) { if (!Mqtt::connected()) { return; } StaticJsonDocument doc; char buffer[100]; doc["src"] = Helpers::hextoa(buffer, telegram->src); doc["dest"] = Helpers::hextoa(buffer, telegram->dest); doc["type"] = Helpers::hextoa(buffer, telegram->type_id); doc["offset"] = Helpers::hextoa(buffer, telegram->offset); strcpy(buffer, Helpers::data_to_hex(telegram->message_data, telegram->message_length).c_str()); // telegram is without crc doc["data"] = buffer; if (telegram->message_length <= 4) { uint32_t value = 0; for (uint8_t i = 0; i < telegram->message_length; i++) { value = (value << 8) + telegram->message_data[i]; } doc["value"] = value; } Mqtt::publish(F_(response), doc.as()); } // builds json with the detail of each value, for a specific EMS device type or the dallas sensor bool EMSESP::get_device_value_info(JsonObject & root, const char * cmd, const int8_t id, const uint8_t devicetype) { for (const auto & emsdevice : emsdevices) { if (emsdevice->device_type() == devicetype) { return emsdevice->get_value_info(root, cmd, id); } } if (devicetype == DeviceType::DALLASSENSOR) { uint8_t i = 1; for (const auto & sensor : EMSESP::sensor_devices()) { char sensorID[10]; snprintf(sensorID, 10, "sensor%d", i++); if ((strcmp(cmd, sensorID) == 0) || (strcmp(cmd, Helpers::toLower(sensor.to_string()).c_str()) == 0)) { root["name"] = sensor.to_string(); if (Helpers::hasValue(sensor.temperature_c)) { root["value"] = (float)(sensor.temperature_c) / 10; } root["type"] = F_(number); root["min"] = -55; root["max"] = 125; root["unit"] = EMSdevice::uom_to_string(DeviceValueUOM::DEGREES); root["writeable"] = false; return true; } } } return false; } // search for recognized device_ids : Me, All, otherwise print hex value std::string EMSESP::device_tostring(const uint8_t device_id) { if ((device_id & 0x7F) == rxservice_.ems_bus_id()) { return read_flash_string(F("Me")); } else if (device_id == 0x00) { return read_flash_string(F("All")); } else { char buffer[5]; return Helpers::hextoa(buffer, device_id); } } // created a pretty print telegram as a text string // e.g. Boiler(0x08) -> Me(0x0B), Version(0x02), data: 7B 06 01 00 00 00 00 00 00 04 (offset 1) std::string EMSESP::pretty_telegram(std::shared_ptr telegram) { uint8_t src = telegram->src & 0x7F; uint8_t dest = telegram->dest & 0x7F; uint8_t offset = telegram->offset; // find name for src and dest by looking up known devices std::string src_name(""); std::string dest_name(""); std::string type_name(""); std::string direction(""); for (const auto & emsdevice : emsdevices) { if (emsdevice) { // get src & dest if (emsdevice->is_device_id(src)) { src_name = emsdevice->device_type_name(); } else if (emsdevice->is_device_id(dest)) { dest_name = emsdevice->device_type_name(); } // get the type name, any match will do if (type_name.empty()) { type_name = emsdevice->telegram_type_name(telegram); } } } // if we can't find names for the devices, use their hex values if (src_name.empty()) { src_name = device_tostring(src); } if (dest_name.empty()) { dest_name = device_tostring(dest); } // check for global/common types like Version & UBADevices if (telegram->type_id == EMSdevice::EMS_TYPE_VERSION) { type_name = read_flash_string(F("Version")); } else if (telegram->type_id == EMSdevice::EMS_TYPE_UBADevices) { type_name = read_flash_string(F("UBADevices")); } // if we don't know the type show if (type_name.empty()) { type_name = read_flash_string(F("?")); } if (telegram->operation == Telegram::Operation::RX_READ) { direction = read_flash_string(F("<-")); } else { direction = read_flash_string(F("->")); } std::string str(200, '\0'); if (offset) { snprintf(&str[0], str.capacity() + 1, "%s(0x%02X) %s %s(0x%02X), %s(0x%02X), data: %s (offset %d)", src_name.c_str(), src, direction.c_str(), dest_name.c_str(), dest, type_name.c_str(), telegram->type_id, telegram->to_string_message().c_str(), offset); } else { snprintf(&str[0], str.capacity() + 1, "%s(0x%02X) %s %s(0x%02X), %s(0x%02X), data: %s", src_name.c_str(), src, direction.c_str(), dest_name.c_str(), dest, type_name.c_str(), telegram->type_id, telegram->to_string_message().c_str()); } return str; } /* * Type 0x07 - UBADevices - shows us the connected EMS devices * e.g. 08 00 07 00 0B 80 00 00 00 00 00 00 00 00 00 00 00 * Junkers has 15 bytes of data * each byte is a bitmask for which devices are active * byte 1 = 0x08 - 0x0F, byte 2 = 0x10 - 0x17, etc... * e.g. in example above 1st byte = x0B = b1011 so we have device ids 0x08, 0x09, 0x011 * and 2nd byte = x80 = b1000 b0000 = device id 0x17 */ void EMSESP::process_UBADevices(std::shared_ptr telegram) { // exit it length is incorrect (must be 13 or 15 bytes long) if (telegram->message_length > 15) { return; } // for each byte, check the bits and determine the device_id for (uint8_t data_byte = 0; data_byte < telegram->message_length; data_byte++) { uint8_t next_byte = telegram->message_data[data_byte]; if (next_byte) { for (uint8_t bit = 0; bit < 8; bit++) { if (next_byte & 0x01) { uint8_t device_id = ((data_byte + 1) * 8) + bit; // if we haven't already detected this device, request it's version details, unless its us (EMS-ESP) // when the version info is received, it will automagically add the device // always skip modem device 0x0D, it does not reply to version request // see https://github.com/emsesp/EMS-ESP/issues/460#issuecomment-709553012 if ((device_id != EMSbus::ems_bus_id()) && !(EMSESP::device_exists(device_id)) && (device_id != 0x0D) && (device_id != 0x0C)) { LOG_DEBUG(F("New EMS device detected with ID 0x%02X. Requesting version information."), device_id); send_read_request(EMSdevice::EMS_TYPE_VERSION, device_id); } } next_byte = next_byte >> 1; // advance 1 bit } } } } // process the Version telegram (type 0x02), which is a common type // e.g. 09 0B 02 00 PP V1 V2 void EMSESP::process_version(std::shared_ptr telegram) { // check for valid telegram, just in case if (telegram->message_length < 3) { return; } // check for 2nd subscriber, e.g. 18 0B 02 00 00 00 00 5E 02 01 uint8_t offset = 0; if (telegram->message_data[0] == 0x00) { // see if we have a 2nd subscriber if (telegram->message_data[3] != 0x00) { offset = 3; } else { return; // ignore whole telegram } } // extra details from the telegram uint8_t device_id = telegram->src; // device ID uint8_t product_id = telegram->message_data[offset]; // product ID // get version as XX.XX std::string version(6, '\0'); snprintf(&version[0], version.capacity() + 1, "%02d.%02d", telegram->message_data[offset + 1], telegram->message_data[offset + 2]); // some devices store the protocol type (HT3, Buderus) in the last byte uint8_t brand; if (telegram->message_length >= 10) { brand = EMSdevice::decode_brand(telegram->message_data[9]); } else { brand = EMSdevice::Brand::NO_BRAND; // unknown } // add it - will be overwritten if device already exists (void)add_device(device_id, product_id, version, brand); } // find the device object that matches the device ID and see if it has a matching telegram type handler // but only process if the telegram is sent to us or it's a broadcast (dest=0x00=all) // We also check for common telgram types, like the Version(0x02) // returns false if there are none found bool EMSESP::process_telegram(std::shared_ptr telegram) { // if watching or reading... if ((telegram->type_id == read_id_) && (telegram->dest == txservice_.ems_bus_id())) { LOG_NOTICE(F("%s"), pretty_telegram(telegram).c_str()); publish_response(telegram); if (!read_next_) { read_id_ = WATCH_ID_NONE; } read_next_ = false; } else if (watch() == WATCH_ON) { if ((watch_id_ == WATCH_ID_NONE) || (telegram->type_id == watch_id_) || ((watch_id_ < 0x80) && ((telegram->src == watch_id_) || (telegram->dest == watch_id_)))) { LOG_NOTICE(F("%s"), pretty_telegram(telegram).c_str()); } else if (!trace_raw_) { LOG_TRACE(F("%s"), pretty_telegram(telegram).c_str()); } } else if (!trace_raw_) { LOG_TRACE(F("%s"), pretty_telegram(telegram).c_str()); } // only process broadcast telegrams or ones sent to us on request if ((telegram->dest != 0x00) && (telegram->dest != rxservice_.ems_bus_id())) { return false; } // remember if we first get scan results from UBADevices static bool first_scan_done_ = false; // check for common types, like the Version(0x02) if (telegram->type_id == EMSdevice::EMS_TYPE_VERSION) { process_version(telegram); return true; } else if (telegram->type_id == EMSdevice::EMS_TYPE_UBADevices) { process_UBADevices(telegram); if (telegram->dest == EMSbus::ems_bus_id()) { first_scan_done_ = true; } return true; } // match device_id and type_id // calls the associated process function for that EMS device // returns false if the device_id doesn't recognize it // after the telegram has been processed, call see if there have been values changed and we need to do a MQTT publish bool found = false; bool knowndevice = false; for (const auto & emsdevice : emsdevices) { if (emsdevice) { if (emsdevice->is_device_id(telegram->src)) { knowndevice = true; found = emsdevice->handle_telegram(telegram); // if we correctly processes the telegram follow up with sending it via MQTT if needed if (found && Mqtt::connected()) { if ((mqtt_.get_publish_onchange(emsdevice->device_type()) && emsdevice->has_update()) || (telegram->type_id == publish_id_ && telegram->dest == txservice_.ems_bus_id())) { if (telegram->type_id == publish_id_) { publish_id_ = 0; } emsdevice->has_update(false); // reset flag publish_device_values(emsdevice->device_type()); // publish to MQTT if we explicitly have too } } if (wait_validate_ == telegram->type_id) { wait_validate_ = 0; } break; } } } if (!found) { LOG_DEBUG(F("No telegram type handler found for ID 0x%02X (src 0x%02X)"), telegram->type_id, telegram->src); if (watch() == WATCH_UNKNOWN) { LOG_NOTICE(F("%s"), pretty_telegram(telegram).c_str()); } if (first_scan_done_ && !knowndevice && (telegram->src != EMSbus::ems_bus_id()) && (telegram->src != 0x0B) && (telegram->src != 0x0C) && (telegram->src != 0x0D)) { send_read_request(EMSdevice::EMS_TYPE_VERSION, telegram->src); } } return found; } // return true if we have this device already registered bool EMSESP::device_exists(const uint8_t device_id) { for (const auto & emsdevice : emsdevices) { if (emsdevice) { if (emsdevice->is_device_id(device_id)) { return true; } } } return false; // not found } // for each associated EMS device go and get its system information void EMSESP::show_devices(uuid::console::Shell & shell) { if (emsdevices.empty()) { shell.printfln(F("No EMS devices detected. Try using 'scan devices' from the ems menu.")); shell.println(); return; } shell.printfln(F("These EMS devices are currently active:")); shell.println(); // count the number of thermostats uint8_t num_thermostats = 0; for (const auto & emsdevice : emsdevices) { if ((emsdevice) && (emsdevice->device_type() == DeviceType::THERMOSTAT)) { num_thermostats++; } } // for all device objects from emsdevice.h (UNKNOWN, SYSTEM, BOILER, THERMOSTAT, MIXER, SOLAR, HEATPUMP, GATEWAY, SWITCH, CONTROLLER, CONNECT) // so we keep a consistent order for (const auto & device_class : EMSFactory::device_handlers()) { for (const auto & emsdevice : emsdevices) { if ((emsdevice) && (emsdevice->device_type() == device_class.first)) { shell.printf(F("(%d) %s: %s"), emsdevice->unique_id(), emsdevice->device_type_name().c_str(), emsdevice->to_string().c_str()); if ((num_thermostats > 1) && (emsdevice->device_type() == EMSdevice::DeviceType::THERMOSTAT) && (emsdevice->device_id() == actual_master_thermostat())) { shell.printf(F(" **master device**")); } shell.println(); emsdevice->show_telegram_handlers(shell); #if defined(EMSESP_DEBUG) emsdevice->show_mqtt_handlers(shell); #endif shell.println(); } } } } // add a new or update existing EMS device to our list of active EMS devices // if its not in our database, we don't add it bool EMSESP::add_device(const uint8_t device_id, const uint8_t product_id, std::string & version, const uint8_t brand) { // don't add ourselves! if (device_id == rxservice_.ems_bus_id()) { return false; } // first check to see if we already have it, if so update the record for (const auto & emsdevice : emsdevices) { if (emsdevice) { if (emsdevice->is_device_id(device_id)) { LOG_DEBUG(F("Updating details for already active device ID 0x%02X"), device_id); emsdevice->product_id(product_id); emsdevice->version(version); // only set brand if it doesn't already exist if (emsdevice->brand() == EMSdevice::Brand::NO_BRAND) { emsdevice->brand(brand); } // find the name and flags in our database for (const auto & device : device_library_) { if (device.product_id == product_id && device.device_type == emsdevice->device_type()) { emsdevice->name(std::move(uuid::read_flash_string(device.name))); emsdevice->add_flags(device.flags); } } return true; // finish up } } } // look up the rest of the details using the product_id and create the new device object Device_record * device_p = nullptr; for (auto & device : device_library_) { if (device.product_id == product_id) { // sometimes boilers share the same product id as controllers // so only add boilers if the device_id is 0x08, which is fixed for EMS if (device.device_type == DeviceType::BOILER) { if (device_id == EMSdevice::EMS_DEVICE_ID_BOILER || (device_id >= EMSdevice::EMS_DEVICE_ID_BOILER_1 && device_id <= EMSdevice::EMS_DEVICE_ID_BOILER_F)) { device_p = &device; break; } } else { // it's not a boiler, but we have a match device_p = &device; break; } } } // if we don't recognize the product ID report it and add as a generic device if (device_p == nullptr) { LOG_NOTICE(F("Unrecognized EMS device (device ID 0x%02X, product ID %d). Please report on GitHub."), device_id, product_id); std::string name("unknown"); emsdevices.push_back( EMSFactory::add(DeviceType::GENERIC, device_id, product_id, version, name, DeviceFlags::EMS_DEVICE_FLAG_NONE, EMSdevice::Brand::NO_BRAND)); return false; // not found } auto name = uuid::read_flash_string(device_p->name); auto device_type = device_p->device_type; auto flags = device_p->flags; LOG_DEBUG(F("Adding new device %s (device ID 0x%02X, product ID %d, version %s)"), name.c_str(), device_id, product_id, version.c_str()); emsdevices.push_back(EMSFactory::add(device_type, device_id, product_id, version, name, flags, brand)); emsdevices.back()->unique_id(++unique_id_count_); fetch_device_values(device_id); // go and fetch its data // add command commands for all devices, except for connect, controller and gateway if ((device_type == DeviceType::CONNECT) || (device_type == DeviceType::CONTROLLER) || (device_type == DeviceType::GATEWAY)) { return true; } Command::add_json( device_type, F_(info), [device_type](const char * value, const int8_t id, JsonObject & json) { return command_info(device_type, json, id, EMSdevice::OUTPUT_TARGET::API_VERBOSE); }, F_(info_cmd)); Command::add_json( device_type, F("info_short"), [device_type](const char * value, const int8_t id, JsonObject & json) { return command_info(device_type, json, id, EMSdevice::OUTPUT_TARGET::API); }, nullptr, CommandFlag::HIDDEN); // this command is hidden Command::add_json( device_type, F_(commands), [device_type](const char * value, const int8_t id, JsonObject & json) { return command_commands(device_type, json, id); }, F_(commands_cmd)); Command::add_json( device_type, F_(entities), [device_type](const char * value, const int8_t id, JsonObject & json) { return command_entities(device_type, json, id); }, F_(entities_cmd)); return true; } // list device entities bool EMSESP::command_entities(uint8_t device_type, JsonObject & json, const int8_t id) { JsonObject node; for (const auto & emsdevice : emsdevices) { if ((emsdevice) && (emsdevice->device_type() == device_type)) { emsdevice->list_device_entries(json); return true; } } return false; } // list all available commands, return as json bool EMSESP::command_commands(uint8_t device_type, JsonObject & json, const int8_t id) { return Command::list(device_type, json); } // export all values to info command // value is ignored here // info command always shows in verbose mode, so full names are displayed bool EMSESP::command_info(uint8_t device_type, JsonObject & json, const int8_t id, const uint8_t output_target) { bool has_value = false; uint8_t tag; if (id >= 1 && id <= 4) { tag = DeviceValueTAG::TAG_HC1 + id - 1; } else if (id >= 9 && id <= 10) { tag = DeviceValueTAG::TAG_WWC1 + id - 9; } else if (id == -1 || id == 0) { tag = DeviceValueTAG::TAG_NONE; } else { return false; } // if id=-1 it means we have no endpoint so default to API uint8_t target = (id == -1) ? EMSdevice::OUTPUT_TARGET::API_VERBOSE : EMSdevice::OUTPUT_TARGET::API; for (const auto & emsdevice : emsdevices) { if (emsdevice && (emsdevice->device_type() == device_type) && ((device_type != DeviceType::THERMOSTAT) || (emsdevice->device_id() == EMSESP::actual_master_thermostat()))) { has_value |= emsdevice->generate_values_json(json, tag, (id < 1), target); // nested for id -1 and 0 } } return has_value; } // send a read request, passing it into to the Tx Service, with optional offset and length void EMSESP::send_read_request(const uint16_t type_id, const uint8_t dest, const uint8_t offset, const uint8_t length) { txservice_.read_request(type_id, dest, offset, length); } // sends write request void EMSESP::send_write_request(const uint16_t type_id, const uint8_t dest, const uint8_t offset, uint8_t * message_data, const uint8_t message_length, const uint16_t validate_typeid) { txservice_.add(Telegram::Operation::TX_WRITE, dest, type_id, offset, message_data, message_length, validate_typeid, true); } void EMSESP::send_write_request(const uint16_t type_id, const uint8_t dest, const uint8_t offset, const uint8_t value) { send_write_request(type_id, dest, offset, value, 0); } // send Tx write with a single value void EMSESP::send_write_request(const uint16_t type_id, const uint8_t dest, const uint8_t offset, const uint8_t value, const uint16_t validate_typeid) { uint8_t message_data[1]; message_data[0] = value; EMSESP::send_write_request(type_id, dest, offset, message_data, 1, validate_typeid); } // this is main entry point when data is received on the Rx line, via emsuart library // we check if its a complete telegram or just a single byte (which could be a poll or a return status) // the CRC check is not done here, only when it's added to the Rx queue with add() void EMSESP::incoming_telegram(uint8_t * data, const uint8_t length) { #ifdef EMSESP_UART_DEBUG static uint32_t rx_time_ = 0; #endif // check first for echo uint8_t first_value = data[0]; if (((first_value & 0x7F) == txservice_.ems_bus_id()) && (length > 1)) { // if we ask ourself at roomcontrol for version e.g. 0B 98 02 00 20 Roomctrl::check((data[1] ^ 0x80 ^ rxservice_.ems_mask()), data); #ifdef EMSESP_UART_DEBUG // get_uptime is only updated once per loop, does not give the right time LOG_TRACE(F("[UART_DEBUG] Echo after %d ms: %s"), ::millis() - rx_time_, Helpers::data_to_hex(data, length).c_str()); #endif // add to RxQueue for log/watch rxservice_.add(data, length); return; // it's an echo } // are we waiting for a response from a recent Tx Read or Write? uint8_t tx_state = EMSbus::tx_state(); if (tx_state != Telegram::Operation::NONE) { bool tx_successful = false; EMSbus::tx_state(Telegram::Operation::NONE); // reset Tx wait state // if we're waiting on a Write operation, we want a single byte 1 or 4 if ((tx_state == Telegram::Operation::TX_WRITE) && (length == 1)) { if (first_value == TxService::TX_WRITE_SUCCESS) { LOG_DEBUG(F("Last Tx write successful")); txservice_.increment_telegram_write_count(); // last tx/write was confirmed ok txservice_.send_poll(); // close the bus publish_id_ = txservice_.post_send_query(); // follow up with any post-read if set txservice_.reset_retry_count(); tx_successful = true; } else if (first_value == TxService::TX_WRITE_FAIL) { LOG_ERROR(F("Last Tx write rejected by host")); txservice_.send_poll(); // close the bus txservice_.reset_retry_count(); } } else if (tx_state == Telegram::Operation::TX_READ) { // got a telegram with data in it. See if the src/dest matches that from the last one we sent and continue to process it uint8_t src = data[0]; uint8_t dest = data[1]; if (txservice_.is_last_tx(src, dest)) { LOG_DEBUG(F("Last Tx read successful")); txservice_.increment_telegram_read_count(); txservice_.send_poll(); // close the bus txservice_.reset_retry_count(); tx_successful = true; // if telegram is longer read next part with offset + 25 for ems+ if (length == 32) { if (txservice_.read_next_tx(data[3]) == read_id_) { read_next_ = true; } } } } // if Tx wasn't successful, retry or just give up if (!tx_successful) { txservice_.retry_tx(tx_state, data, length); return; } } // check for poll if (length == 1) { // if ht3 poll must be ems_bus_id else if Buderus poll must be (ems_bus_id | 0x80) uint8_t poll_id = (first_value ^ 0x80 ^ rxservice_.ems_mask()); static bool waitKM = true; static uint32_t connect_time = 0; if (!rxservice_.bus_connected()) { waitKM = true; connect_time = uuid::get_uptime_sec(); } if (poll_id == txservice_.ems_bus_id()) { EMSbus::last_bus_activity(uuid::get_uptime()); // set the flag indication the EMS bus is active } if (waitKM) { if (poll_id != 0x48 && uuid::get_uptime_sec() - connect_time < 60) { return; } waitKM = false; // KM200 is polled, from now on it is safe to send } #ifdef EMSESP_UART_DEBUG char s[4]; if (first_value & 0x80) { LOG_TRACE(F("[UART_DEBUG] next Poll %s after %d ms"), Helpers::hextoa(s, first_value), ::millis() - rx_time_); // time measurement starts here, use millis because get_uptime is only updated once per loop rx_time_ = ::millis(); } else { LOG_TRACE(F("[UART_DEBUG] Poll ack %s after %d ms"), Helpers::hextoa(s, first_value), ::millis() - rx_time_); } #endif // check for poll to us, if so send top message from Tx queue immediately and quit if (poll_id == txservice_.ems_bus_id()) { txservice_.send(); } // send remote room temperature if active Roomctrl::send(poll_id); return; } else { #ifdef EMSESP_UART_DEBUG LOG_TRACE(F("[UART_DEBUG] Reply after %d ms: %s"), ::millis() - rx_time_, Helpers::data_to_hex(data, length).c_str()); #endif Roomctrl::check((data[1] ^ 0x80 ^ rxservice_.ems_mask()), data); // check if there is a message for the roomcontroller rxservice_.add(data, length); // add to RxQueue } } // sends raw data of bytes along the Tx line void EMSESP::send_raw_telegram(const char * data) { txservice_.send_raw(data); } // start all the core services // the services must be loaded in the correct order void EMSESP::start() { Serial.begin(115200); Serial.println(); // start the file system #ifndef EMSESP_STANDALONE if (!LITTLEFS.begin(true)) { Serial.println("LITTLEFS Mount Failed. EMS-ESP stopped."); return; } #endif esp8266React.begin(); // loads system settings (network, mqtt, etc) system_.check_upgrade(); // do any system upgrades // Load our library of known devices into stack mem. Names are stored in Flash memory (takes up about 1kb) device_library_ = { #include "device_library.h" }; console_.start(); // telnet and serial console webSettingsService.begin(); // load EMS-ESP specific settings, like GPIO configurations mqtt_.start(); // mqtt init system_.start(heap_start); // starts commands, led, adc, button, network, syslog & uart shower_.start(); // initialize shower timer and shower alert dallassensor_.start(); // dallas external sensors webServer.begin(); // start web server webLogService.start(); // start web log service emsdevices.reserve(5); // reserve space for initially 5 devices to avoid mem frag issues LOG_INFO(F("Last system reset reason Core0: %s, Core1: %s"), system_.reset_reason(0).c_str(), system_.reset_reason(1).c_str()); LOG_INFO(F("EMS Device library loaded with %d records"), device_library_.size()); #if defined(EMSESP_STANDALONE) Mqtt::on_connect(); // simulate an MQTT connection #endif } // main loop calling all services void EMSESP::loop() { esp8266React.loop(); // web services system_.loop(); // does LED and checks system health, and syslog service // if we're doing an OTA upload, skip MQTT and EMS if (!system_.upload_status()) { webLogService.loop(); // log in Web UI rxservice_.loop(); // process any incoming Rx telegrams shower_.loop(); // check for shower on/off dallassensor_.loop(); // read dallas sensor temperatures publish_all_loop(); // with HA messages in parts to avoid flooding the mqtt queue mqtt_.loop(); // sends out anything in the MQTT queue // force a query on the EMS devices to fetch latest data at a set interval (1 min) if ((uuid::get_uptime() - last_fetch_ > EMS_FETCH_FREQUENCY)) { last_fetch_ = uuid::get_uptime(); fetch_device_values(); } } console_.loop(); // telnet/serial console // https://github.com/emsesp/EMS-ESP32/issues/78#issuecomment-877599145 delay(1); // helps telnet catch up. don't think its needed in ESP32 >3.1.0? } } // namespace emsesp