/** * ems.cpp * * Handles all the processing of the EMS messages * * Paul Derbyshire - https://github.com/proddy/EMS-ESP */ #include "ems.h" #include "ems_devices.h" #include "emsuart.h" #include #include // https://github.com/rlogiacco/CircularBuffer #include #include // std::list #ifdef TESTS #include "test_data.h" uint8_t _TEST_DATA_max = ArraySize(TEST_DATA); #endif // myESP for logging to telnet and serial #define myDebug(...) myESP.myDebug(__VA_ARGS__) #define myDebug_P(...) myESP.myDebug_P(__VA_ARGS__) _EMS_Sys_Status EMS_Sys_Status; // EMS Status CircularBuffer<_EMS_TxTelegram, EMS_TX_TELEGRAM_QUEUE_MAX> EMS_TxQueue; // FIFO queue for Tx send buffer // for storing all detected EMS devices std::list<_Generic_Type> Devices; // macros used in the _process* functions #define _toByte(i) (EMS_RxTelegram->data[i]) #define _toShort(i) ((EMS_RxTelegram->data[i] << 8) + EMS_RxTelegram->data[i + 1]) #define _toLong(i) ((EMS_RxTelegram->data[i] << 16) + (EMS_RxTelegram->data[i + 1] << 8) + (EMS_RxTelegram->data[i + 2])) #define _bitRead(i, bit) (((EMS_RxTelegram->data[i]) >> (bit)) & 0x01) // // process callbacks per type // // generic void _process_Version(_EMS_RxTelegram * EMS_RxTelegram); // EMS master/Boiler devices void _process_UBAMonitorFast(_EMS_RxTelegram * EMS_RxTelegram); void _process_UBAMonitorSlow(_EMS_RxTelegram * EMS_RxTelegram); void _process_UBAMonitorWWMessage(_EMS_RxTelegram * EMS_RxTelegram); void _process_UBAParameterWW(_EMS_RxTelegram * EMS_RxTelegram); void _process_UBATotalUptimeMessage(_EMS_RxTelegram * EMS_RxTelegram); void _process_UBAParametersMessage(_EMS_RxTelegram * EMS_RxTelegram); void _process_SetPoints(_EMS_RxTelegram * EMS_RxTelegram); // SM10 void _process_SM10Monitor(_EMS_RxTelegram * EMS_RxTelegram); // SM100 void _process_SM100Monitor(_EMS_RxTelegram * EMS_RxTelegram); void _process_SM100Status(_EMS_RxTelegram * EMS_RxTelegram); void _process_SM100Status2(_EMS_RxTelegram * EMS_RxTelegram); void _process_SM100Energy(_EMS_RxTelegram * EMS_RxTelegram); // HeatPump HP void _process_HPMonitor1(_EMS_RxTelegram * EMS_RxTelegram); void _process_HPMonitor2(_EMS_RxTelegram * EMS_RxTelegram); // Common for most thermostats void _process_RCTime(_EMS_RxTelegram * EMS_RxTelegram); void _process_RCOutdoorTempMessage(_EMS_RxTelegram * EMS_RxTelegram); // RC10 void _process_RC10Set(_EMS_RxTelegram * EMS_RxTelegram); void _process_RC10StatusMessage(_EMS_RxTelegram * EMS_RxTelegram); // RC20 void _process_RC20Set(_EMS_RxTelegram * EMS_RxTelegram); void _process_RC20StatusMessage(_EMS_RxTelegram * EMS_RxTelegram); // RC30 void _process_RC30Set(_EMS_RxTelegram * EMS_RxTelegram); void _process_RC30StatusMessage(_EMS_RxTelegram * EMS_RxTelegram); // RC35 void _process_RC35Set(_EMS_RxTelegram * EMS_RxTelegram); void _process_RC35StatusMessage(_EMS_RxTelegram * EMS_RxTelegram); // Easy type devices like C100 void _process_EasyStatusMessage(_EMS_RxTelegram * EMS_RxTelegram); // RC1010, RC300, RC310 void _process_RCPLUSStatusMessage(_EMS_RxTelegram * EMS_RxTelegram); void _process_RCPLUSSetMessage(_EMS_RxTelegram * EMS_RxTelegram); void _process_RCPLUSStatusHeating(_EMS_RxTelegram * EMS_RxTelegram); void _process_RCPLUSStatusHeating(_EMS_RxTelegram * EMS_RxTelegram); void _process_RCPLUSStatusMode(_EMS_RxTelegram * EMS_RxTelegram); // Junkers FR10 void _process_FR10StatusMessage(_EMS_RxTelegram * EMS_RxTelegram); /** * Recognized EMS types and the functions they call to process the telegrams * Format: MODEL ID, TYPE ID, Description, function, emsplus */ const _EMS_Type EMS_Types[] = { // common {EMS_MODEL_ALL, EMS_TYPE_Version, "Version", _process_Version}, // Boiler commands {EMS_MODEL_UBA, EMS_TYPE_UBAMonitorFast, "UBAMonitorFast", _process_UBAMonitorFast}, {EMS_MODEL_UBA, EMS_TYPE_UBAMonitorSlow, "UBAMonitorSlow", _process_UBAMonitorSlow}, {EMS_MODEL_UBA, EMS_TYPE_UBAMonitorWWMessage, "UBAMonitorWWMessage", _process_UBAMonitorWWMessage}, {EMS_MODEL_UBA, EMS_TYPE_UBAParameterWW, "UBAParameterWW", _process_UBAParameterWW}, {EMS_MODEL_UBA, EMS_TYPE_UBATotalUptimeMessage, "UBATotalUptimeMessage", _process_UBATotalUptimeMessage}, {EMS_MODEL_UBA, EMS_TYPE_UBAMaintenanceSettingsMessage, "UBAMaintenanceSettingsMessage", NULL}, {EMS_MODEL_UBA, EMS_TYPE_UBAParametersMessage, "UBAParametersMessage", _process_UBAParametersMessage}, {EMS_MODEL_UBA, EMS_TYPE_UBASetPoints, "UBASetPoints", _process_SetPoints}, // Other devices {EMS_MODEL_OTHER, EMS_TYPE_SM10Monitor, "SM10Monitor", _process_SM10Monitor}, {EMS_MODEL_OTHER, EMS_TYPE_SM100Monitor, "SM100Monitor", _process_SM100Monitor}, {EMS_MODEL_OTHER, EMS_TYPE_SM100Status, "SM100Status", _process_SM100Status}, {EMS_MODEL_OTHER, EMS_TYPE_SM100Status2, "SM100Status2", _process_SM100Status2}, {EMS_MODEL_OTHER, EMS_TYPE_SM100Energy, "SM100Energy", _process_SM100Energy}, {EMS_MODEL_OTHER, EMS_TYPE_HPMonitor1, "HeatPumpMonitor1", _process_HPMonitor1}, {EMS_MODEL_OTHER, EMS_TYPE_HPMonitor2, "HeatPumpMonitor2", _process_HPMonitor2}, // RC10 {EMS_MODEL_RC10, EMS_TYPE_RCTime, "RCTime", _process_RCTime}, {EMS_MODEL_RC10, EMS_TYPE_RC10Set, "RC10Set", _process_RC10Set}, {EMS_MODEL_RC10, EMS_TYPE_RC10StatusMessage, "RC10StatusMessage", _process_RC10StatusMessage}, // RC20 and RC20F {EMS_MODEL_RC20, EMS_TYPE_RCOutdoorTempMessage, "RCOutdoorTempMessage", _process_RCOutdoorTempMessage}, {EMS_MODEL_RC20, EMS_TYPE_RCTime, "RCTime", _process_RCTime}, {EMS_MODEL_RC20, EMS_TYPE_RC20Set, "RC20Set", _process_RC20Set}, {EMS_MODEL_RC20, EMS_TYPE_RC20StatusMessage, "RC20StatusMessage", _process_RC20StatusMessage}, {EMS_MODEL_RC20F, EMS_TYPE_RCOutdoorTempMessage, "RCOutdoorTempMessage", _process_RCOutdoorTempMessage}, {EMS_MODEL_RC20F, EMS_TYPE_RCTime, "RCTime", _process_RCTime}, {EMS_MODEL_RC20F, EMS_TYPE_RC20Set, "RC20Set", _process_RC20Set}, {EMS_MODEL_RC20F, EMS_TYPE_RC20StatusMessage, "RC20StatusMessage", _process_RC20StatusMessage}, // RC30 {EMS_MODEL_RC30, EMS_TYPE_RCOutdoorTempMessage, "RCOutdoorTempMessage", _process_RCOutdoorTempMessage}, {EMS_MODEL_RC30, EMS_TYPE_RCTime, "RCTime", _process_RCTime}, {EMS_MODEL_RC30, EMS_TYPE_RC30Set, "RC30Set", _process_RC30Set}, {EMS_MODEL_RC30, EMS_TYPE_RC30StatusMessage, "RC30StatusMessage", _process_RC30StatusMessage}, // RC35 {EMS_MODEL_RC35, EMS_TYPE_RCOutdoorTempMessage, "RCOutdoorTempMessage", _process_RCOutdoorTempMessage}, {EMS_MODEL_RC35, EMS_TYPE_RCTime, "RCTime", _process_RCTime}, {EMS_MODEL_RC35, EMS_TYPE_RC35Set_HC1, "RC35Set_HC1", _process_RC35Set}, {EMS_MODEL_RC35, EMS_TYPE_RC35StatusMessage_HC1, "RC35StatusMessage_HC1", _process_RC35StatusMessage}, {EMS_MODEL_RC35, EMS_TYPE_RC35Set_HC2, "RC35Set_HC2", _process_RC35Set}, {EMS_MODEL_RC35, EMS_TYPE_RC35StatusMessage_HC2, "RC35StatusMessage_HC2", _process_RC35StatusMessage}, // ES73 {EMS_MODEL_ES73, EMS_TYPE_RCOutdoorTempMessage, "RCOutdoorTempMessage", _process_RCOutdoorTempMessage}, {EMS_MODEL_ES73, EMS_TYPE_RCTime, "RCTime", _process_RCTime}, {EMS_MODEL_ES73, EMS_TYPE_RC35Set_HC1, "RC35Set", _process_RC35Set}, {EMS_MODEL_ES73, EMS_TYPE_RC35StatusMessage_HC1, "RC35StatusMessage", _process_RC35StatusMessage}, // Easy {EMS_MODEL_EASY, EMS_TYPE_EasyStatusMessage, "EasyStatusMessage", _process_EasyStatusMessage}, {EMS_MODEL_BOSCHEASY, EMS_TYPE_EasyStatusMessage, "EasyStatusMessage", _process_EasyStatusMessage}, // Nefit 1010, RC300, RC310 (EMS Plus) {EMS_MODEL_ALL, EMS_TYPE_RCPLUSStatusMessage, "RCPLUSStatusMessage", _process_RCPLUSStatusMessage}, {EMS_MODEL_ALL, EMS_TYPE_RCPLUSSet, "RCPLUSSetMessage", _process_RCPLUSSetMessage}, {EMS_MODEL_ALL, EMS_TYPE_RCPLUSStatusHeating, "RCPLUSStatusHeating", _process_RCPLUSStatusHeating}, {EMS_MODEL_ALL, EMS_TYPE_RCPLUSStatusMode, "RCPLUSStatusMode", _process_RCPLUSStatusMode}, // Junkers FR10 {EMS_MODEL_ALL, EMS_TYPE_FR10StatusMessage, "FR10StatusMessage", _process_FR10StatusMessage} }; // calculate sizes of arrays at compile uint8_t _EMS_Types_max = ArraySize(EMS_Types); // number of defined types uint8_t _Boiler_Types_max = ArraySize(Boiler_Types); // number of boiler models uint8_t _Other_Types_max = ArraySize(Other_Types); // number of other ems devices uint8_t _Thermostat_Types_max = ArraySize(Thermostat_Types); // number of defined thermostat types // these structs contain the data we store from the Boiler and Thermostat _EMS_Boiler EMS_Boiler; // for boiler _EMS_Thermostat EMS_Thermostat; // for thermostat _EMS_Other EMS_Other; // for other known EMS devices // CRC lookup table with poly 12 for faster checking const uint8_t ems_crc_table[] = {0x00, 0x02, 0x04, 0x06, 0x08, 0x0A, 0x0C, 0x0E, 0x10, 0x12, 0x14, 0x16, 0x18, 0x1A, 0x1C, 0x1E, 0x20, 0x22, 0x24, 0x26, 0x28, 0x2A, 0x2C, 0x2E, 0x30, 0x32, 0x34, 0x36, 0x38, 0x3A, 0x3C, 0x3E, 0x40, 0x42, 0x44, 0x46, 0x48, 0x4A, 0x4C, 0x4E, 0x50, 0x52, 0x54, 0x56, 0x58, 0x5A, 0x5C, 0x5E, 0x60, 0x62, 0x64, 0x66, 0x68, 0x6A, 0x6C, 0x6E, 0x70, 0x72, 0x74, 0x76, 0x78, 0x7A, 0x7C, 0x7E, 0x80, 0x82, 0x84, 0x86, 0x88, 0x8A, 0x8C, 0x8E, 0x90, 0x92, 0x94, 0x96, 0x98, 0x9A, 0x9C, 0x9E, 0xA0, 0xA2, 0xA4, 0xA6, 0xA8, 0xAA, 0xAC, 0xAE, 0xB0, 0xB2, 0xB4, 0xB6, 0xB8, 0xBA, 0xBC, 0xBE, 0xC0, 0xC2, 0xC4, 0xC6, 0xC8, 0xCA, 0xCC, 0xCE, 0xD0, 0xD2, 0xD4, 0xD6, 0xD8, 0xDA, 0xDC, 0xDE, 0xE0, 0xE2, 0xE4, 0xE6, 0xE8, 0xEA, 0xEC, 0xEE, 0xF0, 0xF2, 0xF4, 0xF6, 0xF8, 0xFA, 0xFC, 0xFE, 0x19, 0x1B, 0x1D, 0x1F, 0x11, 0x13, 0x15, 0x17, 0x09, 0x0B, 0x0D, 0x0F, 0x01, 0x03, 0x05, 0x07, 0x39, 0x3B, 0x3D, 0x3F, 0x31, 0x33, 0x35, 0x37, 0x29, 0x2B, 0x2D, 0x2F, 0x21, 0x23, 0x25, 0x27, 0x59, 0x5B, 0x5D, 0x5F, 0x51, 0x53, 0x55, 0x57, 0x49, 0x4B, 0x4D, 0x4F, 0x41, 0x43, 0x45, 0x47, 0x79, 0x7B, 0x7D, 0x7F, 0x71, 0x73, 0x75, 0x77, 0x69, 0x6B, 0x6D, 0x6F, 0x61, 0x63, 0x65, 0x67, 0x99, 0x9B, 0x9D, 0x9F, 0x91, 0x93, 0x95, 0x97, 0x89, 0x8B, 0x8D, 0x8F, 0x81, 0x83, 0x85, 0x87, 0xB9, 0xBB, 0xBD, 0xBF, 0xB1, 0xB3, 0xB5, 0xB7, 0xA9, 0xAB, 0xAD, 0xAF, 0xA1, 0xA3, 0xA5, 0xA7, 0xD9, 0xDB, 0xDD, 0xDF, 0xD1, 0xD3, 0xD5, 0xD7, 0xC9, 0xCB, 0xCD, 0xCF, 0xC1, 0xC3, 0xC5, 0xC7, 0xF9, 0xFB, 0xFD, 0xFF, 0xF1, 0xF3, 0xF5, 0xF7, 0xE9, 0xEB, 0xED, 0xEF, 0xE1, 0xE3, 0xE5, 0xE7}; const uint8_t TX_WRITE_TIMEOUT_COUNT = 2; // 3 retries before timeout const uint32_t EMS_BUS_TIMEOUT = 15000; // timeout in ms before recognizing the ems bus is offline (15 seconds) const uint32_t EMS_POLL_TIMEOUT = 5000000; // timeout in microseconds before recognizing the ems bus is offline (5 seconds) // init stats and counters and buffers // uses -255 or 255 for values that haven't been set yet (EMS_VALUE_INT_NOTSET and EMS_VALUE_FLOAT_NOTSET) void ems_init() { // overall status EMS_Sys_Status.emsRxPgks = 0; EMS_Sys_Status.emsTxPkgs = 0; EMS_Sys_Status.emxCrcErr = 0; EMS_Sys_Status.emsRxStatus = EMS_RX_STATUS_IDLE; EMS_Sys_Status.emsTxStatus = EMS_TX_STATUS_IDLE; EMS_Sys_Status.emsRefreshed = false; EMS_Sys_Status.emsPollEnabled = false; // start up with Poll disabled EMS_Sys_Status.emsBusConnected = false; EMS_Sys_Status.emsRxTimestamp = 0; EMS_Sys_Status.emsTxCapable = false; EMS_Sys_Status.emsTxDisabled = false; EMS_Sys_Status.emsPollFrequency = 0; EMS_Sys_Status.txRetryCount = 0; EMS_Sys_Status.emsTxMode = 0; EMS_Sys_Status.emsReverse = false; // thermostat EMS_Thermostat.setpoint_roomTemp = EMS_VALUE_SHORT_NOTSET; EMS_Thermostat.curr_roomTemp = EMS_VALUE_SHORT_NOTSET; EMS_Thermostat.hour = 0; EMS_Thermostat.minute = 0; EMS_Thermostat.second = 0; EMS_Thermostat.day = 0; EMS_Thermostat.month = 0; EMS_Thermostat.year = 0; EMS_Thermostat.mode = 255; // dummy value EMS_Thermostat.day_mode = 255; // dummy value EMS_Thermostat.device_id = EMS_ID_NONE; EMS_Thermostat.write_supported = false; EMS_Thermostat.hc = 1; // default heating circuit is 1 EMS_Thermostat.daytemp = EMS_VALUE_INT_NOTSET; // 0x47 byte EMS_Thermostat.nighttemp = EMS_VALUE_INT_NOTSET; // 0x47 byte EMS_Thermostat.holidaytemp = EMS_VALUE_INT_NOTSET; // 0x47 byte EMS_Thermostat.heatingtype = EMS_VALUE_INT_NOTSET; // 0x47 byte floor heating = 3 EMS_Thermostat.circuitcalctemp = EMS_VALUE_INT_NOTSET; // 0x48 byte 14 // UBAParameterWW EMS_Boiler.wWActivated = EMS_VALUE_INT_NOTSET; // Warm Water activated EMS_Boiler.wWSelTemp = EMS_VALUE_INT_NOTSET; // Warm Water selected temperature EMS_Boiler.wWCircPump = EMS_VALUE_INT_NOTSET; // Warm Water circulation pump available EMS_Boiler.wWDesiredTemp = EMS_VALUE_INT_NOTSET; // Warm Water desired temperature to prevent infection EMS_Boiler.wWComfort = EMS_VALUE_INT_NOTSET; // UBAMonitorFast EMS_Boiler.selFlowTemp = EMS_VALUE_INT_NOTSET; // Selected flow temperature EMS_Boiler.curFlowTemp = EMS_VALUE_SHORT_NOTSET; // Current flow temperature EMS_Boiler.retTemp = EMS_VALUE_SHORT_NOTSET; // Return temperature EMS_Boiler.burnGas = EMS_VALUE_INT_NOTSET; // Gas on/off EMS_Boiler.fanWork = EMS_VALUE_INT_NOTSET; // Fan on/off EMS_Boiler.ignWork = EMS_VALUE_INT_NOTSET; // Ignition on/off EMS_Boiler.heatPmp = EMS_VALUE_INT_NOTSET; // Boiler pump on/off EMS_Boiler.wWHeat = EMS_VALUE_INT_NOTSET; // 3-way valve on WW EMS_Boiler.wWCirc = EMS_VALUE_INT_NOTSET; // Circulation on/off EMS_Boiler.selBurnPow = EMS_VALUE_INT_NOTSET; // Burner max power EMS_Boiler.curBurnPow = EMS_VALUE_INT_NOTSET; // Burner current power EMS_Boiler.flameCurr = EMS_VALUE_SHORT_NOTSET; // Flame current in micro amps EMS_Boiler.sysPress = EMS_VALUE_INT_NOTSET; // System pressure strlcpy(EMS_Boiler.serviceCodeChar, "??", sizeof(EMS_Boiler.serviceCodeChar)); EMS_Boiler.serviceCode = EMS_VALUE_SHORT_NOTSET; // UBAMonitorSlow EMS_Boiler.extTemp = EMS_VALUE_SHORT_NOTSET; // Outside temperature EMS_Boiler.boilTemp = EMS_VALUE_SHORT_NOTSET; // Boiler temperature EMS_Boiler.pumpMod = EMS_VALUE_INT_NOTSET; // Pump modulation EMS_Boiler.burnStarts = EMS_VALUE_LONG_NOTSET; // # burner restarts EMS_Boiler.burnWorkMin = EMS_VALUE_LONG_NOTSET; // Total burner operating time EMS_Boiler.heatWorkMin = EMS_VALUE_LONG_NOTSET; // Total heat operating time // UBAMonitorWWMessage EMS_Boiler.wWCurTmp = EMS_VALUE_SHORT_NOTSET; // Warm Water current temperature EMS_Boiler.wWStarts = EMS_VALUE_LONG_NOTSET; // Warm Water # starts EMS_Boiler.wWWorkM = EMS_VALUE_LONG_NOTSET; // Warm Water # minutes EMS_Boiler.wWOneTime = EMS_VALUE_INT_NOTSET; // Warm Water one time function on/off EMS_Boiler.wWCurFlow = EMS_VALUE_INT_NOTSET; // UBATotalUptimeMessage EMS_Boiler.UBAuptime = EMS_VALUE_LONG_NOTSET; // Total UBA working hours // UBAParametersMessage EMS_Boiler.heating_temp = EMS_VALUE_INT_NOTSET; // Heating temperature setting on the boiler EMS_Boiler.pump_mod_max = EMS_VALUE_INT_NOTSET; // Boiler circuit pump modulation max. power EMS_Boiler.pump_mod_min = EMS_VALUE_INT_NOTSET; // Boiler circuit pump modulation min. power // Other EMS devices values EMS_Other.SMcollectorTemp = EMS_VALUE_SHORT_NOTSET; // collector temp from SM10/SM100 EMS_Other.SMbottomTemp = EMS_VALUE_SHORT_NOTSET; // bottom temp from SM10/SM100 EMS_Other.SMpumpModulation = EMS_VALUE_INT_NOTSET; // modulation solar pump SM10/SM100 EMS_Other.SMpump = EMS_VALUE_INT_NOTSET; // pump active EMS_Other.SMEnergyLastHour = EMS_VALUE_SHORT_NOTSET; EMS_Other.SMEnergyToday = EMS_VALUE_SHORT_NOTSET; EMS_Other.SMEnergyTotal = EMS_VALUE_SHORT_NOTSET; EMS_Other.HPModulation = EMS_VALUE_INT_NOTSET; EMS_Other.HPSpeed = EMS_VALUE_INT_NOTSET; // calculated values EMS_Boiler.tapwaterActive = EMS_VALUE_INT_NOTSET; // Hot tap water is on/off EMS_Boiler.heatingActive = EMS_VALUE_INT_NOTSET; // Central heating is on/off // set boiler type EMS_Boiler.product_id = EMS_ID_NONE; strlcpy(EMS_Boiler.version, "?", sizeof(EMS_Boiler.version)); // set thermostat model EMS_Thermostat.model_id = EMS_MODEL_NONE; EMS_Thermostat.product_id = EMS_ID_NONE; strlcpy(EMS_Thermostat.version, "?", sizeof(EMS_Thermostat.version)); // set other types EMS_Other.SM = false; EMS_Other.HP = false; // default logging is none ems_setLogging(EMS_SYS_LOGGING_DEFAULT); } // Getters and Setters for parameters void ems_setPoll(bool b) { EMS_Sys_Status.emsPollEnabled = b; myDebug_P(PSTR("EMS Bus Poll is set to %s"), EMS_Sys_Status.emsPollEnabled ? "enabled" : "disabled"); } bool ems_getPoll() { return EMS_Sys_Status.emsPollEnabled; } void ems_setTxMode(uint8_t mode) { EMS_Sys_Status.emsTxMode = mode; // special case for Junkers. If tx_mode is 3 then set the reverse poll flag // https://github.com/proddy/EMS-ESP/issues/103#issuecomment-495945850 if (mode == 3) { EMS_Sys_Status.emsReverse = true; myDebug_P(PSTR("Setting for Tx Junkers logic and enabled the poll reverse flag")); } } uint8_t ems_getTxMode() { return EMS_Sys_Status.emsTxMode; } bool ems_getEmsRefreshed() { return EMS_Sys_Status.emsRefreshed; } void ems_setEmsRefreshed(bool b) { EMS_Sys_Status.emsRefreshed = b; } void ems_setThermostatHC(uint8_t hc) { EMS_Thermostat.hc = hc; } bool ems_getBoilerEnabled() { return (EMS_Boiler.device_id != EMS_ID_NONE); } bool ems_getThermostatEnabled() { return (EMS_Thermostat.device_id != EMS_ID_NONE); } uint8_t ems_getThermostatModel() { return (EMS_Thermostat.model_id); } void ems_setTxDisabled(bool b) { EMS_Sys_Status.emsTxDisabled = b; } uint32_t ems_getPollFrequency() { return EMS_Sys_Status.emsPollFrequency; } bool ems_getTxCapable() { if ((EMS_Sys_Status.emsPollFrequency == 0) || (EMS_Sys_Status.emsPollFrequency > EMS_POLL_TIMEOUT)) { EMS_Sys_Status.emsTxCapable = false; } return EMS_Sys_Status.emsTxCapable; } bool ems_getBusConnected() { if ((millis() - EMS_Sys_Status.emsRxTimestamp) > EMS_BUS_TIMEOUT) { EMS_Sys_Status.emsBusConnected = false; } return EMS_Sys_Status.emsBusConnected; } _EMS_SYS_LOGGING ems_getLogging() { return EMS_Sys_Status.emsLogging; } void ems_setLogging(_EMS_SYS_LOGGING loglevel) { if (loglevel <= EMS_SYS_LOGGING_VERBOSE) { EMS_Sys_Status.emsLogging = loglevel; if (loglevel == EMS_SYS_LOGGING_NONE) { myDebug_P(PSTR("System Logging set to None")); } else if (loglevel == EMS_SYS_LOGGING_BASIC) { myDebug_P(PSTR("System Logging set to Basic")); } else if (loglevel == EMS_SYS_LOGGING_VERBOSE) { myDebug_P(PSTR("System Logging set to Verbose")); } else if (loglevel == EMS_SYS_LOGGING_THERMOSTAT) { myDebug_P(PSTR("System Logging set to Thermostat only")); } else if (loglevel == EMS_SYS_LOGGING_RAW) { myDebug_P(PSTR("System Logging set to Raw mode")); } } } /** * Calculate CRC checksum using lookup table for speed * len is length of all the data in bytes (including the header & CRC byte at end) */ uint8_t _crcCalculator(uint8_t * data, uint8_t len) { uint8_t crc = 0; // read data and stop before the CRC for (uint8_t i = 0; i < len - 1; i++) { crc = ems_crc_table[crc]; crc ^= data[i]; } return crc; } // like itoa but for hex, and quicker char * _hextoa(uint8_t value, char * buffer) { char * p = buffer; byte nib1 = (value >> 4) & 0x0F; byte nib2 = (value >> 0) & 0x0F; *p++ = nib1 < 0xA ? '0' + nib1 : 'A' + nib1 - 0xA; *p++ = nib2 < 0xA ? '0' + nib2 : 'A' + nib2 - 0xA; *p = '\0'; // null terminate just in case return buffer; } // for decimals 0 to 99, printed as a string char * _smallitoa(uint8_t value, char * buffer) { buffer[0] = ((value / 10) == 0) ? '0' : (value / 10) + '0'; buffer[1] = (value % 10) + '0'; buffer[2] = '\0'; return buffer; } /* for decimals 0 to 999, printed as a string * From @nomis */ char * _smallitoa3(uint16_t value, char * buffer) { buffer[0] = ((value / 100) == 0) ? '0' : (value / 100) + '0'; buffer[1] = (((value % 100) / 10) == 0) ? '0' : ((value % 100) / 10) + '0'; buffer[2] = (value % 10) + '0'; buffer[3] = '\0'; return buffer; } /** * Find the pointer to the EMS_Types array for a given type ID * or -1 if not found */ int _ems_findType(uint8_t type) { uint8_t i = 0; bool typeFound = false; // scan through known ID types while (i < _EMS_Types_max) { if (EMS_Types[i].type == type) { typeFound = true; // we have a match break; } i++; } return (typeFound ? i : -1); } /** * debug print a telegram to telnet/serial including the CRC */ void _debugPrintTelegram(const char * prefix, _EMS_RxTelegram * EMS_RxTelegram, const char * color, bool raw = false) { char output_str[200] = {0}; char buffer[16] = {0}; uint8_t * data = EMS_RxTelegram->telegram; uint8_t data_len = EMS_RxTelegram->data_length; // length of data block uint8_t length = EMS_RxTelegram->length; // includes CRC strlcpy(output_str, "(", sizeof(output_str)); strlcat(output_str, COLOR_CYAN, sizeof(output_str)); strlcat(output_str, _smallitoa((uint8_t)((EMS_RxTelegram->timestamp / 3600000) % 24), buffer), sizeof(output_str)); strlcat(output_str, ":", sizeof(output_str)); strlcat(output_str, _smallitoa((uint8_t)((EMS_RxTelegram->timestamp / 60000) % 60), buffer), sizeof(output_str)); strlcat(output_str, ":", sizeof(output_str)); strlcat(output_str, _smallitoa((uint8_t)((EMS_RxTelegram->timestamp / 1000) % 60), buffer), sizeof(output_str)); strlcat(output_str, ".", sizeof(output_str)); strlcat(output_str, _smallitoa3(EMS_RxTelegram->timestamp % 1000, buffer), sizeof(output_str)); strlcat(output_str, COLOR_RESET, sizeof(output_str)); strlcat(output_str, ") ", sizeof(output_str)); strlcat(output_str, color, sizeof(output_str)); strlcat(output_str, prefix, sizeof(output_str)); if (!raw) { strlcat(output_str, " telegram: ", sizeof(output_str)); } for (int i = 0; i < (length - 1); i++) { strlcat(output_str, _hextoa(data[i], buffer), sizeof(output_str)); strlcat(output_str, " ", sizeof(output_str)); // add space } if (raw) { strlcat(output_str, _hextoa(data[length - 1], buffer), sizeof(output_str)); } else { strlcat(output_str, "(CRC=", sizeof(output_str)); strlcat(output_str, _hextoa(data[length - 1], buffer), sizeof(output_str)); strlcat(output_str, ")", sizeof(output_str)); // print number of data bytes only if its a valid telegram if (data_len) { strlcat(output_str, " #data=", sizeof(output_str)); strlcat(output_str, itoa(data_len, buffer, 10), sizeof(output_str)); } } strlcat(output_str, COLOR_RESET, sizeof(output_str)); myDebug(output_str); } /** * send the contents of the Tx buffer to the UART * we take telegram from the queue and send it, but don't remove it until later when its confirmed successful */ void _ems_sendTelegram() { // check if we have something in the queue to send if (EMS_TxQueue.isEmpty()) { return; } // get the first in the queue, which is at the head // we don't remove from the queue yet _EMS_TxTelegram EMS_TxTelegram = EMS_TxQueue.first(); // if there is no destination, also delete it from the queue if (EMS_TxTelegram.dest == EMS_ID_NONE) { EMS_TxQueue.shift(); // remove from queue return; } // if we're in raw mode just fire and forget // e.g. send 0B 88 02 00 20 if (EMS_TxTelegram.action == EMS_TX_TELEGRAM_RAW) { _EMS_RxTelegram EMS_RxTelegram; // create new Rx object EMS_TxTelegram.data[EMS_TxTelegram.length - 1] = _crcCalculator(EMS_TxTelegram.data, EMS_TxTelegram.length); // add the CRC EMS_RxTelegram.length = EMS_TxTelegram.length; // full length of telegram EMS_RxTelegram.telegram = EMS_TxTelegram.data; EMS_RxTelegram.timestamp = millis(); // now _debugPrintTelegram("Sending raw: ", &EMS_RxTelegram, COLOR_CYAN, true); // always show emsuart_tx_buffer(EMS_TxTelegram.data, EMS_TxTelegram.length); // send the telegram to the UART Tx EMS_TxQueue.shift(); // remove from queue return; } // create the header EMS_TxTelegram.data[0] = (EMS_Sys_Status.emsReverse) ? EMS_ID_ME | 0x80 : EMS_ID_ME; // src // dest if (EMS_TxTelegram.action == EMS_TX_TELEGRAM_WRITE) { EMS_TxTelegram.data[1] = EMS_TxTelegram.dest; } else { // for a READ or VALIDATE EMS_TxTelegram.data[1] = EMS_TxTelegram.dest | 0x80; // read has 8th bit set } EMS_TxTelegram.data[2] = EMS_TxTelegram.type; // type EMS_TxTelegram.data[3] = EMS_TxTelegram.offset; // offset // see if it has data, add the single data value byte // otherwise leave it alone and assume the data has been pre-populated if (EMS_TxTelegram.length == EMS_MIN_TELEGRAM_LENGTH) { // for reading this is #bytes we want to read (the size) // for writing its the value we want to write EMS_TxTelegram.data[4] = EMS_TxTelegram.dataValue; } // finally calculate CRC and add it to the end uint8_t crc = _crcCalculator(EMS_TxTelegram.data, EMS_TxTelegram.length); EMS_TxTelegram.data[EMS_TxTelegram.length - 1] = crc; // print debug info if (EMS_Sys_Status.emsLogging == EMS_SYS_LOGGING_VERBOSE) { char s[64] = {0}; if (EMS_TxTelegram.action == EMS_TX_TELEGRAM_WRITE) { snprintf(s, sizeof(s), "Sending write of type 0x%02X to 0x%02X:", EMS_TxTelegram.type, EMS_TxTelegram.dest & 0x7F); } else if (EMS_TxTelegram.action == EMS_TX_TELEGRAM_READ) { snprintf(s, sizeof(s), "Sending read of type 0x%02X to 0x%02X:", EMS_TxTelegram.type, EMS_TxTelegram.dest & 0x7F); } else if (EMS_TxTelegram.action == EMS_TX_TELEGRAM_VALIDATE) { snprintf(s, sizeof(s), "Sending validate of type 0x%02X to 0x%02X:", EMS_TxTelegram.type, EMS_TxTelegram.dest & 0x7F); } _EMS_RxTelegram EMS_RxTelegram; EMS_RxTelegram.length = EMS_TxTelegram.length; // complete length of telegram EMS_RxTelegram.telegram = EMS_TxTelegram.data; EMS_RxTelegram.timestamp = millis(); // now _debugPrintTelegram(s, &EMS_RxTelegram, COLOR_CYAN); } // send the telegram to the UART Tx emsuart_tx_buffer(EMS_TxTelegram.data, EMS_TxTelegram.length); EMS_Sys_Status.emsTxStatus = EMS_TX_STATUS_WAIT; } /** * Takes the last write command and turns into a validate request * placing it on the queue */ void _createValidate() { if (EMS_TxQueue.isEmpty()) { return; } // release the Tx lock EMS_Sys_Status.emsTxStatus = EMS_TX_STATUS_IDLE; // get the first in the queue, which is at the head _EMS_TxTelegram EMS_TxTelegram = EMS_TxQueue.first(); // safety check: only do a validate after a write and when we have a type to validate if ((EMS_TxTelegram.action != EMS_TX_TELEGRAM_WRITE) || (EMS_TxTelegram.type_validate == EMS_ID_NONE)) { EMS_TxQueue.shift(); // remove from queue return; } // create a new Telegram copying from the last write _EMS_TxTelegram new_EMS_TxTelegram; new_EMS_TxTelegram.action = EMS_TX_TELEGRAM_VALIDATE; // copy old Write record new_EMS_TxTelegram.type_validate = EMS_TxTelegram.type_validate; new_EMS_TxTelegram.dest = EMS_TxTelegram.dest; new_EMS_TxTelegram.type = EMS_TxTelegram.type; new_EMS_TxTelegram.comparisonValue = EMS_TxTelegram.comparisonValue; new_EMS_TxTelegram.comparisonPostRead = EMS_TxTelegram.comparisonPostRead; new_EMS_TxTelegram.comparisonOffset = EMS_TxTelegram.comparisonOffset; // this is what is different new_EMS_TxTelegram.offset = EMS_TxTelegram.comparisonOffset; // location of byte to fetch new_EMS_TxTelegram.dataValue = 1; // fetch single byte new_EMS_TxTelegram.length = EMS_MIN_TELEGRAM_LENGTH; // is always 6 bytes long (including CRC at end) // remove old telegram from queue and add this new read one EMS_TxQueue.shift(); // remove from queue EMS_TxQueue.unshift(new_EMS_TxTelegram); // add back to queue making it first to be picked up next (FIFO) } /** * Entry point triggered by an interrupt in emsuart.cpp * length is size of all the telegram bytes including the CRC, excluding the BRK at the end * Read commands are asynchronous as they're handled by the interrupt * When a telegram is processed we forcefully erase it from the stack to prevent overflow */ void ems_parseTelegram(uint8_t * telegram, uint8_t length) { if ((length != 0) && (telegram[0] != 0x00)) { _ems_readTelegram(telegram, length); } // clear the Rx buffer just be safe and prevent duplicates memset(telegram, 0, EMS_MAXBUFFERSIZE); } /** * the main logic that parses the telegram message * When we receive a Poll Request we need to send any Tx packages quickly within a 200ms window * length is total number of bytes of the telegram including the CRC byte at the end (if it exists) */ void _ems_readTelegram(uint8_t * telegram, uint8_t length) { // create the Rx package static _EMS_RxTelegram EMS_RxTelegram; static uint32_t _last_emsPollFrequency = 0; EMS_RxTelegram.telegram = telegram; EMS_RxTelegram.timestamp = millis(); EMS_RxTelegram.length = length; // check if we just received a single byte // it could well be a Poll request from the boiler for us, which will have a value of 0x8B (0x0B | 0x80) // or either a return code like 0x01 or 0x04 from the last Write command if (length == 1) { uint8_t value = telegram[0]; // 1st byte of data package // check first for a Poll for us // the poll has the MSB set - seems to work on both EMS and Junkers if (value == (EMS_ID_ME | 0x80)) { EMS_Sys_Status.emsTxCapable = true; uint32_t timenow_microsecs = micros(); EMS_Sys_Status.emsPollFrequency = (timenow_microsecs - _last_emsPollFrequency); _last_emsPollFrequency = timenow_microsecs; // do we have something to send thats waiting in the Tx queue? // if so send it if the Queue is not in a wait state if ((!EMS_TxQueue.isEmpty()) && (EMS_Sys_Status.emsTxStatus == EMS_TX_STATUS_IDLE)) { _ems_sendTelegram(); // perform the read/write command immediately } else { // nothing to send so just send a poll acknowledgement back if (EMS_Sys_Status.emsPollEnabled) { emsuart_tx_poll(); } } } else if (EMS_Sys_Status.emsTxStatus == EMS_TX_STATUS_WAIT) { // this may be a single byte 01 (success) or 04 (error) from a recent write command? if (value == EMS_TX_SUCCESS) { EMS_Sys_Status.emsTxPkgs++; // got a success 01. Send a validate to check the value of the last write emsuart_tx_poll(); // send a poll to free the EMS bus _createValidate(); // create a validate Tx request (if needed) } else if (value == EMS_TX_ERROR) { // last write failed (04), delete it from queue and dont bother to retry if (EMS_Sys_Status.emsLogging == EMS_SYS_LOGGING_VERBOSE) { myDebug_P(PSTR("** Write command failed from host")); } emsuart_tx_poll(); // send a poll to free the EMS bus _removeTxQueue(); // remove from queue } } return; // all done here } // ignore anything that doesn't resemble a proper telegram package // minimal is 5 bytes, excluding CRC at the end if (length <= 4) { //_debugPrintTelegram("Noisy data:", &EMS_RxTelegram COLOR_RED); return; } // fill in the rest of the telegram EMS_RxTelegram.src = telegram[0] & 0x7F; // removing 8th bit as we deal with both reads and writes here EMS_RxTelegram.dest = telegram[1] & 0x7F; // remove 8th bit (don't care if read or write) EMS_RxTelegram.offset = telegram[3]; // offset is always 4th byte // determing if its normal ems or ems plus if (telegram[2] >= 0xF0) { // its EMS plus / EMS 2.0 EMS_RxTelegram.emsplus = true; if (telegram[2] == 0xFF) { EMS_RxTelegram.type = (telegram[4] << 8) + telegram[5]; // is a long in bytes 5 & 6 EMS_RxTelegram.data = telegram + 6; if (length <= 7) { EMS_RxTelegram.data_length = 0; // special broadcast on ems+ have no data values } else { EMS_RxTelegram.data_length = length - 7; // remove 6 byte header plus CRC } } else { // its F9 or F7 uint8_t shift = (telegram[4] != 0xFF); // true (1) if byte 4 is not 0xFF, then telegram is 1 byte longer EMS_RxTelegram.type = (telegram[5 + shift] << 8) + telegram[6 + shift]; EMS_RxTelegram.data = telegram + 6 + shift; // there is a special byte after the typeID which we ignore for now if (length <= (9 + shift)) { EMS_RxTelegram.data_length = 0; // special broadcast on ems+ have no data values } else { EMS_RxTelegram.data_length = length - (9 + shift); } } } else { // Normal EMS 1.0 EMS_RxTelegram.emsplus = false; EMS_RxTelegram.type = telegram[2]; // 3rd byte EMS_RxTelegram.data = telegram + 4; EMS_RxTelegram.data_length = length - 5; // remove 4 bytes header plus CRC } // Assume at this point we have something that vaguely resembles a telegram in the format [src] [dest] [type] [offset] [data] [crc] // validate the CRC, if it's bad ignore it if (telegram[length - 1] != _crcCalculator(telegram, length)) { EMS_Sys_Status.emxCrcErr++; if (EMS_Sys_Status.emsLogging == EMS_SYS_LOGGING_VERBOSE) { _debugPrintTelegram("Corrupt telegram: ", &EMS_RxTelegram, COLOR_RED, true); } return; } // if we are in raw logging mode then just print out the telegram as it is // but still continue to process it if (EMS_Sys_Status.emsLogging == EMS_SYS_LOGGING_RAW) { _debugPrintTelegram("", &EMS_RxTelegram, COLOR_WHITE, true); } // here we know its a valid incoming telegram of at least 6 bytes // we use this to see if we always have a connection to the boiler, in case of drop outs EMS_Sys_Status.emsRxTimestamp = EMS_RxTelegram.timestamp; // timestamp of last read EMS_Sys_Status.emsBusConnected = true; // now lets process it and see what to do next _processType(&EMS_RxTelegram); } /** * print the telegram */ void _printMessage(_EMS_RxTelegram * EMS_RxTelegram) { // header info uint8_t src = EMS_RxTelegram->src; uint8_t dest = EMS_RxTelegram->dest; uint16_t type = EMS_RxTelegram->type; char output_str[200] = {0}; char buffer[16] = {0}; char color_s[20] = {0}; // source if (src == EMS_Boiler.device_id) { strlcpy(output_str, "Boiler", sizeof(output_str)); } else if (src == EMS_Thermostat.device_id) { strlcpy(output_str, "Thermostat", sizeof(output_str)); } else if (src == EMS_ID_SM) { strlcpy(output_str, "SM", sizeof(output_str)); } else if (src == EMS_ID_GATEWAY) { strlcpy(output_str, "Gateway", sizeof(output_str)); } else { strlcpy(output_str, "0x", sizeof(output_str)); strlcat(output_str, _hextoa(src, buffer), sizeof(output_str)); } strlcat(output_str, " -> ", sizeof(output_str)); // destination if (dest == EMS_ID_ME) { strlcat(output_str, "me", sizeof(output_str)); strlcpy(color_s, COLOR_YELLOW, sizeof(color_s)); } else if (dest == EMS_ID_NONE) { strlcat(output_str, "all", sizeof(output_str)); strlcpy(color_s, COLOR_GREEN, sizeof(color_s)); } else if (dest == EMS_Boiler.device_id) { strlcat(output_str, "Boiler", sizeof(output_str)); strlcpy(color_s, COLOR_MAGENTA, sizeof(color_s)); } else if (dest == EMS_ID_SM) { strlcat(output_str, "SM", sizeof(output_str)); strlcpy(color_s, COLOR_MAGENTA, sizeof(color_s)); } else if (dest == EMS_ID_GATEWAY) { strlcat(output_str, "Gateway", sizeof(output_str)); strlcpy(color_s, COLOR_MAGENTA, sizeof(color_s)); } else if (dest == EMS_Thermostat.device_id) { strlcat(output_str, "Thermostat", sizeof(output_str)); strlcpy(color_s, COLOR_MAGENTA, sizeof(color_s)); } else { strlcat(output_str, "0x", sizeof(output_str)); strlcat(output_str, _hextoa(dest, buffer), sizeof(output_str)); strlcpy(color_s, COLOR_MAGENTA, sizeof(color_s)); } // type strlcat(output_str, ", type 0x", sizeof(output_str)); if (EMS_RxTelegram->emsplus) { strlcat(output_str, _hextoa(type >> 8, buffer), sizeof(output_str)); strlcat(output_str, _hextoa(type & 0xFF, buffer), sizeof(output_str)); } else { strlcat(output_str, _hextoa(type, buffer), sizeof(output_str)); } if (EMS_Sys_Status.emsLogging == EMS_SYS_LOGGING_THERMOSTAT) { // only print ones to/from thermostat if logging is set to thermostat only if ((src == EMS_Thermostat.device_id) || (dest == EMS_Thermostat.device_id)) { _debugPrintTelegram(output_str, EMS_RxTelegram, color_s); } } else { // always print _debugPrintTelegram(output_str, EMS_RxTelegram, color_s); } } /** * print detailed telegram * and then call its callback if there is one defined */ void _ems_processTelegram(_EMS_RxTelegram * EMS_RxTelegram) { // print out the telegram for verbose mode if (EMS_Sys_Status.emsLogging >= EMS_SYS_LOGGING_THERMOSTAT) { _printMessage(EMS_RxTelegram); } // ignore telegrams that don't have any data if (EMS_RxTelegram->data_length == 0) { return; } // header uint8_t dest = EMS_RxTelegram->dest; uint16_t type = EMS_RxTelegram->type; // see if we recognize the type first by scanning our known EMS types list bool typeFound = false; uint8_t i = 0; while (i < _EMS_Types_max) { if (EMS_Types[i].type == type) { // is it a broadcast or something sent to us? // we don't really care where it is from if ((dest == EMS_ID_NONE) || (dest == EMS_ID_ME)) { typeFound = true; break; } /* if ((EMS_Types[i].model_id == EMS_MODEL_ALL) || ((src == EMS_Boiler.device_id) || (src == EMS_Thermostat.device_id) || (src == EMS_ID_SM))) { typeFound = true; break; } */ } i++; } // if it's a common type (across ems devices) or something specifically for us process it. // dest will be EMS_ID_NONE and offset 0x00 for a broadcast message if (typeFound) { if ((EMS_Types[i].processType_cb) != (void *)NULL) { // print non-verbose message if ((EMS_Sys_Status.emsLogging == EMS_SYS_LOGGING_BASIC) || (EMS_Sys_Status.emsLogging == EMS_SYS_LOGGING_VERBOSE)) { myDebug_P(PSTR("<--- %s(0x%02X)"), EMS_Types[i].typeString, type); } // call callback function to process the telegram, only if there is data if (EMS_RxTelegram->emsplus) { // if EMS+ always proces it (void)EMS_Types[i].processType_cb(EMS_RxTelegram); } else { // only if the offset is 0 as we want to handle full telegrams and not partial if (EMS_RxTelegram->offset == EMS_ID_NONE) { (void)EMS_Types[i].processType_cb(EMS_RxTelegram); } } } } EMS_Sys_Status.emsTxStatus = EMS_TX_STATUS_IDLE; } /** * Remove current Tx telegram from queue and release lock on Tx */ void _removeTxQueue() { if (!EMS_TxQueue.isEmpty()) { EMS_TxQueue.shift(); // remove item from top of the queue } EMS_Sys_Status.emsTxStatus = EMS_TX_STATUS_IDLE; } /** * deciphers the telegram packet, which has already been checked for valid CRC and has a complete header (min of 5 bytes) * length is only data bytes, excluding the BRK * We only remove from the Tx queue if the read or write was successful */ void _processType(_EMS_RxTelegram * EMS_RxTelegram) { uint8_t * telegram = EMS_RxTelegram->telegram; // if its an echo of ourselves from the master UBA, ignore if (EMS_RxTelegram->src == EMS_ID_ME) { // _debugPrintTelegram("echo:", EMS_RxTelegram, COLOR_WHITE); return; } // if its a broadcast and we didn't just send anything, process it and exit if (EMS_Sys_Status.emsTxStatus == EMS_TX_STATUS_IDLE) { _ems_processTelegram(EMS_RxTelegram); return; } // release the lock on the TxQueue EMS_Sys_Status.emsTxStatus = EMS_TX_STATUS_IDLE; // at this point we can assume Txstatus is EMS_TX_STATUS_WAIT so we just sent a read/write/validate // for READ, WRITE or VALIDATE the dest (telegram[1]) is always us, so check for this // and if not we probably didn't get any response so remove the last Tx from the queue and process the telegram anyway if ((telegram[1] & 0x7F) != EMS_ID_ME) { _removeTxQueue(); _ems_processTelegram(EMS_RxTelegram); return; } // first double check we actually have something in the queue if (EMS_TxQueue.isEmpty()) { _ems_processTelegram(EMS_RxTelegram); return; } // get the Tx telegram we just sent _EMS_TxTelegram EMS_TxTelegram = EMS_TxQueue.first(); // check action // if READ, match the current inbound telegram to what we sent // if WRITE, should not happen // if VALIDATE, check the contents if (EMS_TxTelegram.action == EMS_TX_TELEGRAM_READ) { if ((EMS_RxTelegram->src == EMS_TxTelegram.dest) && (EMS_RxTelegram->type == EMS_TxTelegram.type)) { // all checks out, read was successful, remove tx from queue and continue to process telegram _removeTxQueue(); EMS_Sys_Status.emsRxPgks++; // increment counter ems_setEmsRefreshed(EMS_TxTelegram.forceRefresh); // does mqtt need refreshing? } else { // read not OK, we didn't get back a telegram we expected // leave on queue and try again, but continue to process what we received as it may be important EMS_Sys_Status.txRetryCount++; // if retried too many times, give up and remove it if (EMS_Sys_Status.txRetryCount >= TX_WRITE_TIMEOUT_COUNT) { if (EMS_Sys_Status.emsLogging >= EMS_SYS_LOGGING_BASIC) { myDebug_P(PSTR("Read failed. Giving up, removing from queue")); } _removeTxQueue(); } else { if (EMS_Sys_Status.emsLogging >= EMS_SYS_LOGGING_BASIC) { myDebug_P(PSTR("...Retrying read. Attempt %d/%d..."), EMS_Sys_Status.txRetryCount, TX_WRITE_TIMEOUT_COUNT); } } } _ems_processTelegram(EMS_RxTelegram); // process it always } if (EMS_TxTelegram.action == EMS_TX_TELEGRAM_WRITE) { // should not get here, since this is handled earlier receiving a 01 or 04 myDebug_P(PSTR("** Error ! Write - should not be here")); } if (EMS_TxTelegram.action == EMS_TX_TELEGRAM_VALIDATE) { // this is a read telegram which we use to validate the last write uint8_t * data = telegram + 4; // data block starts at position 5 uint8_t dataReceived = data[0]; // only a single byte is returned after a read if (EMS_TxTelegram.comparisonValue == dataReceived) { // validate was successful, the write changed the value _removeTxQueue(); // now we can remove the Tx validate command the queue if (EMS_Sys_Status.emsLogging >= EMS_SYS_LOGGING_BASIC) { myDebug_P(PSTR("Write to 0x%02X was successful"), EMS_TxTelegram.dest); } // follow up with the post read command ems_doReadCommand(EMS_TxTelegram.comparisonPostRead, EMS_TxTelegram.dest, true); } else { // write failed if (EMS_Sys_Status.emsLogging >= EMS_SYS_LOGGING_BASIC) { myDebug_P(PSTR("Last write failed. Compared set value 0x%02X with received value 0x%02X"), EMS_TxTelegram.comparisonValue, dataReceived); } if (++EMS_Sys_Status.txRetryCount > TX_WRITE_TIMEOUT_COUNT) { if (EMS_Sys_Status.emsLogging >= EMS_SYS_LOGGING_BASIC) { myDebug_P(PSTR("Write failed. Giving up, removing from queue")); } _removeTxQueue(); } else { // retry, turn the validate back into a write and try again if (EMS_Sys_Status.emsLogging >= EMS_SYS_LOGGING_BASIC) { myDebug_P(PSTR("...Retrying write. Attempt %d/%d..."), EMS_Sys_Status.txRetryCount, TX_WRITE_TIMEOUT_COUNT); } EMS_TxTelegram.action = EMS_TX_TELEGRAM_WRITE; EMS_TxTelegram.dataValue = EMS_TxTelegram.comparisonValue; // restore old value EMS_TxTelegram.offset = EMS_TxTelegram.comparisonOffset; // restore old value EMS_TxQueue.shift(); // remove validate from queue EMS_TxQueue.unshift(EMS_TxTelegram); // add back to queue making it next in line } } } emsuart_tx_poll(); // send Acknowledgement back to free the EMS bus since we have the telegram } /** * Check if hot tap water or heating is active * using a quick hack for checking the heating. Selected Flow Temp >= 70 */ void _checkActive() { // hot tap water, using flow to check instead of the burner power if (EMS_Boiler.wWCurFlow != EMS_VALUE_INT_NOTSET && EMS_Boiler.burnGas != EMS_VALUE_INT_NOTSET) { EMS_Boiler.tapwaterActive = ((EMS_Boiler.wWCurFlow != 0) && (EMS_Boiler.burnGas == EMS_VALUE_INT_ON)); } // heating if (EMS_Boiler.selFlowTemp != EMS_VALUE_INT_NOTSET && EMS_Boiler.burnGas != EMS_VALUE_INT_NOTSET) { EMS_Boiler.heatingActive = ((EMS_Boiler.selFlowTemp >= EMS_BOILER_SELFLOWTEMP_HEATING) && (EMS_Boiler.burnGas == EMS_VALUE_INT_ON)); } } /** * UBAParameterWW - type 0x33 - warm water parameters * received only after requested (not broadcasted) */ void _process_UBAParameterWW(_EMS_RxTelegram * EMS_RxTelegram) { EMS_Boiler.wWActivated = (_toByte(1) == 0xFF); // 0xFF means on EMS_Boiler.wWSelTemp = _toByte(2); EMS_Boiler.wWCircPump = (_toByte(6) == 0xFF); // 0xFF means on EMS_Boiler.wWDesiredTemp = _toByte(8); EMS_Boiler.wWComfort = _toByte(EMS_OFFSET_UBAParameterWW_wwComfort); EMS_Sys_Status.emsRefreshed = true; // when we receieve this, lets force an MQTT publish } /** * UBATotalUptimeMessage - type 0x14 - total uptime * received only after requested (not broadcasted) */ void _process_UBATotalUptimeMessage(_EMS_RxTelegram * EMS_RxTelegram) { EMS_Boiler.UBAuptime = _toLong(0); EMS_Sys_Status.emsRefreshed = true; // when we receieve this, lets force an MQTT publish } /** * UBAParametersMessage - type 0x16 */ void _process_UBAParametersMessage(_EMS_RxTelegram * EMS_RxTelegram) { EMS_Boiler.heating_temp = _toByte(1); EMS_Boiler.pump_mod_max = _toByte(9); EMS_Boiler.pump_mod_min = _toByte(10); } /** * UBAMonitorWWMessage - type 0x34 - warm water monitor. 19 bytes long * received every 10 seconds */ void _process_UBAMonitorWWMessage(_EMS_RxTelegram * EMS_RxTelegram) { EMS_Boiler.wWCurTmp = _toShort(1); EMS_Boiler.wWStarts = _toLong(13); EMS_Boiler.wWWorkM = _toLong(10); EMS_Boiler.wWOneTime = _bitRead(5, 1); EMS_Boiler.wWCurFlow = _toByte(9); } /** * UBAMonitorFast - type 0x18 - central heating monitor part 1 (25 bytes long) * received every 10 seconds */ void _process_UBAMonitorFast(_EMS_RxTelegram * EMS_RxTelegram) { EMS_Boiler.selFlowTemp = _toByte(0); EMS_Boiler.curFlowTemp = _toShort(1); EMS_Boiler.retTemp = _toShort(13); EMS_Boiler.burnGas = _bitRead(7, 0); EMS_Boiler.fanWork = _bitRead(7, 2); EMS_Boiler.ignWork = _bitRead(7, 3); EMS_Boiler.heatPmp = _bitRead(7, 5); EMS_Boiler.wWHeat = _bitRead(7, 6); EMS_Boiler.wWCirc = _bitRead(7, 7); EMS_Boiler.curBurnPow = _toByte(4); EMS_Boiler.selBurnPow = _toByte(3); // burn power max setting EMS_Boiler.flameCurr = _toShort(15); // read the service code / installation status as appears on the display EMS_Boiler.serviceCodeChar[0] = char(_toByte(18)); // ascii character 1 EMS_Boiler.serviceCodeChar[1] = char(_toByte(19)); // ascii character 2 EMS_Boiler.serviceCodeChar[2] = '\0'; // null terminate string // read error code EMS_Boiler.serviceCode = _toShort(20); // system pressure. FF means missing EMS_Boiler.sysPress = _toByte(17); // this is *10 // at this point do a quick check to see if the hot water or heating is active _checkActive(); } /** * UBAMonitorSlow - type 0x19 - central heating monitor part 2 (27 bytes long) * received every 60 seconds */ void _process_UBAMonitorSlow(_EMS_RxTelegram * EMS_RxTelegram) { EMS_Boiler.extTemp = _toShort(0); // 0x8000 if not available EMS_Boiler.boilTemp = _toShort(2); // 0x8000 if not available EMS_Boiler.pumpMod = _toByte(9); EMS_Boiler.burnStarts = _toLong(10); EMS_Boiler.burnWorkMin = _toLong(13); EMS_Boiler.heatWorkMin = _toLong(19); } /** * type 0xB1 - data from the RC10 thermostat (0x17) * For reading the temp values only * received every 60 seconds * e.g. 17 0B 91 00 80 1E 00 CB 27 00 00 00 00 05 01 00 CB 00 (CRC=47), #data=14 */ void _process_RC10StatusMessage(_EMS_RxTelegram * EMS_RxTelegram) { EMS_Thermostat.setpoint_roomTemp = _toByte(EMS_OFFSET_RC10StatusMessage_setpoint); // is * 2 EMS_Thermostat.curr_roomTemp = _toByte(EMS_OFFSET_RC10StatusMessage_curr); // is * 10 EMS_Sys_Status.emsRefreshed = true; // triggers a send the values back via MQTT } /** * type 0x91 - data from the RC20 thermostat (0x17) - 15 bytes long * For reading the temp values only * received every 60 seconds */ void _process_RC20StatusMessage(_EMS_RxTelegram * EMS_RxTelegram) { EMS_Thermostat.setpoint_roomTemp = _toByte(EMS_OFFSET_RC20StatusMessage_setpoint); // is * 2 EMS_Thermostat.curr_roomTemp = _toShort(EMS_OFFSET_RC20StatusMessage_curr); // is * 10 EMS_Sys_Status.emsRefreshed = true; // triggers a send the values back via MQTT } /** * type 0x41 - data from the RC30 thermostat(0x10) - 14 bytes long * For reading the temp values only * received every 60 seconds */ void _process_RC30StatusMessage(_EMS_RxTelegram * EMS_RxTelegram) { EMS_Thermostat.setpoint_roomTemp = _toByte(EMS_OFFSET_RC30StatusMessage_setpoint); // is * 2 EMS_Thermostat.curr_roomTemp = _toShort(EMS_OFFSET_RC30StatusMessage_curr); // note, its 2 bytes here EMS_Sys_Status.emsRefreshed = true; // triggers a send the values back via MQTT } /** * type 0x3E and 0x48 - data from the RC35 thermostat (0x10) - 16 bytes * For reading the temp values only * received every 60 seconds */ void _process_RC35StatusMessage(_EMS_RxTelegram * EMS_RxTelegram) { EMS_Thermostat.setpoint_roomTemp = _toByte(EMS_OFFSET_RC35StatusMessage_setpoint); // is * 2 // check if temp sensor is unavailable if (EMS_RxTelegram->data[3] == 0x7D) { EMS_Thermostat.curr_roomTemp = EMS_VALUE_SHORT_NOTSET; } else { EMS_Thermostat.curr_roomTemp = _toShort(EMS_OFFSET_RC35StatusMessage_curr); } EMS_Thermostat.day_mode = _bitRead(EMS_OFFSET_RC35Get_mode_day, 1); // get day mode flag EMS_Thermostat.circuitcalctemp = _toByte(EMS_OFFSET_RC35Set_circuitcalctemp); // 0x48 calculated temperature EMS_Sys_Status.emsRefreshed = true; // triggers a send the values back via MQTT } /** * type 0x0A - data from the Nefit Easy/TC100 thermostat (0x18) - 31 bytes long * The Easy has a digital precision of its floats to 2 decimal places, so values must be divided by 100 */ void _process_EasyStatusMessage(_EMS_RxTelegram * EMS_RxTelegram) { EMS_Thermostat.curr_roomTemp = _toShort(EMS_OFFSET_EasyStatusMessage_curr); // is *100 EMS_Thermostat.setpoint_roomTemp = _toShort(EMS_OFFSET_EasyStatusMessage_setpoint); // is *100 EMS_Sys_Status.emsRefreshed = true; // triggers a send the values back via MQTT } /** * type 0x01A5 - data from the Nefit RC1010 thermostat (0x18) and RC300/310s on 0x10 * EMS+ messages may come in with different offsets so handle them here */ void _process_RCPLUSStatusMessage(_EMS_RxTelegram * EMS_RxTelegram) { if (EMS_RxTelegram->offset == 0) { // the whole telegram // e.g. Thermostat -> all, telegram: 10 00 FF 00 01 A5 00 D7 21 00 00 00 00 30 01 84 01 01 03 01 84 01 F1 00 00 11 01 00 08 63 00 // 10 00 FF 00 01 A5 80 00 01 30 28 00 30 28 01 54 03 03 01 01 54 02 A8 00 00 11 01 03 FF FF 00 EMS_Thermostat.curr_roomTemp = _toShort(EMS_OFFSET_RCPLUSStatusMessage_curr); // value is * 10 EMS_Thermostat.setpoint_roomTemp = _toByte(EMS_OFFSET_RCPLUSStatusMessage_setpoint); // value is * 2 EMS_Thermostat.day_mode = _bitRead(EMS_OFFSET_RCPLUSGet_mode_day, 1); // get day mode flag // room night setpoint is _toByte(2) (value is *2) // boiler set temp is _toByte(4) (value is *2) // day night is byte(8), 0x01 for night, 0x00 for day } // actual set point // e.g. Thermostat -> all, telegram: 10 00 FF 07 01 A5 32 if (EMS_RxTelegram->offset == 7) { // to add... } // next set point // e.g. Thermostat -> all, telegram: 18 00 FF 06 01 A5 22 if (EMS_RxTelegram->offset == 6) { // to add... } } /** * type 0x01B9 - heating data from the Nefit RC1010 thermostat (0x18) and RC300/310s on 0x10 */ void _process_RCPLUSStatusHeating(_EMS_RxTelegram * EMS_RxTelegram) { // see wiki // operation mode, comfort levels 1,2,3, eco level } /** * type 0x01AF - summer/winter mode from the Nefit RC1010 thermostat (0x18) and RC300/310s on 0x10 */ void _process_RCPLUSStatusMode(_EMS_RxTelegram * EMS_RxTelegram) { // _toByte(0); // 0x00=OFF 0x01=Automatic 0x02=Forced } /** * FR10 Junkers - type x6F01 */ void _process_FR10StatusMessage(_EMS_RxTelegram * EMS_RxTelegram) { if (EMS_RxTelegram->data_length == 6) { // e.g. 90 00 FF 00 00 6F 03 01 00 BE 00 BF EMS_Thermostat.curr_roomTemp = _toByte(EMS_OFFSET_FR10StatusMessage_curr); // value is * 10 EMS_Thermostat.setpoint_roomTemp = _toByte(EMS_OFFSET_FR10StatusMessage_setpoint); // value is * 10, which is different from other EMS+ devices } } /** * to complete.... */ void _process_RCPLUSSetMessage(_EMS_RxTelegram * EMS_RxTelegram) { // to complete } /** * type 0xB0 - for reading the mode from the RC10 thermostat (0x17) * received only after requested */ void _process_RC10Set(_EMS_RxTelegram * EMS_RxTelegram) { // mode not implemented yet } /** * type 0xA8 - for reading the mode from the RC20 thermostat (0x17) * received only after requested */ void _process_RC20Set(_EMS_RxTelegram * EMS_RxTelegram) { EMS_Thermostat.mode = _toByte(EMS_OFFSET_RC20Set_mode); } /** * type 0xA7 - for reading the mode from the RC30 thermostat (0x10) * received only after requested */ void _process_RC30Set(_EMS_RxTelegram * EMS_RxTelegram) { EMS_Thermostat.mode = _toByte(EMS_OFFSET_RC30Set_mode); } /** * type 0x3D and 0x47 - for reading the mode from the RC35 thermostat (0x10) * Working Mode Heating Circuit 1 & 2 (HC1, HC2) * received only after requested */ void _process_RC35Set(_EMS_RxTelegram * EMS_RxTelegram) { EMS_Thermostat.mode = _toByte(EMS_OFFSET_RC35Set_mode); EMS_Thermostat.daytemp = _toByte(EMS_OFFSET_RC35Set_temp_day); // is * 2 EMS_Thermostat.nighttemp = _toByte(EMS_OFFSET_RC35Set_temp_night); // is * 2 EMS_Thermostat.holidaytemp = _toByte(EMS_OFFSET_RC35Set_temp_holiday); // is * 2 EMS_Thermostat.heatingtype = _toByte(EMS_OFFSET_RC35Set_heatingtype); // byte 0 bit floor heating = 3 0x47 EMS_Sys_Status.emsRefreshed = true; // triggers a send the values back via MQTT } /** * type 0xA3 - for external temp settings from the the RC* thermostats */ void _process_RCOutdoorTempMessage(_EMS_RxTelegram * EMS_RxTelegram) { // add support here if you're reading external sensors } /* * SM10Monitor - type 0x97 */ void _process_SM10Monitor(_EMS_RxTelegram * EMS_RxTelegram) { EMS_Other.SMcollectorTemp = _toShort(2); // collector temp from SM10, is *10 EMS_Other.SMbottomTemp = _toShort(5); // bottom temp from SM10, is *10 EMS_Other.SMpumpModulation = _toByte(4); // modulation solar pump EMS_Other.SMpump = _bitRead(7, 1); // active if bit 1 is set EMS_Other.SM = true; EMS_Sys_Status.emsRefreshed = true; // triggers a send the values back via MQTT } /* * SM100Monitor - type 0x0262 EMS+ * e.g, 30 00 FF 00 02 62 01 AC * 30 00 FF 18 02 62 80 00 * 30 00 FF 00 02 62 01 A1 - for bottom temps */ void _process_SM100Monitor(_EMS_RxTelegram * EMS_RxTelegram) { // only process the complete telegram, not partial if (EMS_RxTelegram->offset != 0) { return; } EMS_Other.SMcollectorTemp = _toShort(0); // collector temp from SM100, is *10 if (EMS_RxTelegram->data_length > 2) { EMS_Other.SMbottomTemp = _toShort(2); // bottom temp from SM100, is *10 } EMS_Other.SM = true; EMS_Sys_Status.emsRefreshed = true; // triggers a send the values back via MQTT } /* * SM100Status - type 0x0264 EMS+ for pump modulation * e.g. 30 00 FF 09 02 64 64 = 100% * 30 00 FF 09 02 64 1E = 30% */ void _process_SM100Status(_EMS_RxTelegram * EMS_RxTelegram) { // check for complete telegram if (EMS_RxTelegram->offset == 0) { EMS_Other.SMpumpModulation = _toByte(9); // modulation solar pump } else if (EMS_RxTelegram->offset == 0x09) { // or short telegram with a single byte with offset 09 EMS_Other.SMpumpModulation = _toByte(0); // modulation solar pump } EMS_Other.SM = true; EMS_Sys_Status.emsRefreshed = true; // triggers a send the values back via MQTT } /* * SM100Status2 - type 0x026A EMS+ for pump on/off at offset 0x0A */ void _process_SM100Status2(_EMS_RxTelegram * EMS_RxTelegram) { // check for complete telegram if (EMS_RxTelegram->offset == 0) { EMS_Other.SMpump = _bitRead(10, 2); // 03=off 04=on at offset 10 which is byte 10 } else if (EMS_RxTelegram->offset == 0x0A) { // or short telegram with a single byte with offset 0A EMS_Other.SMpump = _bitRead(0, 2); // 03=off 04=on } EMS_Other.SM = true; EMS_Sys_Status.emsRefreshed = true; // triggers a send the values back via MQTT } /* * SM100Energy - type 0x028E EMS+ for energy readings * e.g. 30 00 FF 00 02 8E 00 00 00 00 00 00 06 C5 00 00 76 35 */ void _process_SM100Energy(_EMS_RxTelegram * EMS_RxTelegram) { EMS_Other.SMEnergyLastHour = _toShort(2); // last hour / 10 in Wh EMS_Other.SMEnergyToday = _toShort(6); // todays in Wh EMS_Other.SMEnergyTotal = _toShort(10); // total / 10 in kWh EMS_Other.SM = true; EMS_Sys_Status.emsRefreshed = true; // triggers a send the values back via MQTT } /* * Type 0xE3 - HeatPump Monitor 1 */ void _process_HPMonitor1(_EMS_RxTelegram * EMS_RxTelegram) { EMS_Other.HPModulation = _toByte(14); // modulation % EMS_Other.HP = true; EMS_Sys_Status.emsRefreshed = true; // triggers a send the values back via MQTT } /* * Type 0xE5 - HeatPump Monitor 2 */ void _process_HPMonitor2(_EMS_RxTelegram * EMS_RxTelegram) { EMS_Other.HPSpeed = _toByte(25); // speed % EMS_Other.HP = true; EMS_Sys_Status.emsRefreshed = true; // triggers a send the values back via MQTT } /** * UBASetPoint 0x1A */ void _process_SetPoints(_EMS_RxTelegram * EMS_RxTelegram) { if (EMS_Sys_Status.emsLogging == EMS_SYS_LOGGING_VERBOSE) { if (EMS_RxTelegram->data_length != 0) { uint8_t setpoint = EMS_RxTelegram->data[0]; // flow temp //uint8_t ww_power = data[2]; // power in % /* use this logic if the value is *2 char s[5]; char s2[5]; strlcpy(s, itoa(setpoint >> 1, s2, 10), 5); strlcat(s, ".", sizeof(s)); strlcat(s, ((setpoint & 0x01) ? "5" : "0"), 5); myDebug_P(PSTR(" Boiler flow temp %s C, Warm Water power %d %"), s, ww_power); */ myDebug_P(PSTR(" Boiler flow temperature is %d C"), setpoint); } } } /** * process_RCTime - type 0x06 - date and time from a thermostat - 14 bytes long * common for all thermostats */ void _process_RCTime(_EMS_RxTelegram * EMS_RxTelegram) { if ((EMS_Thermostat.model_id == EMS_MODEL_EASY) || (EMS_Thermostat.model_id == EMS_MODEL_BOSCHEASY)) { return; // not supported } EMS_Thermostat.hour = _toByte(2); EMS_Thermostat.minute = _toByte(4); EMS_Thermostat.second = _toByte(5); EMS_Thermostat.day = _toByte(3); EMS_Thermostat.month = _toByte(1); EMS_Thermostat.year = _toByte(0); } /* * add an EMS device to our list of detected devices */ void _addDevice(uint8_t product_id, uint8_t device_id, char * version, const char * model_string) { _Generic_Type device; // if its a duplicate don't add bool found = false; for (std::list<_Generic_Type>::iterator it = Devices.begin(); it != Devices.end(); it++) { if (((it)->product_id == product_id) && ((it)->device_id == device_id)) { found = true; } } if (!found) { device.product_id = product_id; device.device_id = device_id; strlcpy(device.version, version, sizeof(device.version)); strlcpy(device.model_string, model_string, sizeof(device.model_string)); Devices.push_back(device); } } /** * type 0x02 - get the firmware version and type of an EMS device * look up known devices via the product id and setup if not already set */ void _process_Version(_EMS_RxTelegram * EMS_RxTelegram) { // ignore short messages that we can't interpret if (EMS_RxTelegram->data_length < 3) { return; } uint8_t product_id = _toByte(0); char version[10] = {0}; snprintf(version, sizeof(version), "%02d.%02d", _toByte(1), _toByte(2)); // see if its a known boiler int i = 0; bool typeFound = false; while (i < _Boiler_Types_max) { if (Boiler_Types[i].product_id == product_id) { typeFound = true; // we have a matching product id. i is the index. break; } i++; } if (typeFound) { // its a boiler myDebug_P(PSTR("Boiler found. Model %s (DeviceID:0x%02X ProductID:%d Version:%s)"), Boiler_Types[i].model_string, Boiler_Types[i].device_id, product_id, version); // add to list _addDevice(product_id, Boiler_Types[i].device_id, version, Boiler_Types[i].model_string); // if its a boiler set it, unless it already has been set by checking for a productID // it will take the first one found in the list if (((EMS_Boiler.device_id == EMS_ID_NONE) || (EMS_Boiler.device_id == Boiler_Types[i].device_id)) && EMS_Boiler.product_id == EMS_ID_NONE) { myDebug_P(PSTR("* Setting Boiler to model %s (DeviceID:0x%02X ProductID:%d Version:%s)"), Boiler_Types[i].model_string, Boiler_Types[i].device_id, product_id, version); EMS_Boiler.device_id = Boiler_Types[i].device_id; EMS_Boiler.product_id = Boiler_Types[i].product_id; strlcpy(EMS_Boiler.version, version, sizeof(EMS_Boiler.version)); myESP.fs_saveConfig(); // save config to SPIFFS ems_getBoilerValues(); // get Boiler values that we would usually have to wait for } return; } // its not a boiler, maybe its a known thermostat? i = 0; while (i < _Thermostat_Types_max) { if (Thermostat_Types[i].product_id == product_id) { typeFound = true; // we have a matching product id. i is the index. break; } i++; } if (typeFound) { // its a known thermostat if (EMS_Sys_Status.emsLogging >= EMS_SYS_LOGGING_BASIC) { myDebug_P(PSTR("Thermostat found. Model %s (DeviceID:0x%02X ProductID:%d Version:%s)"), Thermostat_Types[i].model_string, Thermostat_Types[i].device_id, product_id, version); } // add to list _addDevice(product_id, Boiler_Types[i].device_id, version, Thermostat_Types[i].model_string); // if we don't have a thermostat set, use this one if (((EMS_Thermostat.device_id == EMS_ID_NONE) || (EMS_Thermostat.model_id == EMS_MODEL_NONE) || (EMS_Thermostat.device_id == Thermostat_Types[i].device_id)) && EMS_Thermostat.product_id == EMS_ID_NONE) { myDebug_P(PSTR("* Setting Thermostat model to %s (DeviceID:0x%02X ProductID:%d Version:%s)"), Thermostat_Types[i].model_string, Thermostat_Types[i].device_id, product_id, version); EMS_Thermostat.model_id = Thermostat_Types[i].model_id; EMS_Thermostat.device_id = Thermostat_Types[i].device_id; EMS_Thermostat.write_supported = Thermostat_Types[i].write_supported; EMS_Thermostat.product_id = product_id; strlcpy(EMS_Thermostat.version, version, sizeof(EMS_Thermostat.version)); myESP.fs_saveConfig(); // save config to SPIFFS // get Thermostat values (if supported) ems_getThermostatValues(); } return; } // finally look for the other EMS devices i = 0; while (i < _Other_Types_max) { if (Other_Types[i].product_id == product_id) { typeFound = true; // we have a matching product id. i is the index. break; } i++; } if (typeFound) { myDebug_P(PSTR("Device found. Model %s with DeviceID 0x%02X, ProductID %d, Version %s"), Other_Types[i].model_string, Other_Types[i].device_id, product_id, version); // add to list _addDevice(product_id, Other_Types[i].device_id, version, Other_Types[i].model_string); // see if this is a Solar Module SM10 if (Other_Types[i].device_id == EMS_ID_SM) { EMS_Other.SM = true; // we have detected a SM10 myDebug_P(PSTR("SM10 Solar Module support enabled.")); } // see if this is a HeatPump if (Other_Types[i].device_id == EMS_ID_HP) { EMS_Other.HP = true; // we have detected a HP myDebug_P(PSTR("HeatPump support enabled.")); } // fetch other values ems_getOtherValues(); return; } else { myDebug_P(PSTR("Unrecognized device found. DeviceID 0x%02X, ProductID %d, Version %s"), EMS_RxTelegram->src, product_id, version); // add to list _addDevice(product_id, EMS_RxTelegram->src, version, "unknown?"); } } /* * Figure out the boiler and thermostat types */ void ems_discoverModels() { myDebug_P(PSTR("Starting auto discover of EMS devices...")); // boiler ems_doReadCommand(EMS_TYPE_Version, EMS_Boiler.device_id); // get version details of boiler // solar module ems_doReadCommand(EMS_TYPE_Version, EMS_ID_SM); // check if there is Solar Module available // thermostat // if it hasn't been set, auto discover it if (EMS_Thermostat.device_id == EMS_ID_NONE) { ems_scanDevices(); // auto-discover it } else { // set the model as hardcoded (see my_devices.h) and fetch the version and product id ems_doReadCommand(EMS_TYPE_Version, EMS_Thermostat.device_id); } } /** * Print the Tx queue - for debugging */ void ems_printTxQueue() { _EMS_TxTelegram EMS_TxTelegram; char sType[20] = {0}; if (EMS_TxQueue.size() == 0) { myDebug_P(PSTR("Tx queue is empty")); return; } myDebug_P(PSTR("Tx queue (%d/%d)"), EMS_TxQueue.size(), EMS_TxQueue.capacity); for (byte i = 0; i < EMS_TxQueue.size(); i++) { EMS_TxTelegram = EMS_TxQueue[i]; // retrieves the i-th element from the buffer without removing it // get action if (EMS_TxTelegram.action == EMS_TX_TELEGRAM_WRITE) { strlcpy(sType, "write", sizeof(sType)); } else if (EMS_TxTelegram.action == EMS_TX_TELEGRAM_READ) { strlcpy(sType, "read", sizeof(sType)); } else if (EMS_TxTelegram.action == EMS_TX_TELEGRAM_VALIDATE) { strlcpy(sType, "validate", sizeof(sType)); } else { strlcpy(sType, "?", sizeof(sType)); } char addedTime[15] = {0}; uint32_t upt = EMS_TxTelegram.timestamp; snprintf(addedTime, sizeof(addedTime), "(%02d:%02d:%02d)", (uint8_t)((upt / (1000 * 60 * 60)) % 24), (uint8_t)((upt / (1000 * 60)) % 60), (uint8_t)((upt / 1000) % 60)); myDebug_P(PSTR(" [%d] action=%s dest=0x%02x type=0x%02x offset=%d length=%d dataValue=%d " "comparisonValue=%d type_validate=0x%02x comparisonPostRead=0x%02x @ %s"), i + 1, sType, EMS_TxTelegram.dest & 0x7F, EMS_TxTelegram.type, EMS_TxTelegram.offset, EMS_TxTelegram.length, EMS_TxTelegram.dataValue, EMS_TxTelegram.comparisonValue, EMS_TxTelegram.type_validate, EMS_TxTelegram.comparisonPostRead, addedTime); } } /** * Generic function to return various settings from the thermostat */ void ems_getThermostatValues() { if (!ems_getThermostatEnabled()) { return; } uint8_t model_id = EMS_Thermostat.model_id; uint8_t type = EMS_Thermostat.device_id; uint8_t hc = EMS_Thermostat.hc; if (model_id == EMS_MODEL_RC20) { ems_doReadCommand(EMS_TYPE_RC20StatusMessage, type); // to get the setpoint temp ems_doReadCommand(EMS_TYPE_RC20Set, type); // to get the mode } else if (model_id == EMS_MODEL_RC30) { ems_doReadCommand(EMS_TYPE_RC30StatusMessage, type); // to get the setpoint temp ems_doReadCommand(EMS_TYPE_RC30Set, type); // to get the mode } else if ((model_id == EMS_MODEL_RC35) || (model_id == EMS_MODEL_ES73)) { if (hc == 1) { ems_doReadCommand(EMS_TYPE_RC35StatusMessage_HC1, type); // to get the setpoint temp ems_doReadCommand(EMS_TYPE_RC35Set_HC1, type); // to get the mode } else if (hc == 2) { ems_doReadCommand(EMS_TYPE_RC35StatusMessage_HC2, type); // to get the setpoint temp ems_doReadCommand(EMS_TYPE_RC35Set_HC2, type); // to get the mode } } else if ((model_id == EMS_MODEL_EASY) || (model_id == EMS_MODEL_BOSCHEASY)) { ems_doReadCommand(EMS_TYPE_EasyStatusMessage, type); } ems_doReadCommand(EMS_TYPE_RCTime, type); // get Thermostat time } /** * Generic function to return various settings from the thermostat */ void ems_getBoilerValues() { ems_doReadCommand(EMS_TYPE_UBAMonitorFast, EMS_Boiler.device_id); // get boiler stats, instead of waiting 10secs for the broadcast ems_doReadCommand(EMS_TYPE_UBAMonitorSlow, EMS_Boiler.device_id); // get more boiler stats, instead of waiting 60secs for the broadcast ems_doReadCommand(EMS_TYPE_UBAParameterWW, EMS_Boiler.device_id); // get Warm Water values ems_doReadCommand(EMS_TYPE_UBAParametersMessage, EMS_Boiler.device_id); // get MC10 boiler values ems_doReadCommand(EMS_TYPE_UBATotalUptimeMessage, EMS_Boiler.device_id); // get uptime from boiler } /* * Get other values from EMS devices */ void ems_getOtherValues() { if (EMS_Other.SM) { ems_doReadCommand(EMS_TYPE_SM10Monitor, EMS_ID_SM); // fetch all from SM10Monitor, e.g. 0B B0 97 00 16 } } /** * returns current thermostat type as a string */ char * ems_getThermostatDescription(char * buffer) { uint8_t size = 128; if (!ems_getThermostatEnabled()) { strlcpy(buffer, "", size); } else { int i = 0; bool found = false; char tmp[6] = {0}; // scan through known ID types while (i < _Thermostat_Types_max) { if (Thermostat_Types[i].product_id == EMS_Thermostat.product_id) { found = true; // we have a match break; } i++; } if (found) { strlcpy(buffer, Thermostat_Types[i].model_string, size); } else { strlcpy(buffer, "DeviceID: 0x", size); strlcat(buffer, _hextoa(EMS_Thermostat.device_id, tmp), size); } strlcat(buffer, " (ProductID:", size); if (EMS_Thermostat.product_id == EMS_ID_NONE) { strlcat(buffer, "?", size); } else { strlcat(buffer, itoa(EMS_Thermostat.product_id, tmp, 10), size); } strlcat(buffer, " Version:", size); strlcat(buffer, EMS_Thermostat.version, size); strlcat(buffer, ")", size); } return buffer; } /** * returns current boiler type as a string */ char * ems_getBoilerDescription(char * buffer) { uint8_t size = 128; if (!ems_getBoilerEnabled()) { strlcpy(buffer, "", size); } else { int i = 0; bool found = false; char tmp[6] = {0}; // scan through known ID types while (i < _Boiler_Types_max) { if (Boiler_Types[i].product_id == EMS_Boiler.product_id) { found = true; // we have a match break; } i++; } if (found) { strlcpy(buffer, Boiler_Types[i].model_string, size); } else { strlcpy(buffer, "DeviceID: 0x", size); strlcat(buffer, _hextoa(EMS_Boiler.device_id, tmp), size); } strlcat(buffer, " (ProductID:", size); if (EMS_Boiler.product_id == EMS_ID_NONE) { strlcat(buffer, "?", size); } else { strlcat(buffer, itoa(EMS_Boiler.product_id, tmp, 10), size); } strlcat(buffer, " Version:", size); strlcat(buffer, EMS_Boiler.version, size); strlcat(buffer, ")", size); } return buffer; } /** * Find the versions of our connected devices */ void ems_scanDevices() { myDebug_P(PSTR("Started scan on EMS bus for known devices")); std::list Device_Ids; // create a new list // copy over boilers for (_Boiler_Type bt : Boiler_Types) { Device_Ids.push_back(bt.device_id); } // copy over thermostats for (_Thermostat_Type tt : Thermostat_Types) { Device_Ids.push_back(tt.device_id); } // copy over others for (_Other_Type ot : Other_Types) { Device_Ids.push_back(ot.device_id); } // remove duplicates and reserved IDs (like our own device) Device_Ids.sort(); Device_Ids.unique(); Device_Ids.remove(EMS_MODEL_NONE); // send the read command with Version command for (uint8_t device_id : Device_Ids) { ems_doReadCommand(EMS_TYPE_Version, device_id); } } /** * Print out all handled types */ void ems_printAllDevices() { uint8_t i; myDebug_P(PSTR("\nThese %d devices are supported as boiler units:"), _Boiler_Types_max); for (i = 0; i < _Boiler_Types_max; i++) { myDebug_P(PSTR(" %s%s%s (DeviceID:0x%02X ProductID:%d)"), COLOR_BOLD_ON, Boiler_Types[i].model_string, COLOR_BOLD_OFF, Boiler_Types[i].device_id, Boiler_Types[i].product_id); } myDebug_P(PSTR("\nThese %d devices are supported as other known EMS devices:"), _Other_Types_max); for (i = 0; i < _Other_Types_max; i++) { myDebug_P(PSTR(" %s%s%s (DeviceID:0x%02X ProductID:%d)"), COLOR_BOLD_ON, Other_Types[i].model_string, COLOR_BOLD_OFF, Other_Types[i].device_id, Other_Types[i].product_id); } myDebug_P(PSTR("\nThe following telegram type IDs are supported:")); for (i = 0; i < _EMS_Types_max; i++) { if ((EMS_Types[i].model_id == EMS_MODEL_ALL) || (EMS_Types[i].model_id == EMS_MODEL_UBA)) { myDebug_P(PSTR(" type %02X (%s)"), EMS_Types[i].type, EMS_Types[i].typeString); } } myDebug_P(PSTR("\nThese %d thermostat devices are supported:"), _Thermostat_Types_max); for (i = 0; i < _Thermostat_Types_max; i++) { myDebug_P(PSTR(" %s%s%s (DeviceID:0x%02X ProductID:%d) can write:%c"), COLOR_BOLD_ON, Thermostat_Types[i].model_string, COLOR_BOLD_OFF, Thermostat_Types[i].device_id, Thermostat_Types[i].product_id, (Thermostat_Types[i].write_supported) ? 'y' : 'n'); } // print out known devices ems_printDevices(); myDebug_P(PSTR("")); // newline } /** * print out contents of the device list that was captured */ void ems_printDevices() { if (Devices.size() != 0) { myDebug_P(PSTR("\nThese %d EMS devices were detected:"), Devices.size()); for (std::list<_Generic_Type>::iterator it = Devices.begin(); it != Devices.end(); it++) { myDebug_P(PSTR(" %s%s%s (DeviceID:0x%02X ProductID:%d Version:%s)"), COLOR_BOLD_ON, (it)->model_string, COLOR_BOLD_OFF, (it)->device_id, (it)->product_id, (it)->version); } myDebug_P(PSTR("\nNote: if any devices are marked as 'unknown?' please report this as a GitHub issue so the EMS devices list can be " "updated.\n")); } } /** * Send a command to UART Tx to Read from another device * Read commands when sent must respond by the destination (target) immediately (or within 10ms) */ void ems_doReadCommand(uint16_t type, uint8_t dest, bool forceRefresh) { // if not a valid type of boiler is not accessible then quits if ((type == EMS_ID_NONE) || (dest == EMS_ID_NONE)) { return; } // if we're preventing all outbound traffic, quit if (EMS_Sys_Status.emsTxDisabled) { myDebug_P(PSTR("in Listen Mode. All Tx is disabled.")); return; } _EMS_TxTelegram EMS_TxTelegram = EMS_TX_TELEGRAM_NEW; // create new Tx EMS_TxTelegram.timestamp = millis(); // set timestamp EMS_Sys_Status.txRetryCount = 0; // reset retry counter // see if its a known type int i = _ems_findType(type); if ((ems_getLogging() == EMS_SYS_LOGGING_BASIC) || (ems_getLogging() == EMS_SYS_LOGGING_VERBOSE)) { if (i == -1) { myDebug_P(PSTR("Requesting type (0x%02X) from dest 0x%02X"), type, dest); } else { myDebug_P(PSTR("Requesting type %s(0x%02X) from dest 0x%02X"), EMS_Types[i].typeString, type, dest); } } EMS_TxTelegram.action = EMS_TX_TELEGRAM_READ; // read command EMS_TxTelegram.dest = dest; // set 8th bit to indicate a read EMS_TxTelegram.offset = 0; // 0 for all data EMS_TxTelegram.length = EMS_MIN_TELEGRAM_LENGTH; // is always 6 bytes long (including CRC at end) EMS_TxTelegram.type = type; EMS_TxTelegram.dataValue = EMS_MAX_TELEGRAM_LENGTH; // for a read this is the # bytes we want back EMS_TxTelegram.type_validate = EMS_ID_NONE; EMS_TxTelegram.comparisonValue = 0; EMS_TxTelegram.comparisonOffset = 0; EMS_TxTelegram.comparisonPostRead = EMS_ID_NONE; EMS_TxTelegram.forceRefresh = forceRefresh; // should we send to MQTT after a successful read? EMS_TxQueue.push(EMS_TxTelegram); } /** * Send a raw telegram to the bus * telegram is a string of hex values */ void ems_sendRawTelegram(char * telegram) { uint8_t count = 0; char * p; char value[10] = {0}; if (EMS_Sys_Status.emsTxDisabled) { return; // user has disabled all Tx } _EMS_TxTelegram EMS_TxTelegram = EMS_TX_TELEGRAM_NEW; // create new Tx EMS_TxTelegram.timestamp = millis(); // set timestamp EMS_Sys_Status.txRetryCount = 0; // reset retry counter // get first value, which should be the src if ((p = strtok(telegram, " ,"))) { // delimiter strlcpy(value, p, sizeof(value)); EMS_TxTelegram.data[0] = (uint8_t)strtol(value, 0, 16); } // and interate until end while (p != 0) { if ((p = strtok(NULL, " ,"))) { strlcpy(value, p, sizeof(value)); uint8_t val = (uint8_t)strtol(value, 0, 16); EMS_TxTelegram.data[++count] = val; if (count == 1) { EMS_TxTelegram.dest = val; } else if (count == 2) { EMS_TxTelegram.type = val; } else if (count == 3) { EMS_TxTelegram.offset = val; } } } if (count == 0) { return; // nothing to send } // calculate length including header and CRC EMS_TxTelegram.length = count + 2; EMS_TxTelegram.type_validate = EMS_ID_NONE; EMS_TxTelegram.action = EMS_TX_TELEGRAM_RAW; // add to Tx queue. Assume it's not full. EMS_TxQueue.push(EMS_TxTelegram); } /** * Set the temperature of the thermostat * temptype 0 = normal, 1=night temp, 2=day temp, 3=holiday temp */ void ems_setThermostatTemp(float temperature, uint8_t temptype) { if (!ems_getThermostatEnabled()) { return; } if (!EMS_Thermostat.write_supported) { myDebug_P(PSTR("Write not supported for this model Thermostat")); return; } _EMS_TxTelegram EMS_TxTelegram = EMS_TX_TELEGRAM_NEW; // create new Tx EMS_TxTelegram.timestamp = millis(); // set timestamp EMS_Sys_Status.txRetryCount = 0; // reset retry counter uint8_t model_id = EMS_Thermostat.model_id; uint8_t type = EMS_Thermostat.device_id; uint8_t hc = EMS_Thermostat.hc; // heating circuit EMS_TxTelegram.action = EMS_TX_TELEGRAM_WRITE; EMS_TxTelegram.dest = type; myDebug_P(PSTR("Setting new thermostat temperature")); // when doing a comparison to validate the new temperature we call a different type if (model_id == EMS_MODEL_RC20) { EMS_TxTelegram.type = EMS_TYPE_RC20Set; EMS_TxTelegram.offset = EMS_OFFSET_RC20Set_temp; EMS_TxTelegram.comparisonPostRead = EMS_TYPE_RC20StatusMessage; } else if (model_id == EMS_MODEL_RC10) { EMS_TxTelegram.type = EMS_TYPE_RC10Set; EMS_TxTelegram.offset = EMS_OFFSET_RC10Set_temp; EMS_TxTelegram.comparisonPostRead = EMS_TYPE_RC10StatusMessage; } else if (model_id == EMS_MODEL_RC30) { EMS_TxTelegram.type = EMS_TYPE_RC30Set; EMS_TxTelegram.offset = EMS_OFFSET_RC30Set_temp; EMS_TxTelegram.comparisonPostRead = EMS_TYPE_RC30StatusMessage; } else if ((model_id == EMS_MODEL_RC35) || (model_id == EMS_MODEL_ES73)) { switch (temptype) { case 1: // change the night temp EMS_TxTelegram.offset = EMS_OFFSET_RC35Set_temp_night; break; case 2: // change the day temp EMS_TxTelegram.offset = EMS_OFFSET_RC35Set_temp_day; break; case 3: // change the holiday temp EMS_TxTelegram.offset = 3; //holiday on RC35 break; default: case 0: // automatic selection, if no type is defined, we use the standard code if (EMS_Thermostat.day_mode == 0) { EMS_TxTelegram.offset = EMS_OFFSET_RC35Set_temp_night; } else if (EMS_Thermostat.day_mode == 1) { EMS_TxTelegram.offset = EMS_OFFSET_RC35Set_temp_day; } break; } if (hc == 1) { // heating circuit 1 EMS_TxTelegram.type = EMS_TYPE_RC35Set_HC1; EMS_TxTelegram.comparisonPostRead = EMS_TYPE_RC35StatusMessage_HC1; } else { // heating circuit 2 EMS_TxTelegram.type = EMS_TYPE_RC35Set_HC2; EMS_TxTelegram.comparisonPostRead = EMS_TYPE_RC35StatusMessage_HC2; } } EMS_TxTelegram.length = EMS_MIN_TELEGRAM_LENGTH; EMS_TxTelegram.dataValue = (uint8_t)((float)temperature * (float)2); // value EMS_TxTelegram.type_validate = EMS_TxTelegram.type; EMS_TxTelegram.comparisonOffset = EMS_TxTelegram.offset; EMS_TxTelegram.comparisonValue = EMS_TxTelegram.dataValue; EMS_TxTelegram.forceRefresh = false; // send to MQTT is done automatically in EMS_TYPE_RC*StatusMessage EMS_TxQueue.push(EMS_TxTelegram); } /** * Set the thermostat working mode (0=low/night, 1=manual/day, 2=auto/clock) * 0xA8 on a RC20 and 0xA7 on RC30 */ void ems_setThermostatMode(uint8_t mode) { if (!ems_getThermostatEnabled()) { return; } if (!EMS_Thermostat.write_supported) { myDebug_P(PSTR("Write not supported for this model Thermostat")); return; } uint8_t model_id = EMS_Thermostat.model_id; uint8_t type = EMS_Thermostat.device_id; uint8_t hc = EMS_Thermostat.hc; myDebug_P(PSTR("Setting thermostat mode to %d"), mode); _EMS_TxTelegram EMS_TxTelegram = EMS_TX_TELEGRAM_NEW; // create new Tx EMS_TxTelegram.timestamp = millis(); // set timestamp EMS_Sys_Status.txRetryCount = 0; // reset retry counter EMS_TxTelegram.action = EMS_TX_TELEGRAM_WRITE; EMS_TxTelegram.dest = type; EMS_TxTelegram.length = EMS_MIN_TELEGRAM_LENGTH; EMS_TxTelegram.dataValue = mode; // handle different thermostat types if (model_id == EMS_MODEL_RC20) { EMS_TxTelegram.type = EMS_TYPE_RC20Set; EMS_TxTelegram.offset = EMS_OFFSET_RC20Set_mode; } else if (model_id == EMS_MODEL_RC30) { EMS_TxTelegram.type = EMS_TYPE_RC30Set; EMS_TxTelegram.offset = EMS_OFFSET_RC30Set_mode; } else if ((model_id == EMS_MODEL_RC35) || (model_id == EMS_MODEL_ES73)) { EMS_TxTelegram.type = (hc == 2) ? EMS_TYPE_RC35Set_HC2 : EMS_TYPE_RC35Set_HC1; EMS_TxTelegram.offset = EMS_OFFSET_RC35Set_mode; } EMS_TxTelegram.type_validate = EMS_TxTelegram.type; // callback to EMS_TYPE_RC30Temperature to fetch temps EMS_TxTelegram.comparisonOffset = EMS_TxTelegram.offset; EMS_TxTelegram.comparisonValue = EMS_TxTelegram.dataValue; EMS_TxTelegram.comparisonPostRead = EMS_TxTelegram.type; EMS_TxTelegram.forceRefresh = false; // send to MQTT is done automatically in 0xA8 process EMS_TxQueue.push(EMS_TxTelegram); } /** * Set the warm water temperature 0x33 */ void ems_setWarmWaterTemp(uint8_t temperature) { // check for invalid temp values if ((temperature < 30) || (temperature > EMS_BOILER_TAPWATER_TEMPERATURE_MAX)) { return; } myDebug_P(PSTR("Setting boiler warm water temperature to %d C"), temperature); _EMS_TxTelegram EMS_TxTelegram = EMS_TX_TELEGRAM_NEW; // create new Tx EMS_TxTelegram.timestamp = millis(); // set timestamp EMS_Sys_Status.txRetryCount = 0; // reset retry counter EMS_TxTelegram.action = EMS_TX_TELEGRAM_WRITE; EMS_TxTelegram.dest = EMS_Boiler.device_id; EMS_TxTelegram.type = EMS_TYPE_UBAParameterWW; EMS_TxTelegram.offset = EMS_OFFSET_UBAParameterWW_wwtemp; EMS_TxTelegram.length = EMS_MIN_TELEGRAM_LENGTH; EMS_TxTelegram.dataValue = temperature; // value to compare against. must be a single int EMS_TxTelegram.type_validate = EMS_TYPE_UBAParameterWW; // validate EMS_TxTelegram.comparisonOffset = EMS_OFFSET_UBAParameterWW_wwtemp; EMS_TxTelegram.comparisonValue = temperature; EMS_TxTelegram.comparisonPostRead = EMS_TYPE_UBAParameterWW; EMS_TxTelegram.forceRefresh = false; // no need to send since this is done by 0x33 process EMS_TxQueue.push(EMS_TxTelegram); } /** * Set the boiler flow temp */ void ems_setFlowTemp(uint8_t temperature) { myDebug_P(PSTR("Setting boiler flow temperature to %d C"), temperature); _EMS_TxTelegram EMS_TxTelegram = EMS_TX_TELEGRAM_NEW; // create new Tx EMS_TxTelegram.timestamp = millis(); // set timestamp EMS_Sys_Status.txRetryCount = 0; // reset retry counter EMS_TxTelegram.action = EMS_TX_TELEGRAM_WRITE; EMS_TxTelegram.dest = EMS_Boiler.device_id; EMS_TxTelegram.type = EMS_TYPE_UBASetPoints; EMS_TxTelegram.offset = EMS_OFFSET_UBASetPoints_flowtemp; EMS_TxTelegram.length = EMS_MIN_TELEGRAM_LENGTH; EMS_TxTelegram.dataValue = temperature; // value to compare against. must be a single int EMS_TxTelegram.type_validate = EMS_TYPE_UBASetPoints; // validate EMS_TxTelegram.comparisonOffset = EMS_OFFSET_UBASetPoints_flowtemp; EMS_TxTelegram.comparisonValue = temperature; EMS_TxTelegram.comparisonPostRead = EMS_TYPE_UBASetPoints; EMS_TxTelegram.forceRefresh = false; EMS_TxQueue.push(EMS_TxTelegram); } /** * Set the warm water mode to comfort to Eco/Comfort * 1 = Hot, 2 = Eco, 3 = Intelligent */ void ems_setWarmWaterModeComfort(uint8_t comfort) { _EMS_TxTelegram EMS_TxTelegram = EMS_TX_TELEGRAM_NEW; // create new Tx EMS_TxTelegram.timestamp = millis(); // set timestamp EMS_Sys_Status.txRetryCount = 0; // reset retry counter if (comfort == 1) { myDebug_P(PSTR("Setting boiler warm water comfort mode to Hot")); EMS_TxTelegram.dataValue = EMS_VALUE_UBAParameterWW_wwComfort_Hot; } else if (comfort == 2) { myDebug_P(PSTR("Setting boiler warm water comfort mode to Eco")); EMS_TxTelegram.dataValue = EMS_VALUE_UBAParameterWW_wwComfort_Eco; } else if (comfort == 3) { myDebug_P(PSTR("Setting boiler warm water comfort mode to Intelligent")); EMS_TxTelegram.dataValue = EMS_VALUE_UBAParameterWW_wwComfort_Intelligent; } else { return; // invalid comfort value } EMS_TxTelegram.action = EMS_TX_TELEGRAM_WRITE; EMS_TxTelegram.dest = EMS_Boiler.device_id; EMS_TxTelegram.type = EMS_TYPE_UBAParameterWW; EMS_TxTelegram.offset = EMS_OFFSET_UBAParameterWW_wwComfort; EMS_TxTelegram.length = EMS_MIN_TELEGRAM_LENGTH; EMS_TxTelegram.type_validate = EMS_ID_NONE; // don't validate EMS_TxQueue.push(EMS_TxTelegram); } /** * Activate / De-activate the Warm Water 0x33 * true = on, false = off */ void ems_setWarmWaterActivated(bool activated) { myDebug_P(PSTR("Setting boiler warm water %s"), activated ? "on" : "off"); _EMS_TxTelegram EMS_TxTelegram = EMS_TX_TELEGRAM_NEW; // create new Tx EMS_TxTelegram.timestamp = millis(); // set timestamp EMS_Sys_Status.txRetryCount = 0; // reset retry counter EMS_TxTelegram.action = EMS_TX_TELEGRAM_WRITE; EMS_TxTelegram.dest = EMS_Boiler.device_id; EMS_TxTelegram.type = EMS_TYPE_UBAParameterWW; EMS_TxTelegram.offset = EMS_OFFSET_UBAParameterWW_wwactivated; EMS_TxTelegram.length = EMS_MIN_TELEGRAM_LENGTH; EMS_TxTelegram.type_validate = EMS_ID_NONE; // don't validate EMS_TxTelegram.dataValue = (activated ? 0xFF : 0x00); // 0xFF is on, 0x00 is off EMS_TxQueue.push(EMS_TxTelegram); } /** * Activate / De-activate the Warm Tap Water * true = on, false = off * Using the type 0x1D to put the boiler into Test mode. This may be shown on the boiler with a flashing 'T' */ void ems_setWarmTapWaterActivated(bool activated) { myDebug_P(PSTR("Setting boiler warm tap water %s"), activated ? "on" : "off"); _EMS_TxTelegram EMS_TxTelegram = EMS_TX_TELEGRAM_NEW; // create new Tx EMS_TxTelegram.timestamp = millis(); // set timestamp EMS_Sys_Status.txRetryCount = 0; // reset retry counter // clear Tx to make sure all data is set to 0x00 for (int i = 0; (i < EMS_MAX_TELEGRAM_LENGTH); i++) { EMS_TxTelegram.data[i] = 0x00; } EMS_TxTelegram.action = EMS_TX_TELEGRAM_WRITE; EMS_TxTelegram.dest = EMS_Boiler.device_id; EMS_TxTelegram.type = EMS_TYPE_UBAFunctionTest; EMS_TxTelegram.offset = 0; EMS_TxTelegram.length = 22; // 17 bytes of data including header and CRC EMS_TxTelegram.type_validate = EMS_TxTelegram.type; EMS_TxTelegram.comparisonOffset = 0; // 1st byte EMS_TxTelegram.comparisonValue = (activated ? 0 : 1); // value is 1 if in Test mode (not activated) EMS_TxTelegram.comparisonPostRead = EMS_TxTelegram.type; EMS_TxTelegram.forceRefresh = true; // send new value to MQTT after successful write // create header EMS_TxTelegram.data[0] = EMS_ID_ME; // src EMS_TxTelegram.data[1] = EMS_TxTelegram.dest; // dest EMS_TxTelegram.data[2] = EMS_TxTelegram.type; // type EMS_TxTelegram.data[3] = EMS_TxTelegram.offset; // offset // we use the special test mode 0x1D for this. Setting the first data to 5A puts the system into test mode and // a setting of 0x00 puts it back into normal operarting mode // when in test mode we're able to mess around with the core 3-way valve settings if (!activated) { // on EMS_TxTelegram.data[4] = 0x5A; // test mode on EMS_TxTelegram.data[5] = 0x00; // burner output 0% EMS_TxTelegram.data[7] = 0x64; // boiler pump capacity 100% EMS_TxTelegram.data[8] = 0xFF; // 3-way valve hot water only } EMS_TxQueue.push(EMS_TxTelegram); // add to queue } /** * Start up sequence for UBA Master, hopefully to initialize a handshake * Still experimental */ void ems_startupTelegrams() { if ((EMS_Sys_Status.emsTxDisabled) || (!EMS_Sys_Status.emsBusConnected)) { myDebug_P(PSTR("Unable to send startup sequence when in listen mode or the bus is disabled")); } myDebug_P(PSTR("Sending startup sequence...")); char s[20] = {0}; // Write type 0x1D to get out of function test mode snprintf(s, sizeof(s), "%02X %02X 1D 00 00", EMS_ID_ME, EMS_Boiler.device_id); ems_sendRawTelegram(s); // Read type 0x01 snprintf(s, sizeof(s), "%02X %02X 01 00 1B", EMS_ID_ME, EMS_Boiler.device_id | 0x80); ems_sendRawTelegram(s); } /** * Test parsing of telgrams by injecting fake telegrams and simulating the response */ void ems_testTelegram(uint8_t test_num) { #ifdef TESTS if ((test_num == 0) || (test_num > _TEST_DATA_max)) { myDebug_P(PSTR("Invalid test. Pick between 1 and %d"), _TEST_DATA_max); return; } // stop all Tx if (!EMS_TxQueue.isEmpty()) { EMS_TxQueue.clear(); EMS_Sys_Status.emsTxStatus = EMS_TX_STATUS_IDLE; } static uint8_t * telegram = (uint8_t *)malloc(EMS_MAX_TELEGRAM_LENGTH); // warning, memory is not free'd so use only for debugging char telegram_string[200]; strlcpy(telegram_string, TEST_DATA[test_num - 1], sizeof(telegram_string)); uint8_t length = 0; char * p; char value[10] = {0}; // get first value, which should be the src if ((p = strtok(telegram_string, " ,"))) { strlcpy(value, p, sizeof(value)); telegram[0] = (uint8_t)strtol(value, 0, 16); } // and interate until end while (p != 0) { if ((p = strtok(NULL, " ,"))) { strlcpy(value, p, sizeof(value)); uint8_t val = (uint8_t)strtol(value, 0, 16); telegram[++length] = val; } } length++; // this is the total amount of bytes telegram[length] = _crcCalculator(telegram, length + 1); // add the CRC myDebug_P(PSTR("[TEST %d] Injecting telegram %s"), test_num, TEST_DATA[test_num - 1]); // go an parse it _ems_readTelegram(telegram, length + 1); // include CRC in length #else myDebug_P(PSTR("Firmware not compiled with test data set")); #endif }