/* * EMS-ESP - https://github.com/emsesp/EMS-ESP * Copyright 2020 Paul Derbyshire * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include "system.h" #include "emsesp.h" // for send_raw_telegram() command #if defined(EMSESP_DEBUG) #include "test/test.h" #endif #ifndef EMSESP_STANDALONE #ifdef ESP_IDF_VERSION_MAJOR // IDF 4+ #if CONFIG_IDF_TARGET_ESP32 // ESP32/PICO-D4 #include "../esp32/rom/rtc.h" #elif CONFIG_IDF_TARGET_ESP32S2 #include "../esp32s2/rom/rtc.h" #elif CONFIG_IDF_TARGET_ESP32C3 #include "../esp32c3/rom/rtc.h" #else #error Target CONFIG_IDF_TARGET is not supported #endif #else // ESP32 Before IDF 4.0 #include "../rom/rtc.h" #endif #endif #if defined(ARDUINO_LOLIN_C3_MINI) && !defined(BOARD_C3_MINI_V1) #include Adafruit_NeoPixel pixels(1, 7, NEO_GRB + NEO_KHZ800); #endif namespace emsesp { // Languages supported. Note: the order is important and must match locale_translations.h const char * const languages[] = {EMSESP_LOCALE_EN, EMSESP_LOCALE_DE, EMSESP_LOCALE_NL, EMSESP_LOCALE_SE, EMSESP_LOCALE_PL, EMSESP_LOCALE_NO}; size_t num_languages = sizeof(languages) / sizeof(const char *); uuid::log::Logger System::logger_{F_(system), uuid::log::Facility::KERN}; #ifndef EMSESP_STANDALONE uuid::syslog::SyslogService System::syslog_; #endif // init statics PButton System::myPButton_; bool System::restart_requested_ = false; // find the index of the language // 0 = EN, 1 = DE, etc... uint8_t System::language_index() { for (uint8_t i = 0; i < num_languages; i++) { if (languages[i] == locale()) { return i; } } return 0; // EN } // send raw to ems bool System::command_send(const char * value, const int8_t id) { return EMSESP::txservice_.send_raw(value); // ignore id } // fetch device values bool System::command_fetch(const char * value, const int8_t id) { std::string value_s; if (Helpers::value2string(value, value_s)) { if (value_s == "all") { LOG_INFO("Requesting data from EMS devices"); EMSESP::fetch_device_values(); return true; } else if (value_s == (F_(boiler))) { EMSESP::fetch_device_values_type(EMSdevice::DeviceType::BOILER); return true; } else if (value_s == (F_(thermostat))) { EMSESP::fetch_device_values_type(EMSdevice::DeviceType::THERMOSTAT); return true; } else if (value_s == (F_(solar))) { EMSESP::fetch_device_values_type(EMSdevice::DeviceType::SOLAR); return true; } else if (value_s == (F_(mixer))) { EMSESP::fetch_device_values_type(EMSdevice::DeviceType::MIXER); return true; } } EMSESP::fetch_device_values(); // default if no name or id is given return true; } // mqtt publish bool System::command_publish(const char * value, const int8_t id) { std::string value_s; if (Helpers::value2string(value, value_s)) { if (value_s == "ha") { EMSESP::publish_all(true); // includes HA LOG_INFO("Publishing all data to MQTT, including HA configs"); return true; } else if (value_s == (F_(boiler))) { EMSESP::publish_device_values(EMSdevice::DeviceType::BOILER); return true; } else if (value_s == (F_(thermostat))) { EMSESP::publish_device_values(EMSdevice::DeviceType::THERMOSTAT); return true; } else if (value_s == (F_(solar))) { EMSESP::publish_device_values(EMSdevice::DeviceType::SOLAR); return true; } else if (value_s == (F_(mixer))) { EMSESP::publish_device_values(EMSdevice::DeviceType::MIXER); return true; } else if (value_s == "other") { EMSESP::publish_other_values(); // switch and heat pump return true; } else if ((value_s == (F_(dallassensor))) || (value_s == (F_(analogsensor)))) { EMSESP::publish_sensor_values(true); return true; } } EMSESP::publish_all(); LOG_INFO("Publishing all data to MQTT"); return true; } // syslog level bool System::command_syslog_level(const char * value, const int8_t id) { uint8_t s = 0xff; if (Helpers::value2enum(value, s, FL_(list_syslog_level))) { bool changed = false; EMSESP::webSettingsService.update( [&](WebSettings & settings) { if (settings.syslog_level != (int8_t)s - 1) { settings.syslog_level = (int8_t)s - 1; changed = true; } return StateUpdateResult::CHANGED; }, "local"); if (changed) { EMSESP::system_.syslog_init(); } return true; } return false; } // watch bool System::command_watch(const char * value, const int8_t id) { uint8_t w = 0xff; uint16_t i = Helpers::hextoint(value); if (Helpers::value2enum(value, w, FL_(list_watch))) { if (w == 0 || EMSESP::watch() == EMSESP::Watch::WATCH_OFF) { EMSESP::watch_id(0); } if (Mqtt::publish_single() && w != EMSESP::watch()) { if (Mqtt::publish_single2cmd()) { Mqtt::publish("system/watch", EMSESP::system_.enum_format() == ENUM_FORMAT_INDEX ? Helpers::itoa(w) : (FL_(list_watch)[w])); } else { Mqtt::publish("system_data/watch", EMSESP::system_.enum_format() == ENUM_FORMAT_INDEX ? Helpers::itoa(w) : (FL_(list_watch)[w])); } } EMSESP::watch(w); return true; } else if (i) { if (Mqtt::publish_single() && i != EMSESP::watch_id()) { if (Mqtt::publish_single2cmd()) { Mqtt::publish("system/watch", Helpers::hextoa(i)); } else { Mqtt::publish("system_data/watch", Helpers::hextoa(i)); } } EMSESP::watch_id(i); if (EMSESP::watch() == EMSESP::Watch::WATCH_OFF) { EMSESP::watch(EMSESP::Watch::WATCH_ON); } return true; } return false; } // restart EMS-ESP void System::system_restart() { LOG_INFO("Restarting EMS-ESP..."); Shell::loop_all(); delay(1000); // wait a second #ifndef EMSESP_STANDALONE ESP.restart(); #endif } // saves all settings void System::wifi_reconnect() { LOG_INFO("WiFi reconnecting..."); Shell::loop_all(); EMSESP::console_.loop(); delay(1000); // wait a second EMSESP::webSettingsService.save(); // local settings EMSESP::esp8266React.getNetworkSettingsService()->callUpdateHandlers("local"); // in case we've changed ssid or password } // format the FS. Wipes everything. void System::format(uuid::console::Shell & shell) { auto msg = ("Formatting file system. This will reset all settings to their defaults"); shell.logger().warning(msg); shell.flush(); EMSuart::stop(); #ifndef EMSESP_STANDALONE LittleFS.format(); #endif System::system_restart(); } void System::syslog_init() { #ifndef EMSESP_STANDALONE bool was_enabled = syslog_enabled_; #endif EMSESP::webSettingsService.read([&](WebSettings & settings) { syslog_enabled_ = settings.syslog_enabled; syslog_level_ = settings.syslog_level; syslog_mark_interval_ = settings.syslog_mark_interval; syslog_host_ = settings.syslog_host; syslog_port_ = settings.syslog_port; }); #ifndef EMSESP_STANDALONE if (syslog_enabled_) { // start & configure syslog if (!was_enabled) { syslog_.start(); EMSESP::logger().info("Starting Syslog"); } syslog_.log_level((uuid::log::Level)syslog_level_); syslog_.mark_interval(syslog_mark_interval_); syslog_.destination(syslog_host_.c_str(), syslog_port_); syslog_.hostname(hostname().c_str()); // register the command Command::add(EMSdevice::DeviceType::SYSTEM, F_(syslog), System::command_syslog_level, FL_(changeloglevel_cmd), CommandFlag::ADMIN_ONLY); } else if (was_enabled) { // in case service is still running, this flushes the queue // https://github.com/emsesp/EMS-ESP/issues/496 EMSESP::logger().info("Stopping Syslog"); syslog_.log_level((uuid::log::Level)-1); syslog_.mark_interval(0); syslog_.destination(""); } if (Mqtt::publish_single()) { if (Mqtt::publish_single2cmd()) { Mqtt::publish("system/syslog", syslog_enabled_ ? (FL_(list_syslog_level)[syslog_level_ + 1]) : "off"); if (EMSESP::watch_id() == 0 || EMSESP::watch() == 0) { Mqtt::publish("system/watch", EMSESP::system_.enum_format() == ENUM_FORMAT_INDEX ? Helpers::itoa(EMSESP::watch()) : (FL_(list_watch)[EMSESP::watch()])); } else { Mqtt::publish("system/watch", Helpers::hextoa(EMSESP::watch_id())); } } else { Mqtt::publish("system_data/syslog", syslog_enabled_ ? (FL_(list_syslog_level)[syslog_level_ + 1]) : "off"); if (EMSESP::watch_id() == 0 || EMSESP::watch() == 0) { Mqtt::publish("system_data/watch", EMSESP::system_.enum_format() == ENUM_FORMAT_INDEX ? Helpers::itoa(EMSESP::watch()) : (FL_(list_watch)[EMSESP::watch()])); } else { Mqtt::publish("system_data/watch", Helpers::hextoa(EMSESP::watch_id())); } } } #endif } // read some specific system settings to store locally for faster access void System::reload_settings() { EMSESP::webSettingsService.read([&](WebSettings & settings) { pbutton_gpio_ = settings.pbutton_gpio; analog_enabled_ = settings.analog_enabled; low_clock_ = settings.low_clock; hide_led_ = settings.hide_led; led_gpio_ = settings.led_gpio; board_profile_ = settings.board_profile; telnet_enabled_ = settings.telnet_enabled; rx_gpio_ = settings.rx_gpio; tx_gpio_ = settings.tx_gpio; dallas_gpio_ = settings.dallas_gpio; syslog_enabled_ = settings.syslog_enabled; syslog_level_ = settings.syslog_level; syslog_mark_interval_ = settings.syslog_mark_interval; syslog_host_ = settings.syslog_host; syslog_port_ = settings.syslog_port; fahrenheit_ = settings.fahrenheit; bool_format_ = settings.bool_format; bool_dashboard_ = settings.bool_dashboard; enum_format_ = settings.enum_format; readonly_mode_ = settings.readonly_mode; phy_type_ = settings.phy_type; eth_power_ = settings.eth_power; eth_phy_addr_ = settings.eth_phy_addr; eth_clock_mode_ = settings.eth_clock_mode; locale_ = settings.locale; }); } // adjust WiFi settings // this for problem solving mesh and connection issues, and also get EMS bus-powered more stable by lowering power void System::wifi_tweak() { #if defined(EMSESP_WIFI_TWEAK) // Default Tx Power is 80 = 20dBm <-- default // WIFI_POWER_19_5dBm = 78,// 19.5dBm // WIFI_POWER_19dBm = 76,// 19dBm // WIFI_POWER_18_5dBm = 74,// 18.5dBm // WIFI_POWER_17dBm = 68,// 17dBm // WIFI_POWER_15dBm = 60,// 15dBm // WIFI_POWER_13dBm = 52,// 13dBm // WIFI_POWER_11dBm = 44,// 11dBm // WIFI_POWER_8_5dBm = 34,// 8.5dBm // WIFI_POWER_7dBm = 28,// 7dBm // WIFI_POWER_5dBm = 20,// 5dBm // WIFI_POWER_2dBm = 8,// 2dBm // WIFI_POWER_MINUS_1dBm = -4// -1dBm wifi_power_t p1 = WiFi.getTxPower(); (void)WiFi.setTxPower(WIFI_POWER_17dBm); wifi_power_t p2 = WiFi.getTxPower(); bool s1 = WiFi.getSleep(); WiFi.setSleep(false); // turn off sleep - WIFI_PS_NONE bool s2 = WiFi.getSleep(); #if defined(EMSESP_DEBUG) LOG_DEBUG("[DEBUG] Adjusting WiFi - Tx power %d->%d, Sleep %d->%d", p1, p2, s1, s2); #endif #endif } // check for valid ESP32 pins. This is very dependent on which ESP32 board is being used. // Typically you can't use 1, 6-11, 12, 14, 15, 20, 24, 28-31 and 40+ // we allow 0 as it has a special function on the NodeMCU apparently // See https://diyprojects.io/esp32-how-to-use-gpio-digital-io-arduino-code/#.YFpVEq9KhjG // and https://nodemcu.readthedocs.io/en/dev-esp32/modules/gpio/ bool System::is_valid_gpio(uint8_t pin) { #if CONFIG_IDF_TARGET_ESP32 || EMSESP_STANDALONE if ((pin == 1) || (pin >= 6 && pin <= 12) || (pin >= 14 && pin <= 15) || (pin == 20) || (pin == 24) || (pin >= 28 && pin <= 31) || (pin > 40)) { #elif CONFIG_IDF_TARGET_ESP32S2 if ((pin >= 19 && pin <= 20) || (pin >= 22 && pin <= 32) || (pin > 40)) { #elif CONFIG_IDF_TARGET_ESP32C3 // https://www.wemos.cc/en/latest/c3/c3_mini.html if ((pin >= 11 && pin <= 19) || (pin > 21)) { #endif return false; // bad pin } return true; } // Starts up the UART Serial bridge void System::start() { #ifndef EMSESP_STANDALONE // disable bluetooth module // periph_module_disable(PERIPH_BT_MODULE); if (low_clock_) { setCpuFrequencyMhz(160); } fstotal_ = LittleFS.totalBytes() / 1024; // read only once, it takes 500 ms to read psram_ = ESP.getPsramSize() / 1024; appused_ = ESP.getSketchSize() / 1024; appfree_ = ESP.getFreeSketchSpace() / 1024 - appused_; #endif EMSESP::esp8266React.getNetworkSettingsService()->read([&](NetworkSettings & networkSettings) { hostname(networkSettings.hostname.c_str()); // sets the hostname }); commands_init(); // console & api commands led_init(false); // init LED button_init(false); // the special button network_init(false); // network syslog_init(); // start Syslog EMSESP::uart_init(); // start UART } // button single click void System::button_OnClick(PButton & b) { LOG_DEBUG("Button pressed - single click"); #ifdef EMSESP_DEBUG #ifndef EMSESP_STANDALONE Test::listDir(LittleFS, FS_CONFIG_DIRECTORY, 3); #endif #endif } // button double click void System::button_OnDblClick(PButton & b) { LOG_DEBUG("Button pressed - double click - reconnect"); EMSESP::system_.wifi_reconnect(); } // button long press void System::button_OnLongPress(PButton & b) { LOG_DEBUG("Button pressed - long press"); } // button indefinite press void System::button_OnVLongPress(PButton & b) { LOG_DEBUG("Button pressed - very long press"); #ifndef EMSESP_STANDALONE LOG_WARNING("Performing factory reset..."); EMSESP::console_.loop(); EMSESP::esp8266React.factoryReset(); #endif } // push button void System::button_init(bool refresh) { if (refresh) { reload_settings(); } if (is_valid_gpio(pbutton_gpio_)) { if (!myPButton_.init(pbutton_gpio_, HIGH)) { LOG_DEBUG("Multi-functional button not detected"); } else { LOG_DEBUG("Multi-functional button enabled"); } } else { LOG_WARNING("Invalid button GPIO. Check config."); } myPButton_.onClick(BUTTON_Debounce, button_OnClick); myPButton_.onDblClick(BUTTON_DblClickDelay, button_OnDblClick); myPButton_.onLongPress(BUTTON_LongPressDelay, button_OnLongPress); myPButton_.onVLongPress(BUTTON_VLongPressDelay, button_OnVLongPress); } // set the LED to on or off when in normal operating mode void System::led_init(bool refresh) { if (refresh) { reload_settings(); } if ((led_gpio_ != 0) && is_valid_gpio(led_gpio_)) { #if defined(ARDUINO_LOLIN_C3_MINI) && !defined(BOARD_C3_MINI_V1) // rgb LED WS2812B, use Adafruit Neopixel // Adafruit_NeoPixel pixels(1, 7, NEO_GRB + NEO_KHZ800); pixels.begin(); pixels.setPin(led_gpio_); // pixels.setBrightness(0); // pixels.Color(0, 0, 0, 0); // pixels.show(); #else pinMode(led_gpio_, OUTPUT); // 0 means disabled digitalWrite(led_gpio_, !LED_ON); // start with LED off #endif } } // returns true if OTA is uploading bool System::upload_status() { #if defined(EMSESP_STANDALONE) return false; #else return upload_status_ || Update.isRunning(); #endif } void System::upload_status(bool in_progress) { // if we've just started an upload if (!upload_status_ && in_progress) { EMSuart::stop(); } upload_status_ = in_progress; } // checks system health and handles LED flashing wizardry void System::loop() { // check if we're supposed to do a reset/restart if (restart_requested()) { this->system_restart(); } #ifndef EMSESP_STANDALONE myPButton_.check(); // check button press if (syslog_enabled_) { syslog_.loop(); } led_monitor(); // check status and report back using the LED system_check(); // check system health // send out heartbeat uint32_t currentMillis = uuid::get_uptime(); if (!last_heartbeat_ || (currentMillis - last_heartbeat_ > SYSTEM_HEARTBEAT_INTERVAL)) { last_heartbeat_ = currentMillis; send_heartbeat(); } #ifndef EMSESP_STANDALONE #if defined(EMSESP_DEBUG) /* static uint32_t last_memcheck_ = 0; if (currentMillis - last_memcheck_ > 10000) { // 10 seconds last_memcheck_ = currentMillis; show_mem("core"); } */ #endif #endif #endif } // create the json for heartbeat bool System::heartbeat_json(JsonObject & output) { uint8_t bus_status = EMSESP::bus_status(); if (bus_status == EMSESP::BUS_STATUS_TX_ERRORS) { output["bus_status"] = "txerror"; } else if (bus_status == EMSESP::BUS_STATUS_CONNECTED) { output["bus_status"] = "connected"; } else { output["bus_status"] = "disconnected"; } output["uptime"] = uuid::log::format_timestamp_ms(uuid::get_uptime_ms(), 3); output["uptime_sec"] = uuid::get_uptime_sec(); bool value_b = EMSESP::system_.ntp_connected(); if (Mqtt::ha_enabled()) { char s[12]; output["ntp_status"] = Helpers::render_boolean(s, value_b); // for HA always render as string } else if (EMSESP::system_.bool_format() == BOOL_FORMAT_TRUEFALSE) { output["ntp_status"] = value_b; } else if (EMSESP::system_.bool_format() == BOOL_FORMAT_10) { output["ntp_status"] = value_b ? 1 : 0; } else { char s[12]; output["ntp_status"] = Helpers::render_boolean(s, value_b); } output["rxreceived"] = EMSESP::rxservice_.telegram_count(); output["rxfails"] = EMSESP::rxservice_.telegram_error_count(); output["txreads"] = EMSESP::txservice_.telegram_read_count(); output["txwrites"] = EMSESP::txservice_.telegram_write_count(); output["txfails"] = EMSESP::txservice_.telegram_read_fail_count() + EMSESP::txservice_.telegram_write_fail_count(); if (Mqtt::enabled()) { output["mqttcount"] = Mqtt::publish_count(); output["mqttfails"] = Mqtt::publish_fails(); output["mqttconnects"] = Mqtt::connect_count(); } output["apicalls"] = WebAPIService::api_count(); // + WebAPIService::api_fails(); output["apifails"] = WebAPIService::api_fails(); if (EMSESP::dallas_enabled() || EMSESP::analog_enabled()) { output["sensorreads"] = EMSESP::dallassensor_.reads() + EMSESP::analogsensor_.reads(); output["sensorfails"] = EMSESP::dallassensor_.fails() + EMSESP::analogsensor_.fails(); } #ifndef EMSESP_STANDALONE output["freemem"] = ESP.getFreeHeap() / 1024; // kilobytes #endif #ifndef EMSESP_STANDALONE if (!ethernet_connected_) { int8_t rssi = WiFi.RSSI(); output["rssi"] = rssi; output["wifistrength"] = wifi_quality(rssi); } #endif return true; } // send periodic MQTT message with system information void System::send_heartbeat() { // don't send heartbeat if WiFi or MQTT is not connected if (!Mqtt::connected()) { return; } StaticJsonDocument doc; JsonObject json = doc.to(); if (heartbeat_json(json)) { Mqtt::publish(F_(heartbeat), json); // send to MQTT with retain off. This will add to MQTT queue. } } // initializes network void System::network_init(bool refresh) { if (refresh) { reload_settings(); } last_system_check_ = 0; // force the LED to go from fast flash to pulse send_heartbeat(); if (phy_type_ == PHY_type::PHY_TYPE_NONE) { return; } // configure Ethernet int mdc = 23; // Pin# of the I²C clock signal for the Ethernet PHY - hardcoded int mdio = 18; // Pin# of the I²C IO signal for the Ethernet PHY - hardcoded uint8_t phy_addr = eth_phy_addr_; // I²C-address of Ethernet PHY (0 or 1 for LAN8720, 31 for TLK110) int8_t power = eth_power_; // Pin# of the enable signal for the external crystal oscillator (-1 to disable for internal APLL source) eth_phy_type_t type = (phy_type_ == PHY_type::PHY_TYPE_LAN8720) ? ETH_PHY_LAN8720 : ETH_PHY_TLK110; // Type of the Ethernet PHY (LAN8720 or TLK110) // clock mode // ETH_CLOCK_GPIO0_IN = 0 RMII clock input to GPIO0 // ETH_CLOCK_GPIO0_OUT = 1 RMII clock output from GPIO0 // ETH_CLOCK_GPIO16_OUT = 2 RMII clock output from GPIO16 // ETH_CLOCK_GPIO17_OUT = 3 RMII clock output from GPIO17, for 50hz inverted clock auto clock_mode = (eth_clock_mode_t)eth_clock_mode_; ETH.begin(phy_addr, power, mdc, mdio, type, clock_mode); } // check health of system, done every 5 seconds void System::system_check() { if (!last_system_check_ || ((uint32_t)(uuid::get_uptime() - last_system_check_) >= SYSTEM_CHECK_FREQUENCY)) { last_system_check_ = uuid::get_uptime(); // check if we have a valid network connection if (!ethernet_connected() && (WiFi.status() != WL_CONNECTED)) { healthcheck_ |= HEALTHCHECK_NO_NETWORK; } else { healthcheck_ &= ~HEALTHCHECK_NO_NETWORK; } // check if we have a bus connection if (!EMSbus::bus_connected()) { healthcheck_ |= HEALTHCHECK_NO_BUS; } else { healthcheck_ &= ~HEALTHCHECK_NO_BUS; } // see if the healthcheck state has changed static uint8_t last_healthcheck_ = 0; if (healthcheck_ != last_healthcheck_) { last_healthcheck_ = healthcheck_; // see if we're better now if (healthcheck_ == 0) { // everything is healthy, show LED permanently on or off depending on setting if (led_gpio_) { #if defined(ARDUINO_LOLIN_C3_MINI) && !defined(BOARD_C3_MINI_V1) pixels.setPixelColor(0, 0, hide_led_ ? 0 : 128, 0); pixels.show(); #else digitalWrite(led_gpio_, hide_led_ ? !LED_ON : LED_ON); #endif } send_heartbeat(); } else { // turn off LED so we're ready to the flashes if (led_gpio_) { #if defined(ARDUINO_LOLIN_C3_MINI) && !defined(BOARD_C3_MINI_V1) pixels.setPixelColor(0, 0, 0, 0); pixels.show(); #else digitalWrite(led_gpio_, !LED_ON); #endif } } } } } // commands - takes static function pointers void System::commands_init() { Command::add(EMSdevice::DeviceType::SYSTEM, F_(send), System::command_send, FL_(send_cmd), CommandFlag::ADMIN_ONLY); Command::add(EMSdevice::DeviceType::SYSTEM, F_(fetch), System::command_fetch, FL_(fetch_cmd), CommandFlag::ADMIN_ONLY); Command::add(EMSdevice::DeviceType::SYSTEM, F_(restart), System::command_restart, FL_(restart_cmd), CommandFlag::ADMIN_ONLY); Command::add(EMSdevice::DeviceType::SYSTEM, F_(watch), System::command_watch, FL_(watch_cmd)); if (Mqtt::enabled()) { Command::add(EMSdevice::DeviceType::SYSTEM, F_(publish), System::command_publish, FL_(publish_cmd)); } // these commands will return data in JSON format Command::add(EMSdevice::DeviceType::SYSTEM, F_(info), System::command_info, FL_(system_info_cmd)); Command::add(EMSdevice::DeviceType::SYSTEM, F_(commands), System::command_commands, FL_(commands_cmd)); #if defined(EMSESP_DEBUG) Command::add(EMSdevice::DeviceType::SYSTEM, ("test"), System::command_test, FL_(test_cmd)); #endif // MQTT subscribe "ems-esp/system/#" Mqtt::subscribe(EMSdevice::DeviceType::SYSTEM, "system/#", nullptr); // use empty function callback } // uses LED to show system health void System::led_monitor() { // we only need to run the LED healthcheck if there are errors if (!healthcheck_ || !led_gpio_) { return; // all good } static uint32_t led_long_timer_ = 1; // 1 will kick it off immediately static uint32_t led_short_timer_ = 0; static uint8_t led_flash_step_ = 0; // 0 means we're not in the short flash timer auto current_time = uuid::get_uptime(); // first long pause before we start flashing if (led_long_timer_ && (uint32_t)(current_time - led_long_timer_) >= HEALTHCHECK_LED_LONG_DUARATION) { // Serial.println("starting the flash check"); led_short_timer_ = current_time; // start the short timer led_long_timer_ = 0; // stop long timer led_flash_step_ = 1; // enable the short flash timer } // the flash timer which starts after the long pause if (led_flash_step_ && (uint32_t)(current_time - led_short_timer_) >= HEALTHCHECK_LED_FLASH_DUARATION) { led_long_timer_ = 0; // stop the long timer led_short_timer_ = current_time; static bool led_on_ = false; if (++led_flash_step_ == 8) { // reset the whole sequence // Serial.println("resetting flash check"); led_long_timer_ = uuid::get_uptime(); led_flash_step_ = 0; #if defined(ARDUINO_LOLIN_C3_MINI) && !defined(BOARD_C3_MINI_V1) pixels.setPixelColor(0, 0, 0, 0); pixels.show(); #else digitalWrite(led_gpio_, !LED_ON); // LED off #endif } else if (led_flash_step_ % 2) { // handle the step events (on odd numbers 3,5,7,etc). see if we need to turn on a LED // 1 flash is the EMS bus is not connected // 2 flashes if the network (wifi or ethernet) is not connected // 3 flashes is both the bus and the network are not connected. Then you know you're truly f*cked. #if defined(ARDUINO_LOLIN_C3_MINI) && !defined(BOARD_C3_MINI_V1) if (led_flash_step_ == 3) { if ((healthcheck_ & HEALTHCHECK_NO_NETWORK) == HEALTHCHECK_NO_NETWORK) { pixels.setPixelColor(0, 128, 0, 0); // red } else if ((healthcheck_ & HEALTHCHECK_NO_BUS) == HEALTHCHECK_NO_BUS) { pixels.setPixelColor(0, 0, 0, 128); // blue } } if (led_flash_step_ == 5 && (healthcheck_ & HEALTHCHECK_NO_NETWORK) == HEALTHCHECK_NO_NETWORK) { pixels.setPixelColor(0, 128, 0, 0); // red } if ((led_flash_step_ == 7) && ((healthcheck_ & HEALTHCHECK_NO_NETWORK) == HEALTHCHECK_NO_NETWORK) && ((healthcheck_ & HEALTHCHECK_NO_BUS) == HEALTHCHECK_NO_BUS)) { pixels.setPixelColor(0, 0, 0, 128); // blue } pixels.show(); #else if ((led_flash_step_ == 3) && (((healthcheck_ & HEALTHCHECK_NO_NETWORK) == HEALTHCHECK_NO_NETWORK) || ((healthcheck_ & HEALTHCHECK_NO_BUS) == HEALTHCHECK_NO_BUS))) { led_on_ = true; } if ((led_flash_step_ == 5) && ((healthcheck_ & HEALTHCHECK_NO_NETWORK) == HEALTHCHECK_NO_NETWORK)) { led_on_ = true; } if ((led_flash_step_ == 7) && ((healthcheck_ & HEALTHCHECK_NO_NETWORK) == HEALTHCHECK_NO_NETWORK) && ((healthcheck_ & HEALTHCHECK_NO_BUS) == HEALTHCHECK_NO_BUS)) { led_on_ = true; } if (led_on_) { digitalWrite(led_gpio_, LED_ON); // LED off } #endif } else { // turn the led off after the flash, on even number count if (led_on_) { #if defined(ARDUINO_LOLIN_C3_MINI) && !defined(BOARD_C3_MINI_V1) pixels.setPixelColor(0, 0, 0, 0); pixels.show(); #else digitalWrite(led_gpio_, !LED_ON); // LED off #endif led_on_ = false; } } } } // Return the quality (Received Signal Strength Indicator) of the WiFi network as a % // High quality: 90% ~= -55dBm // Medium quality: 50% ~= -75dBm // Low quality: 30% ~= -85dBm // Unusable quality: 8% ~= -96dBm int8_t System::wifi_quality(int8_t dBm) { if (dBm <= -100) { return 0; } if (dBm >= -50) { return 100; } return 2 * (dBm + 100); } // print users to console void System::show_users(uuid::console::Shell & shell) { shell.printfln("Users:"); #ifndef EMSESP_STANDALONE EMSESP::esp8266React.getSecuritySettingsService()->read([&](SecuritySettings & securitySettings) { for (const User & user : securitySettings.users) { shell.printfln(" username: %s, password: %s, is_admin: %s", user.username.c_str(), user.password.c_str(), user.admin ? ("yes") : ("no")); } }); #endif shell.println(); } void System::show_system(uuid::console::Shell & shell) { shell.println("System:"); shell.printfln(" Board profile: %s", board_profile().c_str()); shell.printfln(" Uptime: %s", uuid::log::format_timestamp_ms(uuid::get_uptime_ms(), 3).c_str()); #ifndef EMSESP_STANDALONE shell.printfln(" SDK version: %s", ESP.getSdkVersion()); shell.printfln(" CPU frequency: %lu MHz", ESP.getCpuFreqMHz()); shell.printfln(" Free heap: %lu KB", (uint32_t)ESP.getFreeHeap() / 1024); shell.printfln(" App used/free: %lu KB / %lu KB", appUsed(), appFree()); uint32_t FSused = LittleFS.usedBytes() / 1024; shell.printfln(" FS used/free: %lu KB / %lu KB", FSused, FStotal() - FSused); shell.println(); shell.println("Network:"); switch (WiFi.status()) { case WL_IDLE_STATUS: shell.printfln(" Network: Idle"); break; case WL_NO_SSID_AVAIL: shell.printfln(" Network: Network not found"); break; case WL_SCAN_COMPLETED: shell.printfln(" Network: Network scan complete"); break; case WL_CONNECTED: shell.printfln(" Network: connected"); shell.printfln(" SSID: %s", WiFi.SSID().c_str()); shell.printfln(" BSSID: %s", WiFi.BSSIDstr().c_str()); shell.printfln(" RSSI: %d dBm (%d %%)", WiFi.RSSI(), wifi_quality(WiFi.RSSI())); shell.printfln(" MAC address: %s", WiFi.macAddress().c_str()); shell.printfln(" Hostname: %s", WiFi.getHostname()); shell.printfln(" IPv4 address: %s/%s", uuid::printable_to_string(WiFi.localIP()).c_str(), uuid::printable_to_string(WiFi.subnetMask()).c_str()); shell.printfln(" IPv4 gateway: %s", uuid::printable_to_string(WiFi.gatewayIP()).c_str()); shell.printfln(" IPv4 nameserver: %s", uuid::printable_to_string(WiFi.dnsIP()).c_str()); if (WiFi.localIPv6().toString() != "0000:0000:0000:0000:0000:0000:0000:0000") { shell.printfln(" IPv6 address: %s", uuid::printable_to_string(WiFi.localIPv6()).c_str()); } break; case WL_CONNECT_FAILED: shell.printfln(" WiFi Network: Connection failed"); break; case WL_CONNECTION_LOST: shell.printfln(" WiFi Network: Connection lost"); break; case WL_DISCONNECTED: shell.printfln(" WiFi Network: Disconnected"); break; case WL_NO_SHIELD: default: shell.printfln(" WiFi Network: Unknown"); break; } // show Ethernet if connected if (ethernet_connected_) { shell.println(); shell.printfln(" Ethernet Network: connected"); shell.printfln(" MAC address: %s", ETH.macAddress().c_str()); shell.printfln(" Hostname: %s", ETH.getHostname()); shell.printfln(" IPv4 address: %s/%s", uuid::printable_to_string(ETH.localIP()).c_str(), uuid::printable_to_string(ETH.subnetMask()).c_str()); shell.printfln(" IPv4 gateway: %s", uuid::printable_to_string(ETH.gatewayIP()).c_str()); shell.printfln(" IPv4 nameserver: %s", uuid::printable_to_string(ETH.dnsIP()).c_str()); if (ETH.localIPv6().toString() != "0000:0000:0000:0000:0000:0000:0000:0000") { shell.printfln(" IPv6 address: %s", uuid::printable_to_string(ETH.localIPv6()).c_str()); } } shell.println(); shell.println("Syslog:"); if (!syslog_enabled_) { shell.printfln(" Syslog: disabled"); } else { shell.printfln(" Syslog: %s", syslog_.started() ? "started" : "stopped"); shell.print(" "); shell.printfln(F_(host_fmt), !syslog_host_.isEmpty() ? syslog_host_.c_str() : (F_(unset))); shell.printfln(" IP: %s", uuid::printable_to_string(syslog_.ip()).c_str()); shell.print(" "); shell.printfln(F_(port_fmt), syslog_port_); shell.print(" "); shell.printfln(F_(log_level_fmt), uuid::log::format_level_lowercase(static_cast(syslog_level_))); shell.print(" "); shell.printfln(F_(mark_interval_fmt), syslog_mark_interval_); shell.printfln(" Queued: %d", syslog_.queued()); } #endif } // handle upgrades from previous versions // or managing an uploaded files to replace settings files // returns true if we need a reboot bool System::check_upgrade() { bool reboot_required = false; #ifndef EMSESP_STANDALONE // see if we have a temp file, if so try and read it File new_file = LittleFS.open(TEMP_FILENAME_PATH); if (new_file) { DynamicJsonDocument jsonDocument = DynamicJsonDocument(FS_BUFFER_SIZE); DeserializationError error = deserializeJson(jsonDocument, new_file); if (error == DeserializationError::Ok && jsonDocument.is()) { JsonObject input = jsonDocument.as(); // see what type of file it is, either settings or customization. anything else is ignored std::string settings_type = input["type"]; if (settings_type == "settings") { // It's a settings file. Parse each section separately. If it's system related it will require a reboot reboot_required = saveSettings(NETWORK_SETTINGS_FILE, "Network", input); reboot_required |= saveSettings(AP_SETTINGS_FILE, "AP", input); reboot_required |= saveSettings(MQTT_SETTINGS_FILE, "MQTT", input); reboot_required |= saveSettings(NTP_SETTINGS_FILE, "NTP", input); reboot_required |= saveSettings(SECURITY_SETTINGS_FILE, "Security", input); reboot_required |= saveSettings(EMSESP_SETTINGS_FILE, "Settings", input); } else if (settings_type == "customizations") { // it's a customization file, just replace it and there's no need to reboot saveSettings(EMSESP_CUSTOMIZATION_FILE, "Customizations", input); } else { LOG_ERROR("Unrecognized file uploaded"); } } else { LOG_ERROR("Unrecognized file uploaded, not json"); } // close (just in case) and remove the temp file new_file.close(); LittleFS.remove(TEMP_FILENAME_PATH); } #endif return reboot_required; } // list commands bool System::command_commands(const char * value, const int8_t id, JsonObject & output) { return Command::list(EMSdevice::DeviceType::SYSTEM, output); } // convert settings file into json object void System::extractSettings(const char * filename, const char * section, JsonObject & output) { #ifndef EMSESP_STANDALONE File settingsFile = LittleFS.open(filename); if (settingsFile) { DynamicJsonDocument jsonDocument = DynamicJsonDocument(FS_BUFFER_SIZE); DeserializationError error = deserializeJson(jsonDocument, settingsFile); if (error == DeserializationError::Ok && jsonDocument.is()) { JsonObject jsonObject = jsonDocument.as(); JsonObject node = output.createNestedObject(section); for (JsonPair kvp : jsonObject) { node[kvp.key()] = kvp.value(); } } } settingsFile.close(); #endif } // save settings file using input from a json object bool System::saveSettings(const char * filename, const char * section, JsonObject & input) { #ifndef EMSESP_STANDALONE JsonObject section_json = input[section]; if (section_json) { File section_file = LittleFS.open(filename, "w"); if (section_file) { LOG_INFO("Applying new %s settings", section); serializeJson(section_json, section_file); section_file.close(); return true; // reboot required } } #endif return false; // not found } // export status information including the device information // http://ems-esp/api/system/info bool System::command_info(const char * value, const int8_t id, JsonObject & output) { JsonObject node; // System node = output.createNestedObject("System Status"); node["version"] = EMSESP_APP_VERSION; node["platform"] = EMSESP_PLATFORM; node["uptime"] = uuid::log::format_timestamp_ms(uuid::get_uptime_ms(), 3); // node["uptime (seconds)"] = uuid::get_uptime_sec(); #ifndef EMSESP_STANDALONE node["freemem"] = ESP.getFreeHeap() / 1024; // kilobytes node["free_app"] = EMSESP::system_.appFree(); // kilobytes #endif node["reset reason"] = EMSESP::system_.reset_reason(0) + " / " + EMSESP::system_.reset_reason(1); #ifndef EMSESP_STANDALONE // Network Status node = output.createNestedObject("Network Status"); if (WiFi.status() == WL_CONNECTED) { node["connection"] = "WiFi"; node["hostname"] = WiFi.getHostname(); // node["SSID"] = WiFi.SSID(); // node["BSSID"] = WiFi.BSSIDstr(); node["RSSI"] = WiFi.RSSI(); // node["MAC"] = WiFi.macAddress(); node["IPv4 address"] = uuid::printable_to_string(WiFi.localIP()) + "/" + uuid::printable_to_string(WiFi.subnetMask()); node["IPv4 gateway"] = uuid::printable_to_string(WiFi.gatewayIP()); node["IPv4 nameserver"] = uuid::printable_to_string(WiFi.dnsIP()); if (WiFi.localIPv6().toString() != "0000:0000:0000:0000:0000:0000:0000:0000") { node["IPv6 address"] = uuid::printable_to_string(WiFi.localIPv6()); } } else if (EMSESP::system_.ethernet_connected()) { node["connection"] = "Ethernet"; node["hostname"] = ETH.getHostname(); node["MAC"] = ETH.macAddress(); node["IPv4 address"] = uuid::printable_to_string(ETH.localIP()) + "/" + uuid::printable_to_string(ETH.subnetMask()); node["IPv4 gateway"] = uuid::printable_to_string(ETH.gatewayIP()); node["IPv4 nameserver"] = uuid::printable_to_string(ETH.dnsIP()); if (ETH.localIPv6().toString() != "0000:0000:0000:0000:0000:0000:0000:0000") { node["IPv6 address"] = uuid::printable_to_string(ETH.localIPv6()); } EMSESP::webSettingsService.read([&](WebSettings & settings) { node["phy type"] = settings.phy_type; node["eth power"] = settings.eth_power; node["eth phy addr"] = settings.eth_phy_addr; node["eth clock mode"] = settings.eth_clock_mode; }); } #endif EMSESP::esp8266React.getNetworkSettingsService()->read([&](NetworkSettings & settings) { node["static ip config"] = settings.staticIPConfig; node["enable IPv6"] = settings.enableIPv6; node["low bandwidth"] = settings.bandwidth20; node["disable sleep"] = settings.nosleep; }); #ifndef EMSESP_STANDALONE EMSESP::esp8266React.getAPSettingsService()->read([&](APSettings & settings) { const char * pM[] = {"always", "disconnected", "never"}; node["AP provision mode"] = pM[settings.provisionMode]; node["AP security"] = settings.password.length() ? "wpa2" : "open"; node["AP ssid"] = settings.ssid; }); #endif // NTP status node = output.createNestedObject("NTP Status"); #ifndef EMSESP_STANDALONE node["network time"] = EMSESP::system_.ntp_connected() ? "connected" : "disconnected"; EMSESP::esp8266React.getNTPSettingsService()->read([&](NTPSettings & settings) { node["enabled"] = settings.enabled; node["server"] = settings.server; node["tz label"] = settings.tzLabel; // node["tz format"] = settings.tzFormat; }); // OTA status node = output.createNestedObject("OTA Status"); EMSESP::esp8266React.getOTASettingsService()->read([&](OTASettings & settings) { node["enabled"] = settings.enabled; node["port"] = settings.port; }); #endif // MQTT Status node = output.createNestedObject("MQTT Status"); node["MQTT status"] = Mqtt::connected() ? F_(connected) : F_(disconnected); if (Mqtt::enabled()) { node["MQTT publishes"] = Mqtt::publish_count(); node["MQTT queued"] = Mqtt::publish_queued(); node["MQTT publish fails"] = Mqtt::publish_fails(); node["MQTT connects"] = Mqtt::connect_count(); } EMSESP::esp8266React.getMqttSettingsService()->read([&](MqttSettings & settings) { node["enabled"] = settings.enabled; node["client_id"] = settings.clientId; node["keep alive"] = settings.keepAlive; node["clean session"] = settings.cleanSession; node["base"] = settings.base; node["discovery prefix"] = settings.discovery_prefix; node["nested format"] = settings.nested_format; node["ha enabled"] = settings.ha_enabled; node["mqtt qos"] = settings.mqtt_qos; node["mqtt retain"] = settings.mqtt_retain; node["publish time boiler"] = settings.publish_time_boiler; node["publish time thermostat"] = settings.publish_time_thermostat; node["publish time solar"] = settings.publish_time_solar; node["publish time mixer"] = settings.publish_time_mixer; node["publish time other"] = settings.publish_time_other; node["publish time sensor"] = settings.publish_time_sensor; node["publish single"] = settings.publish_single; node["publish2command"] = settings.publish_single2cmd; node["send response"] = settings.send_response; }); // Syslog Status node = output.createNestedObject("Syslog Status"); node["enabled"] = EMSESP::system_.syslog_enabled_; #ifndef EMSESP_STANDALONE if (EMSESP::system_.syslog_enabled_) { node["syslog started"] = syslog_.started(); node["syslog level"] = FL_(list_syslog_level)[syslog_.log_level() + 1]; node["syslog ip"] = syslog_.ip(); node["syslog queue"] = syslog_.queued(); } #endif // Sensor Status node = output.createNestedObject("Sensor Status"); if (EMSESP::dallas_enabled()) { node["temperature sensors"] = EMSESP::dallassensor_.no_sensors(); node["temperature sensor reads"] = EMSESP::dallassensor_.reads(); node["temperature sensor fails"] = EMSESP::dallassensor_.fails(); } if (EMSESP::analog_enabled()) { node["analog sensors"] = EMSESP::analogsensor_.no_sensors(); node["analog sensor reads"] = EMSESP::analogsensor_.reads(); node["analog sensor fails"] = EMSESP::analogsensor_.fails(); } // API Status node = output.createNestedObject("API Status"); node["API calls"] = WebAPIService::api_count(); node["API fails"] = WebAPIService::api_fails(); // EMS Bus Status node = output.createNestedObject("Bus Status"); switch (EMSESP::bus_status()) { case EMSESP::BUS_STATUS_OFFLINE: node["bus status"] = "disconnected"; break; case EMSESP::BUS_STATUS_TX_ERRORS: node["bus status"] = "connected, tx issues - try a different Tx Mode"; break; case EMSESP::BUS_STATUS_CONNECTED: node["bus status"] = "connected"; break; default: node["bus status"] = "unknown"; break; } if (EMSESP::bus_status() != EMSESP::BUS_STATUS_OFFLINE) { node["bus protocol"] = EMSbus::is_ht3() ? "HT3" : "Buderus"; node["bus telegrams received (rx)"] = EMSESP::rxservice_.telegram_count(); node["bus reads (tx)"] = EMSESP::txservice_.telegram_read_count(); node["bus writes (tx)"] = EMSESP::txservice_.telegram_write_count(); node["bus incomplete telegrams"] = EMSESP::rxservice_.telegram_error_count(); node["bus reads failed"] = EMSESP::txservice_.telegram_read_fail_count(); node["bus writes failed"] = EMSESP::txservice_.telegram_write_fail_count(); node["bus rx line quality"] = EMSESP::rxservice_.quality(); node["bus tx line quality"] = (EMSESP::txservice_.read_quality() + EMSESP::txservice_.read_quality()) / 2; } // Settings node = output.createNestedObject("Settings"); EMSESP::webSettingsService.read([&](WebSettings & settings) { node["board profile"] = settings.board_profile; node["locale"] = settings.locale; node["tx mode"] = settings.tx_mode; node["ems bus id"] = settings.ems_bus_id; node["shower timer"] = settings.shower_timer; node["shower alert"] = settings.shower_alert; if (settings.shower_alert) { node["shower alert coldshot"] = settings.shower_alert_coldshot; // seconds node["shower alert trigger"] = settings.shower_alert_trigger; // minutes } node["rx gpio"] = settings.rx_gpio; node["tx gpio"] = settings.tx_gpio; node["dallas gpio"] = settings.dallas_gpio; node["pbutton gpio"] = settings.pbutton_gpio; node["led gpio"] = settings.led_gpio; node["hide led"] = settings.hide_led; node["notoken api"] = settings.notoken_api; node["readonly mode"] = settings.readonly_mode; node["fahrenheit"] = settings.fahrenheit; node["dallas parasite"] = settings.dallas_parasite; node["bool format"] = settings.bool_format; node["bool dashboard"] = settings.bool_dashboard; node["enum format"] = settings.enum_format; node["analog enabled"] = settings.analog_enabled; node["telnet enabled"] = settings.telnet_enabled; }); // Devices - show EMS devices JsonArray devices = output.createNestedArray("Devices"); for (const auto & device_class : EMSFactory::device_handlers()) { for (const auto & emsdevice : EMSESP::emsdevices) { if (emsdevice && (emsdevice->device_type() == device_class.first)) { JsonObject obj = devices.createNestedObject(); obj["type"] = emsdevice->device_type_name(); obj["name"] = emsdevice->name(); obj["device id"] = Helpers::hextoa(emsdevice->device_id()); obj["product id"] = emsdevice->product_id(); obj["version"] = emsdevice->version(); obj["entities"] = emsdevice->count_entities(); char result[300]; (void)emsdevice->show_telegram_handlers(result, sizeof(result), EMSdevice::Handlers::RECEIVED); if (result[0] != '\0') { obj["handlers received"] = result; // don't show handlers if there aren't any } (void)emsdevice->show_telegram_handlers(result, sizeof(result), EMSdevice::Handlers::FETCHED); if (result[0] != '\0') { obj["handlers fetched"] = result; } (void)emsdevice->show_telegram_handlers(result, sizeof(result), EMSdevice::Handlers::PENDING); if (result[0] != '\0') { obj["handlers pending"] = result; } (void)emsdevice->show_telegram_handlers(result, sizeof(result), EMSdevice::Handlers::IGNORED); if (result[0] != '\0') { obj["handlers ignored"] = result; } } } } return true; } #if defined(EMSESP_DEBUG) // run a test, e.g. http://ems-esp/api?device=system&cmd=test&data=boiler bool System::command_test(const char * value, const int8_t id) { Test::run_test(value, id); return true; } #endif // takes a board profile and populates a data array with GPIO configurations // returns false if profile is unknown // // data = led, dallas, rx, tx, button, phy_type, eth_power, eth_phy_addr, eth_clock_mode // // clock modes: // 0 = RMII clock input to GPIO0 // 1 = RMII clock output from GPIO0 // 2 = RMII clock output from GPIO16 // 3 = RMII clock output from GPIO17, for 50hz inverted clock bool System::load_board_profile(std::vector & data, const std::string & board_profile) { if (board_profile == "S32") { data = {2, 18, 23, 5, 0, PHY_type::PHY_TYPE_NONE, 0, 0, 0}; // BBQKees Gateway S32 } else if (board_profile == "E32") { data = {2, 4, 5, 17, 33, PHY_type::PHY_TYPE_LAN8720, 16, 1, 0}; // BBQKees Gateway E32 } else if (board_profile == "MH-ET") { data = {2, 18, 23, 5, 0, PHY_type::PHY_TYPE_NONE, 0, 0, 0}; // MH-ET Live D1 Mini } else if (board_profile == "NODEMCU") { data = {2, 18, 23, 5, 0, PHY_type::PHY_TYPE_NONE, 0, 0, 0}; // NodeMCU 32S } else if (board_profile == "LOLIN") { data = {2, 18, 17, 16, 0, PHY_type::PHY_TYPE_NONE, 0, 0, 0}; // Lolin D32 } else if (board_profile == "OLIMEX") { data = {0, 0, 36, 4, 34, PHY_type::PHY_TYPE_LAN8720, -1, 0, 0}; // Olimex ESP32-EVB (uses U1TXD/U1RXD/BUTTON, no LED or Dallas) } else if (board_profile == "OLIMEXPOE") { data = {0, 0, 36, 4, 34, PHY_type::PHY_TYPE_LAN8720, 12, 0, 3}; // Olimex ESP32-POE } else if (board_profile == "C3MINI") { data = {7, 1, 4, 5, 9, PHY_type::PHY_TYPE_NONE, 0, 0, 0}; // Lolin C3 Mini } else if (board_profile == "S2MINI") { data = {15, 7, 11, 12, 0, PHY_type::PHY_TYPE_NONE, 0, 0, 0}; //Lolin S2 Mini } else if (board_profile == "CUSTOM") { // send back current values data = {(int8_t)EMSESP::system_.led_gpio_, (int8_t)EMSESP::system_.dallas_gpio_, (int8_t)EMSESP::system_.rx_gpio_, (int8_t)EMSESP::system_.tx_gpio_, (int8_t)EMSESP::system_.pbutton_gpio_, (int8_t)EMSESP::system_.phy_type_, EMSESP::system_.eth_power_, (int8_t)EMSESP::system_.eth_phy_addr_, (int8_t)EMSESP::system_.eth_clock_mode_}; } else { // unknown, use defaults and return false data = { EMSESP_DEFAULT_LED_GPIO, EMSESP_DEFAULT_DALLAS_GPIO, EMSESP_DEFAULT_RX_GPIO, EMSESP_DEFAULT_TX_GPIO, EMSESP_DEFAULT_PBUTTON_GPIO, EMSESP_DEFAULT_PHY_TYPE, -1, // power 0, // phy_addr, 0 // clock_mode }; return false; } return true; } // restart command - perform a hard reset by setting flag bool System::command_restart(const char * value, const int8_t id) { restart_requested(true); return true; } #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wswitch" std::string System::reset_reason(uint8_t cpu) const { #ifndef EMSESP_STANDALONE switch (rtc_get_reset_reason(cpu)) { case 1: return ("Power on reset"); // case 2 :reset pin not on esp32 case 3: return ("Software reset"); case 4: // not on S2, C3 return ("Legacy watch dog reset"); case 5: return ("Deep sleep reset"); case 6: // not on S2, C3 return ("Reset by SDIO"); case 7: return ("Timer group0 watch dog reset"); case 8: return ("Timer group1 watch dog reset"); case 9: return ("RTC watch dog reset"); case 10: return ("Intrusion reset CPU"); case 11: return ("Timer group reset CPU"); case 12: return ("Software reset CPU"); case 13: return ("RTC watch dog reset: CPU"); case 14: // not on S2, C3 return ("APP CPU reset by PRO CPU"); case 15: return ("Brownout reset"); case 16: return ("RTC watch dog reset: CPU+RTC"); default: break; } #endif return ("Unkonwn"); } #pragma GCC diagnostic pop // set NTP status void System::ntp_connected(bool b) { if (b != ntp_connected_) { LOG_INFO(b ? "NTP connected" : "NTP disconnected"); } ntp_connected_ = b; ntp_last_check_ = b ? uuid::get_uptime_sec() : 0; } } // namespace emsesp