Files
EMS-ESP32/src/core/system.cpp
2025-11-20 22:58:26 +01:00

2431 lines
103 KiB
C++

/*
* EMS-ESP - https://github.com/emsesp/EMS-ESP
* Copyright 2020-2024 emsesp.org - proddy, MichaelDvP
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "system.h"
#include "emsesp.h" // for send_raw_telegram() command
#ifndef EMSESP_STANDALONE
#include "esp_ota_ops.h"
#endif
#include <HTTPClient.h>
#include <semver200.h>
#if defined(EMSESP_TEST)
#include "../test/test.h"
#endif
#ifndef EMSESP_STANDALONE
#ifdef ESP_IDF_VERSION_MAJOR // IDF 4+
#if CONFIG_IDF_TARGET_ESP32 // ESP32/PICO-D4
#include "../esp32/rom/rtc.h"
#elif CONFIG_IDF_TARGET_ESP32S2
#include "../esp32s2/rom/rtc.h"
#elif CONFIG_IDF_TARGET_ESP32C3
#include "../esp32c3/rom/rtc.h"
#elif CONFIG_IDF_TARGET_ESP32S3
#include "../esp32s3/rom/rtc.h"
#else
#error Target CONFIG_IDF_TARGET is not supported
#endif
#else // ESP32 Before IDF 4.0
#include "../rom/rtc.h"
#endif
#include <esp_mac.h>
#endif
#ifndef EMSESP_STANDALONE
#include "esp_efuse.h"
#endif
namespace emsesp {
// Languages supported. Note: the order is important
// and must match locale_translations.h and common.h
#if defined(EMSESP_TEST)
// in Test mode use two languages (en & de) to save flash memory needed for the tests
const char * const languages[] = {EMSESP_LOCALE_EN, EMSESP_LOCALE_DE};
#elif defined(EMSESP_EN_ONLY)
// EN only
const char * const languages[] = {EMSESP_LOCALE_EN};
#elif defined(EMSESP_DE_ONLY)
// EN + DE
const char * const languages[] = {EMSESP_LOCALE_EN, EMSESP_LOCALE_DE};
#else
const char * const languages[] = {EMSESP_LOCALE_EN,
EMSESP_LOCALE_DE,
EMSESP_LOCALE_NL,
EMSESP_LOCALE_SV,
EMSESP_LOCALE_PL,
EMSESP_LOCALE_NO,
EMSESP_LOCALE_FR,
EMSESP_LOCALE_TR,
EMSESP_LOCALE_IT,
EMSESP_LOCALE_SK,
EMSESP_LOCALE_CZ};
#endif
static constexpr uint8_t NUM_LANGUAGES = sizeof(languages) / sizeof(const char *);
uuid::log::Logger System::logger_{F_(system), uuid::log::Facility::KERN};
// init statics
PButton System::myPButton_;
bool System::test_set_all_active_ = false;
uint32_t System::max_alloc_mem_;
uint32_t System::heap_mem_;
std::vector<uint8_t> System::valid_system_gpios_;
std::vector<uint8_t> System::used_gpios_;
// find the index of the language
// 0 = EN, 1 = DE, etc...
uint8_t System::language_index() {
for (uint8_t i = 0; i < NUM_LANGUAGES; i++) {
if (languages[i] == locale()) {
return i;
}
}
return 0; // EN only
}
// send raw to ems
bool System::command_send(const char * value, const int8_t id) {
return EMSESP::txservice_.send_raw(value); // ignore id
}
// return string of languages and count
std::string System::languages_string() {
std::string languages_string = std::to_string(NUM_LANGUAGES) + " languages (";
for (uint8_t i = 0; i < NUM_LANGUAGES; i++) {
languages_string += languages[i];
if (i != NUM_LANGUAGES - 1) {
languages_string += ",";
}
}
languages_string += ")";
return languages_string;
}
// returns last response from MQTT
bool System::command_response(const char * value, const int8_t id, JsonObject output) {
JsonDocument doc;
if (DeserializationError::Ok == deserializeJson(doc, Mqtt::get_response())) {
for (JsonPair p : doc.as<JsonObject>()) {
output[p.key()] = p.value();
}
} else {
output["response"] = Mqtt::get_response();
}
return true;
}
// fetch device values
bool System::command_fetch(const char * value, const int8_t id) {
std::string value_s;
if (Helpers::value2string(value, value_s)) {
if (value_s == "all") {
LOG_INFO("Requesting data from EMS devices");
EMSESP::fetch_device_values();
} else if (value_s == F_(boiler)) {
EMSESP::fetch_device_values_type(EMSdevice::DeviceType::BOILER);
} else if (value_s == F_(thermostat)) {
EMSESP::fetch_device_values_type(EMSdevice::DeviceType::THERMOSTAT);
} else if (value_s == F_(solar)) {
EMSESP::fetch_device_values_type(EMSdevice::DeviceType::SOLAR);
} else if (value_s == F_(mixer)) {
EMSESP::fetch_device_values_type(EMSdevice::DeviceType::MIXER);
}
} else {
EMSESP::fetch_device_values(); // default if no name or id is given
}
return true; // always true
}
// mqtt publish
bool System::command_publish(const char * value, const int8_t id) {
std::string value_s;
if (Helpers::value2string(value, value_s)) {
if (value_s == "ha") {
EMSESP::publish_all(true); // includes HA
LOG_INFO("Publishing all data to MQTT, including HA configs");
return true;
} else if (value_s == (F_(boiler))) {
EMSESP::publish_device_values(EMSdevice::DeviceType::BOILER);
return true;
} else if (value_s == (F_(thermostat))) {
EMSESP::publish_device_values(EMSdevice::DeviceType::THERMOSTAT);
return true;
} else if (value_s == (F_(solar))) {
EMSESP::publish_device_values(EMSdevice::DeviceType::SOLAR);
return true;
} else if (value_s == (F_(mixer))) {
EMSESP::publish_device_values(EMSdevice::DeviceType::MIXER);
return true;
} else if (value_s == (F_(water))) {
EMSESP::publish_device_values(EMSdevice::DeviceType::WATER);
return true;
} else if (value_s == "other") {
EMSESP::publish_other_values(); // switch and heat pump
return true;
} else if ((value_s == (F_(temperaturesensor))) || (value_s == (F_(analogsensor)))) {
EMSESP::publish_sensor_values(true);
return true;
}
}
LOG_INFO("Publishing all data to MQTT");
EMSESP::publish_all();
return true;
}
// syslog level
// commenting this out - don't see the point on having an API service to change the syslog level
/*
bool System::command_syslog_level(const char * value, const int8_t id) {
uint8_t s = 0xff;
if (Helpers::value2enum(value, s, FL_(list_syslog_level))) {
bool changed = false;
EMSESP::webSettingsService.update(
[&](WebSettings & settings) {
if (settings.syslog_level != (int8_t)s - 1) {
settings.syslog_level = (int8_t)s - 1;
changed = true;
}
return StateUpdateResult::CHANGED;
});
if (changed) {
EMSESP::system_.syslog_init();
}
return true;
}
return false;
}
*/
// send message - to system log and MQTT
bool System::command_message(const char * value, const int8_t id, JsonObject output) {
if (value == nullptr || value[0] == '\0') {
LOG_WARNING("Message is empty");
return false; // must have a string value
}
EMSESP::webSchedulerService.computed_value.clear();
EMSESP::webSchedulerService.raw_value = value;
for (uint16_t wait = 0; wait < 2000 && !EMSESP::webSchedulerService.raw_value.empty(); wait++) {
delay(1);
}
if (EMSESP::webSchedulerService.computed_value.empty()) {
LOG_WARNING("Message result is empty");
return false;
}
LOG_INFO("Message: %s", EMSESP::webSchedulerService.computed_value.c_str()); // send to log
Mqtt::queue_publish(F_(message), EMSESP::webSchedulerService.computed_value); // send to MQTT if enabled
output["api_data"] = EMSESP::webSchedulerService.computed_value; // send to API
return true;
}
// watch
bool System::command_watch(const char * value, const int8_t id) {
uint8_t w = 0xff;
uint16_t i = Helpers::hextoint(value);
if (Helpers::value2enum(value, w, FL_(list_watch))) {
if (w == 0 || EMSESP::watch() == EMSESP::Watch::WATCH_OFF) {
EMSESP::watch_id(0);
}
if (Mqtt::publish_single() && w != EMSESP::watch()) {
if (Mqtt::publish_single2cmd()) {
Mqtt::queue_publish("system/watch", EMSESP::system_.enum_format() == ENUM_FORMAT_INDEX ? Helpers::itoa(w) : (FL_(list_watch)[w]));
} else {
Mqtt::queue_publish("system_data/watch", EMSESP::system_.enum_format() == ENUM_FORMAT_INDEX ? Helpers::itoa(w) : (FL_(list_watch)[w]));
}
}
EMSESP::watch(w);
return true;
} else if (i) {
if (Mqtt::publish_single() && i != EMSESP::watch_id()) {
if (Mqtt::publish_single2cmd()) {
Mqtt::queue_publish("system/watch", Helpers::hextoa(i));
} else {
Mqtt::queue_publish("system_data/watch", Helpers::hextoa(i));
}
}
EMSESP::watch_id(i);
if (EMSESP::watch() == EMSESP::Watch::WATCH_OFF) {
EMSESP::watch(EMSESP::Watch::WATCH_ON);
}
return true;
}
return false;
}
void System::store_nvs_values() {
if (Command::find_command(EMSdevice::DeviceType::BOILER, 0, "nompower", 0) != nullptr) {
Command::call(EMSdevice::DeviceType::BOILER, "nompower", "-1"); // trigger a write
}
EMSESP::analogsensor_.store_counters();
EMSESP::nvs_.end();
}
// restart EMS-ESP
// app0 or app1
// on 16MB we have the additional boot and factory partitions
void System::system_restart(const char * partitionname) {
#ifndef EMSESP_STANDALONE
// see if we are forcing a partition to use
if (partitionname != nullptr) {
// Factory partition - label will be "factory"
const esp_partition_t * partition = esp_partition_find_first(ESP_PARTITION_TYPE_APP, ESP_PARTITION_SUBTYPE_APP_FACTORY, NULL);
if (partition && strcmp(partition->label, partitionname) == 0) {
esp_ota_set_boot_partition(partition);
} else
// try and find the partition by name
if (strcmp(esp_ota_get_running_partition()->label, partitionname) != 0) {
partition = esp_ota_get_next_update_partition(nullptr);
if (!partition) {
LOG_ERROR("Partition '%s' not found", partitionname);
return;
}
if (strcmp(partition->label, partitionname) != 0 && strcmp(partitionname, "boot") != 0) {
partition = esp_ota_get_next_update_partition(partition);
if (!partition || strcmp(partition->label, partitionname)) {
LOG_ERROR("Partition '%s' not found", partitionname);
return;
}
}
// check if partition is empty
uint64_t buffer;
esp_partition_read(partition, 0, &buffer, 8);
if (buffer == 0xFFFFFFFFFFFFFFFF) {
LOG_ERROR("Partition '%s' is empty, not bootable", partition->label);
return;
}
// set the boot partition
esp_ota_set_boot_partition(partition);
}
LOG_INFO("Restarting EMS-ESP from %s partition", partitionname);
} else {
LOG_INFO("Restarting EMS-ESP...");
}
// make sure it's only executed once
EMSESP::system_.systemStatus(SYSTEM_STATUS::SYSTEM_STATUS_NORMAL);
store_nvs_values(); // save any NVS values
Shell::loop_all(); // flush log to output
Mqtt::disconnect(); // gracefully disconnect MQTT, needed for QOS1
delay(1000); // wait 1 second
ESP.restart();
#else
EMSESP::system_.systemStatus(SYSTEM_STATUS::SYSTEM_STATUS_NORMAL);
if (partitionname != nullptr) {
LOG_INFO("Restarting EMS-ESP from %s partition", partitionname);
} else {
LOG_INFO("Restarting EMS-ESP...");
}
#endif
}
// saves all settings
void System::wifi_reconnect() {
EMSESP::esp32React.getNetworkSettingsService()->read(
[](NetworkSettings & networkSettings) { LOG_INFO("WiFi reconnecting to SSID '%s'...", networkSettings.ssid.c_str()); });
delay(500); // wait
EMSESP::webSettingsService.save(); // save local settings
EMSESP::esp32React.getNetworkSettingsService()->callUpdateHandlers(); // in case we've changed ssid or password
}
void System::syslog_init() {
EMSESP::webSettingsService.read([&](WebSettings & settings) {
syslog_enabled_ = settings.syslog_enabled;
syslog_level_ = settings.syslog_level;
syslog_mark_interval_ = settings.syslog_mark_interval;
syslog_host_ = settings.syslog_host;
syslog_port_ = settings.syslog_port;
});
#ifndef EMSESP_STANDALONE
if (syslog_enabled_) {
// start & configure syslog
EMSESP::logger().info("Starting Syslog service");
syslog_.start();
syslog_.log_level((uuid::log::Level)syslog_level_);
syslog_.mark_interval(syslog_mark_interval_);
syslog_.destination(syslog_host_.c_str(), syslog_port_);
syslog_.hostname(hostname().c_str());
} else if (syslog_.started()) {
// in case service is still running, this flushes the queue
// https://github.com/emsesp/EMS-ESP/issues/496
EMSESP::logger().info("Stopping Syslog");
syslog_.log_level((uuid::log::Level)-1); // stop server
syslog_.mark_interval(0);
syslog_.destination("");
}
if (Mqtt::publish_single()) {
if (Mqtt::publish_single2cmd()) {
Mqtt::queue_publish("system/syslog", syslog_enabled_ ? (FL_(list_syslog_level)[syslog_level_ + 1]) : "off");
if (EMSESP::watch_id() == 0 || EMSESP::watch() == 0) {
Mqtt::queue_publish("system/watch",
EMSESP::system_.enum_format() == ENUM_FORMAT_INDEX ? Helpers::itoa(EMSESP::watch()) : (FL_(list_watch)[EMSESP::watch()]));
} else {
Mqtt::queue_publish("system/watch", Helpers::hextoa(EMSESP::watch_id()));
}
} else {
Mqtt::queue_publish("system_data/syslog", syslog_enabled_ ? (FL_(list_syslog_level)[syslog_level_ + 1]) : "off");
if (EMSESP::watch_id() == 0 || EMSESP::watch() == 0) {
Mqtt::queue_publish("system_data/watch",
EMSESP::system_.enum_format() == ENUM_FORMAT_INDEX ? Helpers::itoa(EMSESP::watch()) : (FL_(list_watch)[EMSESP::watch()]));
} else {
Mqtt::queue_publish("system_data/watch", Helpers::hextoa(EMSESP::watch_id()));
}
}
}
#endif
}
// read specific major system settings to store locally for faster access
// this also verifies all the assigned GPIOs are valid
void System::get_settings() {
EMSESP::webSettingsService.read([&](WebSettings & settings) {
version_ = settings.version;
// GPIOs
rx_gpio_ = settings.rx_gpio;
tx_gpio_ = settings.tx_gpio;
pbutton_gpio_ = settings.pbutton_gpio;
dallas_gpio_ = settings.dallas_gpio;
led_gpio_ = settings.led_gpio;
analog_enabled_ = settings.analog_enabled;
low_clock_ = settings.low_clock;
hide_led_ = settings.hide_led;
led_type_ = settings.led_type;
board_profile_ = settings.board_profile;
telnet_enabled_ = settings.telnet_enabled;
modbus_enabled_ = settings.modbus_enabled;
modbus_port_ = settings.modbus_port;
modbus_max_clients_ = settings.modbus_max_clients;
modbus_timeout_ = settings.modbus_timeout;
tx_mode_ = settings.tx_mode;
syslog_enabled_ = settings.syslog_enabled;
syslog_level_ = settings.syslog_level;
syslog_mark_interval_ = settings.syslog_mark_interval;
syslog_host_ = settings.syslog_host;
syslog_port_ = settings.syslog_port;
fahrenheit_ = settings.fahrenheit;
bool_format_ = settings.bool_format;
bool_dashboard_ = settings.bool_dashboard;
enum_format_ = settings.enum_format;
readonly_mode_ = settings.readonly_mode;
phy_type_ = settings.phy_type;
eth_power_ = settings.eth_power;
eth_phy_addr_ = settings.eth_phy_addr;
eth_clock_mode_ = settings.eth_clock_mode;
locale_ = settings.locale;
developer_mode_ = settings.developer_mode;
});
// Starts up the UART Serial bridge
void System::start() {
#ifndef EMSESP_STANDALONE
// disable bluetooth module
// periph_module_disable(PERIPH_BT_MODULE);
if (low_clock_) {
#if CONFIG_IDF_TARGET_ESP32C3
setCpuFrequencyMhz(80);
#else
setCpuFrequencyMhz(160);
#endif
}
// get current memory values
fstotal_ = LittleFS.totalBytes() / 1024; // read only once, it takes 500 ms to read
appused_ = ESP.getSketchSize() / 1024;
appfree_ = esp_ota_get_running_partition()->size / 1024 - appused_;
refreshHeapMem(); // refresh free heap and max alloc heap
#if CONFIG_IDF_TARGET_ESP32S3 || CONFIG_IDF_TARGET_ESP32C3 || CONFIG_IDF_TARGET_ESP32S2
#if ESP_IDF_VERSION_MAJOR < 5
temp_sensor_config_t temp_sensor = TSENS_CONFIG_DEFAULT();
temp_sensor_get_config(&temp_sensor);
temp_sensor.dac_offset = TSENS_DAC_DEFAULT; // DEFAULT: range:-10℃ ~ 80℃, error < 1℃.
temp_sensor_set_config(temp_sensor);
temp_sensor_start();
temp_sensor_read_celsius(&temperature_);
#else
temperature_sensor_config_t temp_sensor_config = TEMPERATURE_SENSOR_CONFIG_DEFAULT(-10, 80);
temperature_sensor_install(&temp_sensor_config, &temperature_handle_);
temperature_sensor_enable(temperature_handle_);
temperature_sensor_get_celsius(temperature_handle_, &temperature_);
#endif
#endif
#endif
EMSESP::esp32React.getNetworkSettingsService()->read([&](NetworkSettings & networkSettings) {
hostname(networkSettings.hostname.c_str()); // sets the hostname
});
commands_init(); // console & api commands
led_init(); // init LED
button_init(); // button
network_init(); // network
uart_init(); // start UART
syslog_init(); // start syslog
}
// button single click
void System::button_OnClick(PButton & b) {
LOG_NOTICE("Button pressed - single click");
#if defined(EMSESP_TEST)
#ifndef EMSESP_STANDALONE
// show filesystem
Test::listDir(LittleFS, "/", 3);
#endif
#endif
}
// button double click
void System::button_OnDblClick(PButton & b) {
LOG_NOTICE("Button pressed - double click - wifi reconnect to AP");
// set AP mode to always so will join AP if wifi ssid fails to connect
EMSESP::esp32React.getAPSettingsService()->update([&](APSettings & apSettings) {
apSettings.provisionMode = AP_MODE_ALWAYS;
return StateUpdateResult::CHANGED;
});
// remove SSID from network settings
EMSESP::esp32React.getNetworkSettingsService()->update([&](NetworkSettings & networkSettings) {
networkSettings.ssid = "";
return StateUpdateResult::CHANGED;
});
EMSESP::esp32React.getNetworkSettingsService()->callUpdateHandlers(); // in case we've changed ssid or password
}
// button long press
void System::button_OnLongPress(PButton & b) {
LOG_NOTICE("Button pressed - long press - perform factory reset");
#ifndef EMSESP_STANDALONE
System::command_format(nullptr, 0);
#endif
}
// button indefinite press - do nothing for now
void System::button_OnVLongPress(PButton & b) {
LOG_NOTICE("Button pressed - very long press - restart from factory/boot partition");
EMSESP::system_.system_restart("boot");
}
// push button
void System::button_init() {
#ifndef EMSESP_STANDALONE
if (!myPButton_.init(pbutton_gpio_, HIGH)) {
LOG_WARNING("Multi-functional button not detected");
return;
}
LOG_DEBUG("Multi-functional button enabled");
myPButton_.onClick(BUTTON_Debounce, button_OnClick);
myPButton_.onDblClick(BUTTON_DblClickDelay, button_OnDblClick);
myPButton_.onLongPress(BUTTON_LongPressDelay, button_OnLongPress);
myPButton_.onVLongPress(BUTTON_VLongPressDelay, button_OnVLongPress);
#endif
}
// set the LED to on or off when in normal operating mode
void System::led_init() {
// disabled old led port before setting new one
#if ESP_ARDUINO_VERSION_MAJOR < 3
led_type_ ? neopixelWrite(led_gpio_, 0, 0, 0) : digitalWrite(led_gpio_, !LED_ON);
#else
led_type_ ? rgbLedWrite(led_gpio_, 0, 0, 0) : digitalWrite(led_gpio_, !LED_ON);
#endif
if ((led_gpio_)) { // 0 means disabled
if (led_type_) {
// rgb LED WS2812B, use Neopixel
#if ESP_ARDUINO_VERSION_MAJOR < 3
neopixelWrite(led_gpio_, 0, 0, 0);
#else
rgbLedWrite(led_gpio_, 0, 0, 0);
#endif
} else {
pinMode(led_gpio_, OUTPUT);
digitalWrite(led_gpio_, !LED_ON); // start with LED off
}
} else {
LOG_INFO("LED disabled");
}
}
void System::uart_init() {
EMSuart::stop();
// start UART, GPIOs have already been checked
EMSuart::start(tx_mode_, rx_gpio_, tx_gpio_);
EMSESP::txservice_.start(); // reset counters and send devices request
}
// checks system health and handles LED flashing wizardry
void System::loop() {
// check if we're supposed to do a reset/restart
if (systemStatus() == SYSTEM_STATUS::SYSTEM_STATUS_RESTART_REQUESTED) {
system_restart();
}
#ifndef EMSESP_STANDALONE
myPButton_.check(); // check button press
// syslog
if (syslog_enabled_) {
syslog_.loop();
}
led_monitor(); // check status and report back using the LED
system_check(); // check system health
send_info_mqtt();
#endif
}
// send MQTT info topic appended with the version information as JSON, as a retained flag
// this is only done once when the connection is established
void System::send_info_mqtt() {
static uint8_t _connection = 0;
uint8_t connection = (ethernet_connected() ? 1 : 0) + ((WiFi.status() == WL_CONNECTED) ? 2 : 0) + (ntp_connected_ ? 4 : 0) + (has_ipv6_ ? 8 : 0);
// check if connection status has changed
if (!Mqtt::connected() || connection == _connection) {
return;
}
_connection = connection;
JsonDocument doc;
// doc["event"] = "connected";
doc["version"] = EMSESP_APP_VERSION;
// if NTP is enabled send the boot_time in local time in ISO 8601 format (eg: 2022-11-15 20:46:38)
// https://github.com/emsesp/EMS-ESP32/issues/751
if (ntp_connected_) {
char time_string[25];
time_t now = time(nullptr) - uuid::get_uptime_sec();
strftime(time_string, 25, "%FT%T%z", localtime(&now));
doc["bootTime"] = time_string;
}
#ifndef EMSESP_STANDALONE
if (EMSESP::system_.ethernet_connected()) {
doc["network"] = "ethernet";
doc["hostname"] = ETH.getHostname();
/*
doc["MAC"] = ETH.macAddress();
doc["IPv4 address"] = uuid::printable_to_string(ETH.localIP()) + "/" + uuid::printable_to_string(ETH.subnetMask());
doc["IPv4 gateway"] = uuid::printable_to_string(ETH.gatewayIP());
doc["IPv4 nameserver"] = uuid::printable_to_string(ETH.dnsIP());
if (ETH.localIPv6().toString() != "0000:0000:0000:0000:0000:0000:0000:0000" && ETH.localIPv6().toString() != "::") {
doc["IPv6 address"] = uuid::printable_to_string(ETH.localIPv6());
}
*/
} else if (WiFi.status() == WL_CONNECTED) {
doc["network"] = "wifi";
doc["hostname"] = WiFi.getHostname();
doc["SSID"] = WiFi.SSID();
doc["BSSID"] = WiFi.BSSIDstr();
doc["MAC"] = WiFi.macAddress();
doc["IPv4 address"] = uuid::printable_to_string(WiFi.localIP()) + "/" + uuid::printable_to_string(WiFi.subnetMask());
doc["IPv4 gateway"] = uuid::printable_to_string(WiFi.gatewayIP());
doc["IPv4 nameserver"] = uuid::printable_to_string(WiFi.dnsIP());
#if ESP_IDF_VERSION_MAJOR < 5
if (WiFi.localIPv6().toString() != "0000:0000:0000:0000:0000:0000:0000:0000" && WiFi.localIPv6().toString() != "::") {
doc["IPv6 address"] = uuid::printable_to_string(WiFi.localIPv6());
}
#else
if (WiFi.linkLocalIPv6().toString() != "0000:0000:0000:0000:0000:0000:0000:0000" && WiFi.linkLocalIPv6().toString() != "::") {
doc["IPv6 address"] = uuid::printable_to_string(WiFi.linkLocalIPv6());
}
#endif
}
#endif
Mqtt::queue_publish_retain(F_(info), doc.as<JsonObject>()); // topic called "info" and it's Retained
}
// create the json for heartbeat
void System::heartbeat_json(JsonObject output) {
switch (EMSESP::bus_status()) {
case EMSESP::BUS_STATUS_OFFLINE:
output["bus_status"] = "connecting"; // EMS-ESP is booting...
break;
case EMSESP::BUS_STATUS_TX_ERRORS:
output["bus_status"] = "txerror";
break;
case EMSESP::BUS_STATUS_CONNECTED:
output["bus_status"] = "connected";
break;
default:
output["bus_status"] = "disconnected";
break;
}
output["uptime"] = uuid::log::format_timestamp_ms(uuid::get_uptime_ms(), 3);
output["uptime_sec"] = uuid::get_uptime_sec();
output["rxreceived"] = EMSESP::rxservice_.telegram_count();
output["rxfails"] = EMSESP::rxservice_.telegram_error_count();
output["txreads"] = EMSESP::txservice_.telegram_read_count();
output["txwrites"] = EMSESP::txservice_.telegram_write_count();
output["txfails"] = EMSESP::txservice_.telegram_read_fail_count() + EMSESP::txservice_.telegram_write_fail_count();
if (Mqtt::enabled()) {
output["mqttcount"] = Mqtt::publish_count();
output["mqttfails"] = Mqtt::publish_fails();
output["mqttreconnects"] = Mqtt::connect_count();
}
output["apicalls"] = WebAPIService::api_count(); // + WebAPIService::api_fails();
output["apifails"] = WebAPIService::api_fails();
if (EMSESP::sensor_enabled() || EMSESP::analog_enabled()) {
output["sensorreads"] = EMSESP::temperaturesensor_.reads() + EMSESP::analogsensor_.reads();
output["sensorfails"] = EMSESP::temperaturesensor_.fails() + EMSESP::analogsensor_.fails();
}
#ifndef EMSESP_STANDALONE
output["freemem"] = getHeapMem();
output["max_alloc"] = getMaxAllocMem();
#if CONFIG_IDF_TARGET_ESP32S3 || CONFIG_IDF_TARGET_ESP32C3 || CONFIG_IDF_TARGET_ESP32S2
output["temperature"] = (int)temperature_;
#endif
#endif
#ifndef EMSESP_STANDALONE
if (!ethernet_connected_) {
int8_t rssi = WiFi.RSSI();
output["rssi"] = rssi;
output["wifistrength"] = wifi_quality(rssi);
output["wifireconnects"] = EMSESP::esp32React.getWifiReconnects();
}
#endif
}
// send periodic MQTT message with system information
void System::send_heartbeat() {
// don't send heartbeat if WiFi or MQTT is not connected
if (!Mqtt::connected()) {
return;
}
refreshHeapMem(); // refresh free heap and max alloc heap
JsonDocument doc;
JsonObject json = doc.to<JsonObject>();
heartbeat_json(json);
Mqtt::queue_publish(F_(heartbeat), json); // send to MQTT with retain off. This will add to MQTT queue.
}
// initializes network
void System::network_init() {
last_system_check_ = 0; // force the LED to go from fast flash to pulse
#if CONFIG_IDF_TARGET_ESP32
bool disableEth;
EMSESP::esp32React.getNetworkSettingsService()->read([&](NetworkSettings & settings) { disableEth = settings.ssid.length() > 0; });
// no ethernet present or disabled
if (phy_type_ == PHY_type::PHY_TYPE_NONE || disableEth) {
return;
} // no ethernet present
// configure Ethernet
int mdc = 23; // Pin# of the I²C clock signal for the Ethernet PHY - hardcoded
int mdio = 18; // Pin# of the I²C IO signal for the Ethernet PHY - hardcoded
uint8_t phy_addr = eth_phy_addr_; // I²C-address of Ethernet PHY (0 or 1 for LAN8720, 31 for TLK110)
int8_t power = eth_power_; // Pin# of the enable signal for the external crystal oscillator (-1 to disable for internal APLL source)
eth_phy_type_t type = (phy_type_ == PHY_type::PHY_TYPE_LAN8720) ? ETH_PHY_LAN8720 : ETH_PHY_TLK110; // Type of the Ethernet PHY (LAN8720 or TLK110)
// clock mode:
// ETH_CLOCK_GPIO0_IN = 0 RMII clock input to GPIO0
// ETH_CLOCK_GPIO0_OUT = 1 RMII clock output from GPIO0
// ETH_CLOCK_GPIO16_OUT = 2 RMII clock output from GPIO16
// ETH_CLOCK_GPIO17_OUT = 3 RMII clock output from GPIO17, for 50hz inverted clock
auto clock_mode = (eth_clock_mode_t)eth_clock_mode_;
// reset power and add a delay as ETH doesn't not always start up correctly after a warm boot
if (eth_power_ != -1) {
pinMode(eth_power_, OUTPUT);
digitalWrite(eth_power_, LOW);
delay(500);
digitalWrite(eth_power_, HIGH);
}
#if ESP_IDF_VERSION_MAJOR < 5
eth_present_ = ETH.begin(phy_addr, power, mdc, mdio, type, clock_mode);
#else
eth_present_ = ETH.begin(type, phy_addr, mdc, mdio, power, clock_mode);
#endif
#endif
}
// check health of system, done every 5 seconds
void System::system_check() {
if (!last_system_check_ || ((uint32_t)(uuid::get_uptime() - last_system_check_) >= SYSTEM_CHECK_FREQUENCY)) {
last_system_check_ = uuid::get_uptime();
#ifndef EMSESP_STANDALONE
#if CONFIG_IDF_TARGET_ESP32S3 || CONFIG_IDF_TARGET_ESP32C3 || CONFIG_IDF_TARGET_ESP32S2
#if ESP_IDF_VERSION_MAJOR < 5
temp_sensor_read_celsius(&temperature_);
#else
temperature_sensor_get_celsius(temperature_handle_, &temperature_);
#endif
#endif
#endif
#ifdef EMSESP_PINGTEST
static uint64_t ping_count = 0;
LOG_NOTICE("Ping test, #%d", ping_count++);
#endif
// check if we have a valid network connection
if (!ethernet_connected() && (WiFi.status() != WL_CONNECTED)) {
healthcheck_ |= HEALTHCHECK_NO_NETWORK;
} else {
healthcheck_ &= ~HEALTHCHECK_NO_NETWORK;
}
// check if we have a bus connection
if (!EMSbus::bus_connected()) {
healthcheck_ |= HEALTHCHECK_NO_BUS;
} else {
healthcheck_ &= ~HEALTHCHECK_NO_BUS;
}
// see if the healthcheck state has changed
static uint8_t last_healthcheck_ = 0;
if (healthcheck_ != last_healthcheck_) {
last_healthcheck_ = healthcheck_;
EMSESP::system_.send_heartbeat(); // send MQTT heartbeat immediately when connected
// see if we're better now
if (healthcheck_ == 0) {
// everything is healthy, show LED permanently on or off depending on setting
if (led_gpio_) {
#if ESP_ARDUINO_VERSION_MAJOR < 3
led_type_ ? neopixelWrite(led_gpio_, 0, hide_led_ ? 0 : RGB_LED_BRIGHTNESS, 0) : digitalWrite(led_gpio_, hide_led_ ? !LED_ON : LED_ON);
#else
led_type_ ? rgbLedWrite(led_gpio_, 0, hide_led_ ? 0 : RGB_LED_BRIGHTNESS, 0) : digitalWrite(led_gpio_, hide_led_ ? !LED_ON : LED_ON);
#endif
}
} else {
// turn off LED so we're ready to the flashes
if (led_gpio_) {
#if ESP_ARDUINO_VERSION_MAJOR < 3
led_type_ ? neopixelWrite(led_gpio_, 0, 0, 0) : digitalWrite(led_gpio_, !LED_ON);
#else
led_type_ ? rgbLedWrite(led_gpio_, 0, 0, 0) : digitalWrite(led_gpio_, !LED_ON);
#endif
}
}
}
}
}
// commands - takes static function pointers
// can be called via Console using 'call system <cmd>'
void System::commands_init() {
Command::add(EMSdevice::DeviceType::SYSTEM, F_(read), System::command_read, FL_(read_cmd), CommandFlag::ADMIN_ONLY);
Command::add(EMSdevice::DeviceType::SYSTEM, F_(send), System::command_send, FL_(send_cmd), CommandFlag::ADMIN_ONLY);
Command::add(EMSdevice::DeviceType::SYSTEM, F_(fetch), System::command_fetch, FL_(fetch_cmd), CommandFlag::ADMIN_ONLY);
Command::add(EMSdevice::DeviceType::SYSTEM, F_(restart), System::command_restart, FL_(restart_cmd), CommandFlag::ADMIN_ONLY);
Command::add(EMSdevice::DeviceType::SYSTEM, F_(format), System::command_format, FL_(format_cmd), CommandFlag::ADMIN_ONLY);
Command::add(EMSdevice::DeviceType::SYSTEM, F_(watch), System::command_watch, FL_(watch_cmd));
Command::add(EMSdevice::DeviceType::SYSTEM, F_(message), System::command_message, FL_(message_cmd));
#if defined(EMSESP_TEST)
Command::add(EMSdevice::DeviceType::SYSTEM, ("test"), System::command_test, FL_(test_cmd));
#endif
// these commands will return data in JSON format
Command::add(EMSdevice::DeviceType::SYSTEM, F("response"), System::command_response, FL_(commands_response));
// MQTT subscribe "ems-esp/system/#"
Mqtt::subscribe(EMSdevice::DeviceType::SYSTEM, "system/#", nullptr); // use empty function callback
}
// uses LED to show system health
// 1 x flash = the EMS bus is not connected
// 2 x flash = the network (wifi or ethernet) is not connected
// 3 x flash = both EMS bus and network are failing. This is a critical error!
void System::led_monitor() {
// we only need to run the LED healthcheck if there are errors
if (!healthcheck_ || !led_gpio_) {
return; // all good
}
static uint32_t led_long_timer_ = 1; // 1 will kick it off immediately
static uint32_t led_short_timer_ = 0;
static uint8_t led_flash_step_ = 0; // 0 means we're not in the short flash timer
auto current_time = uuid::get_uptime();
// first long pause before we start flashing
if (led_long_timer_ && (uint32_t)(current_time - led_long_timer_) >= HEALTHCHECK_LED_LONG_DUARATION) {
led_short_timer_ = current_time; // start the short timer
led_long_timer_ = 0; // stop long timer
led_flash_step_ = 1; // enable the short flash timer
}
// the flash timer which starts after the long pause
if (led_flash_step_ && (uint32_t)(current_time - led_short_timer_) >= HEALTHCHECK_LED_FLASH_DUARATION) {
led_long_timer_ = 0; // stop the long timer
led_short_timer_ = current_time;
static bool led_on_ = false;
if (++led_flash_step_ == 8) {
// reset the whole sequence
led_long_timer_ = uuid::get_uptime();
led_flash_step_ = 0;
#if ESP_ARDUINO_VERSION_MAJOR < 3
led_type_ ? neopixelWrite(led_gpio_, 0, 0, 0) : digitalWrite(led_gpio_, !LED_ON); // LED off
#else
led_type_ ? rgbLedWrite(led_gpio_, 0, 0, 0) : digitalWrite(led_gpio_, !LED_ON); // LED off
#endif
} else if (led_flash_step_ % 2) {
// handle the step events (on odd numbers 3,5,7,etc). see if we need to turn on a LED
// 1 flash is the EMS bus is not connected
// 2 flashes if the network (wifi or ethernet) is not connected
// 3 flashes is both the bus and the network are not connected. Then you know you're truly f*cked.
if (led_type_) {
if (led_flash_step_ == 3) {
if ((healthcheck_ & HEALTHCHECK_NO_NETWORK) == HEALTHCHECK_NO_NETWORK) {
#if ESP_ARDUINO_VERSION_MAJOR < 3
neopixelWrite(led_gpio_, RGB_LED_BRIGHTNESS, 0, 0); // red
#else
rgbLedWrite(led_gpio_, RGB_LED_BRIGHTNESS, 0, 0); // red
#endif
} else if ((healthcheck_ & HEALTHCHECK_NO_BUS) == HEALTHCHECK_NO_BUS) {
#if ESP_ARDUINO_VERSION_MAJOR < 3
neopixelWrite(led_gpio_, 0, 0, RGB_LED_BRIGHTNESS); // blue
#else
rgbLedWrite(led_gpio_, 0, 0, RGB_LED_BRIGHTNESS); // blue
#endif
}
}
if (led_flash_step_ == 5 && (healthcheck_ & HEALTHCHECK_NO_NETWORK) == HEALTHCHECK_NO_NETWORK) {
#if ESP_ARDUINO_VERSION_MAJOR < 3
neopixelWrite(led_gpio_, RGB_LED_BRIGHTNESS, 0, 0); // red
#else
rgbLedWrite(led_gpio_, RGB_LED_BRIGHTNESS, 0, 0); // red
#endif
}
if ((led_flash_step_ == 7) && ((healthcheck_ & HEALTHCHECK_NO_NETWORK) == HEALTHCHECK_NO_NETWORK)
&& ((healthcheck_ & HEALTHCHECK_NO_BUS) == HEALTHCHECK_NO_BUS)) {
#if ESP_ARDUINO_VERSION_MAJOR < 3
neopixelWrite(led_gpio_, 0, 0, RGB_LED_BRIGHTNESS); // blue
#else
rgbLedWrite(led_gpio_, 0, 0, RGB_LED_BRIGHTNESS); // blue
#endif
}
} else {
if ((led_flash_step_ == 3)
&& (((healthcheck_ & HEALTHCHECK_NO_NETWORK) == HEALTHCHECK_NO_NETWORK) || ((healthcheck_ & HEALTHCHECK_NO_BUS) == HEALTHCHECK_NO_BUS))) {
led_on_ = true;
}
if ((led_flash_step_ == 5) && ((healthcheck_ & HEALTHCHECK_NO_NETWORK) == HEALTHCHECK_NO_NETWORK)) {
led_on_ = true;
}
if ((led_flash_step_ == 7) && ((healthcheck_ & HEALTHCHECK_NO_NETWORK) == HEALTHCHECK_NO_NETWORK)
&& ((healthcheck_ & HEALTHCHECK_NO_BUS) == HEALTHCHECK_NO_BUS)) {
led_on_ = true;
}
if (led_on_) {
digitalWrite(led_gpio_, LED_ON); // LED off
}
}
} else {
// turn the led off after the flash, on even number count
if (led_on_) {
#if ESP_ARDUINO_VERSION_MAJOR < 3
led_type_ ? neopixelWrite(led_gpio_, 0, 0, 0) : digitalWrite(led_gpio_, !LED_ON);
#else
led_type_ ? rgbLedWrite(led_gpio_, 0, 0, 0) : digitalWrite(led_gpio_, !LED_ON);
#endif
led_on_ = false;
}
}
}
}
// Return the quality (Received Signal Strength Indicator) of the WiFi network as a %
// High quality: 90% ~= -55dBm
// Medium quality: 50% ~= -75dBm
// Low quality: 30% ~= -85dBm
// Unusable quality: 8% ~= -96dBm
int8_t System::wifi_quality(int8_t dBm) {
if (dBm <= -100) {
return 0;
}
if (dBm >= -50) {
return 100;
}
return 2 * (dBm + 100);
}
// print users to console
void System::show_users(uuid::console::Shell & shell) {
shell.printfln("Users:");
#ifndef EMSESP_STANDALONE
EMSESP::esp32React.getSecuritySettingsService()->read([&](SecuritySettings & securitySettings) {
for (const User & user : securitySettings.users) {
shell.printfln(" username: %s, password: %s, is_admin: %s", user.username.c_str(), user.password.c_str(), user.admin ? ("yes") : ("no"));
}
});
#endif
shell.println();
}
// shell command 'show system'
void System::show_system(uuid::console::Shell & shell) {
refreshHeapMem(); // refresh free heap and max alloc heap
shell.println();
shell.println("System:");
shell.printfln(" Version: %s", EMSESP_APP_VERSION);
#ifndef EMSESP_STANDALONE
shell.printfln(" Platform: %s (%s)", EMSESP_PLATFORM, ESP.getChipModel());
shell.printfln(" Model: %s", getBBQKeesGatewayDetails().c_str());
shell.printfln(" Partition: %s", esp_ota_get_running_partition()->label);
#endif
shell.printfln(" Language: %s", locale().c_str());
shell.printfln(" Board profile: %s", board_profile().c_str());
shell.printfln(" Uptime: %s", uuid::log::format_timestamp_ms(uuid::get_uptime_ms(), 3).c_str());
#ifndef EMSESP_STANDALONE
// https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-reference/system/misc_system_api.html
unsigned char mac_base[6] = {0};
esp_efuse_mac_get_default(mac_base);
esp_read_mac(mac_base, ESP_MAC_WIFI_STA);
shell.printfln(" Base MAC Address: %02X:%02X:%02X:%02X:%02X:%02X", mac_base[0], mac_base[1], mac_base[2], mac_base[3], mac_base[4], mac_base[5]);
shell.printfln(" SDK version: %s", ESP.getSdkVersion());
shell.printfln(" CPU frequency: %lu MHz", ESP.getCpuFreqMHz());
#if CONFIG_IDF_TARGET_ESP32S3 || CONFIG_IDF_TARGET_ESP32C3 || CONFIG_IDF_TARGET_ESP32S2
shell.printfln(" CPU temperature: %d °C", (int)temperature());
#endif
shell.printfln(" Free heap/Max alloc: %lu KB / %lu KB", getHeapMem(), getMaxAllocMem());
shell.printfln(" App used/free: %lu KB / %lu KB", appUsed(), appFree());
uint32_t FSused = LittleFS.usedBytes() / 1024;
shell.printfln(" FS used/free: %lu KB / %lu KB", FSused, FStotal() - FSused);
shell.printfln(" Flash size: %lu KB", ESP.getFlashChipSize() / 1024);
if (PSram()) {
shell.printfln(" PSRAM size/free: %lu KB / %lu KB", PSram(), ESP.getFreePsram() / 1024);
} else {
shell.printfln(" PSRAM: not available");
}
shell.println();
shell.println("Network:");
switch (WiFi.status()) {
case WL_IDLE_STATUS:
shell.printfln(" Status: Idle");
break;
case WL_NO_SSID_AVAIL:
shell.printfln(" Status: Network not found");
break;
case WL_SCAN_COMPLETED:
shell.printfln(" Status: Network scan complete");
break;
case WL_CONNECTED:
shell.printfln(" Status: WiFi connected");
shell.printfln(" SSID: %s", WiFi.SSID().c_str());
shell.printfln(" BSSID: %s", WiFi.BSSIDstr().c_str());
shell.printfln(" RSSI: %d dBm (%d %%)", WiFi.RSSI(), wifi_quality(WiFi.RSSI()));
char result[10];
shell.printfln(" TxPower: %s dBm", emsesp::Helpers::render_value(result, (double)(WiFi.getTxPower() / 4), 1));
shell.printfln(" MAC address: %s", WiFi.macAddress().c_str());
shell.printfln(" Hostname: %s", WiFi.getHostname());
shell.printfln(" IPv4 address: %s/%s", uuid::printable_to_string(WiFi.localIP()).c_str(), uuid::printable_to_string(WiFi.subnetMask()).c_str());
shell.printfln(" IPv4 gateway: %s", uuid::printable_to_string(WiFi.gatewayIP()).c_str());
shell.printfln(" IPv4 nameserver: %s", uuid::printable_to_string(WiFi.dnsIP()).c_str());
#if ESP_IDF_VERSION_MAJOR < 5
if (WiFi.localIPv6().toString() != "0000:0000:0000:0000:0000:0000:0000:0000" && WiFi.localIPv6().toString() != "::") {
shell.printfln(" IPv6 address: %s", uuid::printable_to_string(WiFi.localIPv6()).c_str());
}
#else
if (WiFi.linkLocalIPv6().toString() != "0000:0000:0000:0000:0000:0000:0000:0000" && WiFi.linkLocalIPv6().toString() != "::") {
shell.printfln(" IPv6 address: %s", uuid::printable_to_string(WiFi.linkLocalIPv6()).c_str());
}
#endif
break;
case WL_CONNECT_FAILED:
shell.printfln(" WiFi Network: Connection failed");
break;
case WL_CONNECTION_LOST:
shell.printfln(" WiFi Network: Connection lost");
break;
case WL_DISCONNECTED:
shell.printfln(" WiFi Network: Disconnected");
break;
// case WL_NO_SHIELD:
default:
shell.printfln(" WiFi MAC address: %s", WiFi.macAddress().c_str());
shell.printfln(" WiFi Network: not connected");
break;
}
// show Ethernet if connected
if (ethernet_connected_) {
shell.println();
shell.printfln(" Ethernet Status: connected");
shell.printfln(" Ethernet MAC address: %s", ETH.macAddress().c_str());
shell.printfln(" Hostname: %s", ETH.getHostname());
shell.printfln(" IPv4 address: %s/%s", uuid::printable_to_string(ETH.localIP()).c_str(), uuid::printable_to_string(ETH.subnetMask()).c_str());
shell.printfln(" IPv4 gateway: %s", uuid::printable_to_string(ETH.gatewayIP()).c_str());
shell.printfln(" IPv4 nameserver: %s", uuid::printable_to_string(ETH.dnsIP()).c_str());
#if ESP_IDF_VERSION_MAJOR < 5
if (ETH.localIPv6().toString() != "0000:0000:0000:0000:0000:0000:0000:0000" && ETH.localIPv6().toString() != "::") {
shell.printfln(" IPv6 address: %s", uuid::printable_to_string(ETH.localIPv6()).c_str());
}
#else
if (ETH.linkLocalIPv6().toString() != "0000:0000:0000:0000:0000:0000:0000:0000" && ETH.linkLocalIPv6().toString() != "::") {
shell.printfln(" IPv6 address: %s", uuid::printable_to_string(ETH.linkLocalIPv6()).c_str());
}
#endif
}
shell.println();
shell.println("Syslog:");
if (!syslog_enabled_) {
shell.printfln(" Syslog: disabled");
} else {
shell.printfln(" Syslog: %s", syslog_.started() ? "started" : "stopped");
shell.print(" ");
shell.printfln(F_(host_fmt), !syslog_host_.isEmpty() ? syslog_host_.c_str() : F_(unset));
shell.printfln(" IP: %s", uuid::printable_to_string(syslog_.ip()).c_str());
shell.print(" ");
shell.printfln(F_(port_fmt), syslog_port_);
shell.print(" ");
shell.printfln(F_(log_level_fmt), uuid::log::format_level_lowercase(static_cast<uuid::log::Level>(syslog_level_)));
shell.print(" ");
shell.printfln(F_(mark_interval_fmt), syslog_mark_interval_);
shell.printfln(" Queued: %d", syslog_.queued());
}
shell.println();
#endif
}
// see if there is a restore of an older settings file that needs to be applied
// note there can be only one file at a time
bool System::check_restore() {
bool reboot_required = false; // true if we need to reboot
#ifndef EMSESP_STANDALONE
File new_file = LittleFS.open(TEMP_FILENAME_PATH);
if (new_file) {
JsonDocument jsonDocument;
DeserializationError error = deserializeJson(jsonDocument, new_file);
if (error == DeserializationError::Ok && jsonDocument.is<JsonObject>()) {
JsonObject input = jsonDocument.as<JsonObject>();
// see what type of file it is, either settings or customization. anything else is ignored
std::string settings_type = input["type"];
if (settings_type == "settings") {
// It's a settings file. Parse each section separately. If it's system related it will require a reboot
reboot_required = saveSettings(NETWORK_SETTINGS_FILE, "Network", input);
reboot_required |= saveSettings(AP_SETTINGS_FILE, "AP", input);
reboot_required |= saveSettings(MQTT_SETTINGS_FILE, "MQTT", input);
reboot_required |= saveSettings(NTP_SETTINGS_FILE, "NTP", input);
reboot_required |= saveSettings(SECURITY_SETTINGS_FILE, "Security", input);
reboot_required |= saveSettings(EMSESP_SETTINGS_FILE, "Settings", input);
} else if (settings_type == "customizations") {
// it's a customization file, just replace it and there's no need to reboot
saveSettings(EMSESP_CUSTOMIZATION_FILE, "Customizations", input);
} else if (settings_type == "schedule") {
// it's a schedule file, just replace it and there's no need to reboot
saveSettings(EMSESP_SCHEDULER_FILE, "Schedule", input);
} else if (settings_type == "entities") {
// it's a entity file, just replace it and there's no need to reboot
saveSettings(EMSESP_CUSTOMENTITY_FILE, "Entities", input);
} else if (settings_type == "customSupport") {
// it's a custom support file - save it to /config
new_file.close();
if (LittleFS.rename(TEMP_FILENAME_PATH, EMSESP_CUSTOMSUPPORT_FILE)) {
LOG_INFO("Custom support file stored");
return false; // no need to reboot
} else {
LOG_ERROR("Failed to save custom support file");
}
} else {
LOG_ERROR("Unrecognized file uploaded");
}
} else {
LOG_ERROR("Unrecognized file uploaded, not json.");
}
// close (just in case) and remove the temp file
new_file.close();
LittleFS.remove(TEMP_FILENAME_PATH);
}
#endif
return reboot_required;
}
// handle upgrades from previous versions
// this function will not be called on a clean install, with no settings files yet created
// returns true if we need a reboot
bool System::check_upgrade(bool factory_settings) {
bool missing_version = true;
std::string settingsVersion;
if (!factory_settings) {
// fetch current version from settings file
EMSESP::webSettingsService.read([&](WebSettings const & settings) { settingsVersion = settings.version.c_str(); });
// see if we're missing a version, will be < 3.5.0b13 from Dec 23 2022
missing_version = (settingsVersion.empty() || (settingsVersion.length() < 5));
if (missing_version) {
LOG_WARNING("No version information found");
settingsVersion = "3.5.0"; // this was the last stable version without version info
}
} else {
settingsVersion = EMSESP_APP_VERSION; // use the current version
}
version::Semver200_version settings_version(settingsVersion);
if (!missing_version) {
LOG_DEBUG("Checking for version upgrades (settings file is from v%d.%d.%d-%s)",
settings_version.major(),
settings_version.minor(),
settings_version.patch(),
settings_version.prerelease().c_str());
}
if (factory_settings) {
return false; // fresh install, do nothing
}
version::Semver200_version this_version(EMSESP_APP_VERSION);
bool save_version = true;
// compare versions
if (this_version > settings_version) {
// we need to do an upgrade
if (missing_version) {
LOG_NOTICE("Upgrading to version %d.%d.%d-%s", this_version.major(), this_version.minor(), this_version.patch(), this_version.prerelease().c_str());
} else {
LOG_NOTICE("Upgrading from version %d.%d.%d-%s to %d.%d.%d-%s",
settings_version.major(),
settings_version.minor(),
settings_version.patch(),
settings_version.prerelease().c_str(),
this_version.major(),
this_version.minor(),
this_version.patch(),
this_version.prerelease().c_str());
}
// if we're coming from 3.4.4 or 3.5.0b14 which had no version stored then we need to apply new settings
if (missing_version) {
LOG_INFO("Upgrade: Setting MQTT Entity ID format to older v3.4 format (0)");
EMSESP::esp32React.getMqttSettingsService()->update([&](MqttSettings & mqttSettings) {
mqttSettings.entity_format = Mqtt::entityFormat::SINGLE_LONG; // use old Entity ID format from v3.4
return StateUpdateResult::CHANGED;
});
} else if (settings_version.major() == 3 && settings_version.minor() <= 6) {
EMSESP::esp32React.getMqttSettingsService()->update([&](MqttSettings & mqttSettings) {
if (mqttSettings.entity_format == 1) {
mqttSettings.entity_format = Mqtt::entityFormat::SINGLE_OLD; // use old Entity ID format from v3.6
LOG_INFO("Upgrade: Setting MQTT Entity ID format to v3.6 format (3)");
return StateUpdateResult::CHANGED;
} else if (mqttSettings.entity_format == 2) {
mqttSettings.entity_format = Mqtt::entityFormat::MULTI_OLD; // use old Entity ID format from v3.6
LOG_INFO("Upgrade: Setting MQTT Entity ID format to v3.6 format (4)");
return StateUpdateResult::CHANGED;
}
return StateUpdateResult::UNCHANGED;
});
}
// changes to Network
EMSESP::esp32React.getNetworkSettingsService()->update([&](NetworkSettings & networkSettings) {
// Network Settings Wifi tx_power is now using the value * 4.
if (networkSettings.tx_power == 20) {
networkSettings.tx_power = WIFI_POWER_19_5dBm; // use 19.5 as we don't have 20 anymore
LOG_INFO("Upgrade: Setting WiFi TX Power to Auto");
}
// force WiFi sleep to off (was default on < 3.7.0-dev-33)
networkSettings.nosleep = true;
LOG_INFO("Upgrade: Disabling WiFi nosleep");
return StateUpdateResult::CHANGED;
});
// changes to application settings
EMSESP::webSettingsService.update([&](WebSettings & settings) {
// force web buffer to 25 for those boards without psram
if (EMSESP::system_.PSram() == 0) {
settings.weblog_buffer = 25;
return StateUpdateResult::CHANGED;
}
return StateUpdateResult::UNCHANGED;
});
} else if (this_version < settings_version) {
// need downgrade
LOG_NOTICE("Downgrading to version %d.%d.%d-%s", this_version.major(), this_version.minor(), this_version.patch(), this_version.prerelease().c_str());
} else {
// same version, do nothing
save_version = false;
}
// if we did a change, set the new version and save it, then reboot
if (save_version) {
EMSESP::webSettingsService.update([&](WebSettings & settings) {
settings.version = EMSESP_APP_VERSION;
return StateUpdateResult::CHANGED;
});
// LOG_INFO("Upgrade: Setting version to %s", EMSESP_APP_VERSION);
return true; // need reboot
}
return false;
}
// convert settings file into json object
void System::extractSettings(const char * filename, const char * section, JsonObject output) {
#ifndef EMSESP_STANDALONE
File settingsFile = LittleFS.open(filename);
if (settingsFile) {
JsonDocument jsonDocument;
DeserializationError error = deserializeJson(jsonDocument, settingsFile);
if (error == DeserializationError::Ok && jsonDocument.is<JsonObject>()) {
JsonObject jsonObject = jsonDocument.as<JsonObject>();
JsonObject node = output[section].to<JsonObject>();
for (JsonPair kvp : jsonObject) {
node[kvp.key()] = kvp.value();
}
}
}
settingsFile.close();
#endif
}
// save settings file using input from a json object
bool System::saveSettings(const char * filename, const char * section, JsonObject input) {
#ifndef EMSESP_STANDALONE
JsonObject section_json = input[section];
if (section_json) {
File section_file = LittleFS.open(filename, "w");
if (section_file) {
LOG_INFO("Applying new uploaded %s data", section);
serializeJson(section_json, section_file);
section_file.close();
return true; // reboot required
}
}
#endif
return false; // not found
}
// set a entity of services 'network', 'settings', 'mqtt', etc.
bool System::command_service(const char * cmd, const char * value) {
bool ok = false;
bool b;
if (Helpers::value2bool(value, b)) {
if (!strcmp(cmd, "settings/showertimer")) {
EMSESP::webSettingsService.update([&](WebSettings & settings) {
settings.shower_timer = b;
return StateUpdateResult::CHANGED;
});
EMSESP::shower_.shower_timer(b);
ok = true;
} else if (!strcmp(cmd, "settings/showeralert")) {
EMSESP::webSettingsService.update([&](WebSettings & settings) {
settings.shower_alert = b;
return StateUpdateResult::CHANGED;
});
EMSESP::shower_.shower_alert(b);
ok = true;
} else if (!strcmp(cmd, "settings/hideled")) {
EMSESP::webSettingsService.update([&](WebSettings & settings) {
settings.hide_led = b;
return StateUpdateResult::CHANGED;
});
EMSESP::system_.hide_led(b);
ok = true;
} else if (!strcmp(cmd, "settings/analogenabled")) {
EMSESP::webSettingsService.update([&](WebSettings & settings) {
settings.analog_enabled = b;
return StateUpdateResult::CHANGED;
});
EMSESP::system_.analog_enabled(b);
ok = true;
} else if (!strcmp(cmd, "mqtt/enabled")) {
EMSESP::esp32React.getMqttSettingsService()->update([&](MqttSettings & Settings) {
Settings.enabled = b;
return StateUpdateResult::CHANGED;
});
ok = true;
} else if (!strcmp(cmd, "ap/enabled")) {
EMSESP::esp32React.getAPSettingsService()->update([&](APSettings & Settings) {
Settings.provisionMode = b ? 0 : 2;
return StateUpdateResult::CHANGED;
});
ok = true;
} else if (!strcmp(cmd, "ntp/enabled")) {
EMSESP::esp32React.getNTPSettingsService()->update([&](NTPSettings & Settings) {
Settings.enabled = b;
return StateUpdateResult::CHANGED;
});
ok = true;
} else if (!strcmp(cmd, "syslog/enabled")) {
EMSESP::webSettingsService.update([&](WebSettings & settings) {
settings.syslog_enabled = b;
return StateUpdateResult::CHANGED;
});
EMSESP::system_.syslog_enabled_ = b;
EMSESP::system_.syslog_init();
ok = true;
}
}
int n;
if (!ok && Helpers::value2number(value, n)) {
#ifndef EMSESP_STANDALONE
if (!strcmp(cmd, "fuse/mfg")) {
ok = esp_efuse_write_reg(EFUSE_BLK3, 0, (uint32_t)n) == ESP_OK;
ok ? LOG_INFO("fuse programed with value '%X': successful", n) : LOG_ERROR("fuse programed with value '%X': failed", n);
}
if (!strcmp(cmd, "fuse/mfgadd")) {
uint8_t reg = 0;
while (esp_efuse_read_reg(EFUSE_BLK3, reg) != 0 && reg < 7)
reg++;
ok = esp_efuse_write_reg(EFUSE_BLK3, reg, (uint32_t)n) == ESP_OK;
ok ? LOG_INFO("fuse %d programed with value '%X': successful", reg, n) : LOG_ERROR("fuse %d programed with value '%X': failed", reg, n);
return true;
}
#endif
}
if (ok) {
LOG_INFO("System command '%s' with value '%s'", cmd, value);
}
return ok;
}
// return back a system value
bool System::get_value_info(JsonObject output, const char * cmd) {
if (cmd == nullptr || strlen(cmd) == 0) {
LOG_ERROR("empty system command");
return false;
}
// check for hardcoded "info"/"value"
if (!strcmp(cmd, F_(info)) || !strcmp(cmd, F_(values))) {
return command_info("", 0, output);
}
// fetch all the data from the system in a different json
JsonDocument doc;
JsonObject root = doc.to<JsonObject>();
(void)command_info("", 0, root);
// list all entities
if (!strcmp(cmd, F_(entities))) {
for (JsonPair p : root) {
if (p.value().is<JsonObject>()) {
for (JsonPair p1 : p.value().as<JsonObject>()) {
JsonObject entity = output[std::string(p.key().c_str()) + "." + p1.key().c_str()].to<JsonObject>();
get_value_json(entity, p.key().c_str(), p1.key().c_str(), p1.value());
}
}
}
return true;
}
char * val = (char *)strstr(cmd, "/value");
if (val) {
*val = '\0';
}
char * slash = (char *)strchr(cmd, '/');
if (slash) {
*slash = '\0';
slash++;
}
// list values for a jsonObject in system, e.g. /api/system/network
if (!slash || !strcmp(slash, F_(info)) || !strcmp(slash, F_(values))) {
for (JsonPair p : root) {
if (Helpers::toLower(p.key().c_str()) == cmd && p.value().is<JsonObject>()) {
for (JsonPair p1 : p.value().as<JsonObject>()) {
output[p1.key().c_str()] = p1.value().as<std::string>();
}
return true;
}
}
return false;
}
// value info or api_data for a single value
// Loop through all the key-value pairs in root to find the key, case independent
if (slash) { // search the top level first
for (JsonPair p : root) {
if (p.value().is<JsonObject>() && Helpers::toLower(p.key().c_str()) == cmd) {
for (JsonPair p1 : p.value().as<JsonObject>()) {
if (Helpers::toLower(p1.key().c_str()) == slash && !p1.value().is<JsonObject>()) {
if (val) {
output["api_data"] = p1.value().as<std::string>();
return true;
}
get_value_json(output, p.key().c_str(), p1.key().c_str(), p1.value());
return true;
}
}
} // else skip, but we don't have value pairs in system root
}
}
return false;
}
void System::get_value_json(JsonObject output, const std::string & circuit, const std::string & name, JsonVariant val) {
output["name"] = name;
if (circuit.length()) {
output["circuit"] = circuit;
}
output["readable"] = true;
output["writeable"] = (name == "showerTimer" || name == "showerAlert" || name == "enabled" || name == "hideLed" || name == "analogEnabled");
output["visible"] = true;
if (val.is<bool>()) {
output["value"] = val.as<bool>();
output["type"] = "boolean";
} else if (val.is<float>() || val.is<int>()) {
output["value"] = val.as<float>();
output["type"] = "number";
} else {
output["value"] = val.as<std::string>();
output["type"] = "string";
}
}
// export status information including the device information
// http://ems-esp/api/system/info
bool System::command_info(const char * value, const int8_t id, JsonObject output) {
JsonObject node;
// System
node = output["system"].to<JsonObject>();
// prevent false-negatives in Unity tests every time the version changes
#if defined(EMSESP_UNITY)
node["version"] = "dev";
#else
node["version"] = EMSESP_APP_VERSION;
#endif
node["uptime"] = uuid::log::format_timestamp_ms(uuid::get_uptime_ms(), 3);
node["uptimeSec"] = uuid::get_uptime_sec();
#ifndef EMSESP_STANDALONE
node["platform"] = EMSESP_PLATFORM;
node["cpuType"] = ESP.getChipModel();
node["arduino"] = ARDUINO_VERSION;
node["sdk"] = ESP.getSdkVersion();
node["freeMem"] = getHeapMem();
node["maxAlloc"] = getMaxAllocMem();
node["freeCaps"] = heap_caps_get_free_size(MALLOC_CAP_8BIT) / 1024; // includes heap and psram
node["usedApp"] = EMSESP::system_.appUsed(); // kilobytes
node["freeApp"] = EMSESP::system_.appFree(); // kilobytes
node["partition"] = (const char *)esp_ota_get_running_partition()->label; // active partition
node["flash_chip_size"] = ESP.getFlashChipSize() / 1024; // kilobytes
#endif
node["resetReason"] = EMSESP::system_.reset_reason(0) + " / " + EMSESP::system_.reset_reason(1);
#ifndef EMSESP_STANDALONE
node["psram"] = (EMSESP::system_.PSram() > 0); // make boolean
if (EMSESP::system_.PSram()) {
node["psramSize"] = EMSESP::system_.PSram();
node["freePsram"] = ESP.getFreePsram() / 1024;
}
node["model"] = EMSESP::system_.getBBQKeesGatewayDetails();
#if CONFIG_IDF_TARGET_ESP32S3 || CONFIG_IDF_TARGET_ESP32C3 || CONFIG_IDF_TARGET_ESP32S2
node["temperature"] = EMSESP::system_.temperature();
#endif
#endif
// Network Status
node = output["network"].to<JsonObject>();
#ifndef EMSESP_STANDALONE
if (EMSESP::system_.ethernet_connected()) {
node["network"] = "Ethernet";
node["hostname"] = ETH.getHostname();
// node["MAC"] = ETH.macAddress();
// node["IPv4 address"] = uuid::printable_to_string(ETH.localIP()) + "/" + uuid::printable_to_string(ETH.subnetMask());
// node["IPv4 gateway"] = uuid::printable_to_string(ETH.gatewayIP());
// node["IPv4 nameserver"] = uuid::printable_to_string(ETH.dnsIP());
// if (ETH.localIPv6().toString() != "0000:0000:0000:0000:0000:0000:0000:0000") {
// node["IPv6 address"] = uuid::printable_to_string(ETH.localIPv6());
// }
} else if (WiFi.status() == WL_CONNECTED) {
node["network"] = "WiFi";
node["hostname"] = WiFi.getHostname();
node["RSSI"] = WiFi.RSSI();
node["WIFIReconnects"] = EMSESP::esp32React.getWifiReconnects();
// node["MAC"] = WiFi.macAddress();
// node["IPv4 address"] = uuid::printable_to_string(WiFi.localIP()) + "/" + uuid::printable_to_string(WiFi.subnetMask());
// node["IPv4 gateway"] = uuid::printable_to_string(WiFi.gatewayIP());
// node["IPv4 nameserver"] = uuid::printable_to_string(WiFi.dnsIP());
// if (WiFi.localIPv6().toString() != "0000:0000:0000:0000:0000:0000:0000:0000") {
// node["IPv6 address"] = uuid::printable_to_string(WiFi.localIPv6());
// }
}
#else
// for testing
node["network"] = "WiFi";
node["hostname"] = "ems-esp";
node["RSSI"] = -23;
#endif
EMSESP::esp32React.getNetworkSettingsService()->read([&](NetworkSettings & settings) {
if (WiFi.status() == WL_CONNECTED && !settings.bssid.isEmpty()) {
node["BSSID"] = "set"; // we don't disclose the name
}
node["TxPowerSetting"] = settings.tx_power;
node["staticIP"] = settings.staticIPConfig;
node["lowBandwidth"] = settings.bandwidth20;
node["disableSleep"] = settings.nosleep;
node["enableMDNS"] = settings.enableMDNS;
node["enableCORS"] = settings.enableCORS;
if (settings.enableCORS) {
node["CORSOrigin"] = settings.CORSOrigin;
}
});
// NTP status
node = output["ntp"].to<JsonObject>();
EMSESP::esp32React.getNTPSettingsService()->read([&](const NTPSettings & settings) {
#ifndef EMSESP_STANDALONE
node["enabled"] = settings.enabled;
#else
node["enabled"] = true;
#endif
node["server"] = settings.server;
node["tzLabel"] = settings.tzLabel;
});
#ifndef EMSESP_STANDALONE
node["timestamp"] = time(nullptr);
#endif
node["NTPStatus"] = EMSESP::system_.ntp_connected() ? "connected" : "disconnected";
// AP Status
node = output["ap"].to<JsonObject>();
EMSESP::esp32React.getAPSettingsService()->read([&](const APSettings & settings) {
const char * pM[] = {"always", "disconnected", "never"};
node["provisionMode"] = pM[settings.provisionMode];
node["ssid"] = settings.ssid;
#ifndef EMSESP_STANDALONE
node["security"] = settings.password.length() ? "wpa2" : "open";
node["channel"] = settings.channel;
node["ssidHidden"] = settings.ssidHidden;
node["maxClients"] = settings.maxClients;
node["localIP"] = settings.localIP.toString();
node["gatewayIP"] = settings.gatewayIP.toString();
node["subnetMask"] = settings.subnetMask.toString();
#endif
});
// MQTT Status
node = output["mqtt"].to<JsonObject>();
node["MQTTStatus"] = Mqtt::connected() ? F_(connected) : F_(disconnected);
if (Mqtt::enabled()) {
node["MQTTPublishes"] = Mqtt::publish_count();
node["MQTTQueued"] = Mqtt::publish_queued();
node["MQTTPublishFails"] = Mqtt::publish_fails();
node["MQTTReconnects"] = Mqtt::connect_count();
}
EMSESP::esp32React.getMqttSettingsService()->read([&](const MqttSettings & settings) {
node["enabled"] = settings.enabled;
node["clientID"] = settings.clientId;
node["keepAlive"] = settings.keepAlive;
node["cleanSession"] = settings.cleanSession;
node["entityFormat"] = settings.entity_format;
node["base"] = settings.base;
node["discoveryPrefix"] = settings.discovery_prefix;
node["discoveryType"] = settings.discovery_type;
node["nestedFormat"] = settings.nested_format;
node["haEnabled"] = settings.ha_enabled;
node["mqttQos"] = settings.mqtt_qos;
node["mqttRetain"] = settings.mqtt_retain;
node["publishTimeHeartbeat"] = settings.publish_time_heartbeat;
node["publishTimeBoiler"] = settings.publish_time_boiler;
node["publishTimeThermostat"] = settings.publish_time_thermostat;
node["publishTimeSolar"] = settings.publish_time_solar;
node["publishTimeMixer"] = settings.publish_time_mixer;
node["publishTimeWater"] = settings.publish_time_water;
node["publishTimeOther"] = settings.publish_time_other;
node["publishTimeSensor"] = settings.publish_time_sensor;
node["publishSingle"] = settings.publish_single;
node["publish2command"] = settings.publish_single2cmd;
node["sendResponse"] = settings.send_response;
});
// Syslog Status
node = output["syslog"].to<JsonObject>();
node["enabled"] = EMSESP::system_.syslog_enabled_;
#ifndef EMSESP_STANDALONE
if (EMSESP::system_.syslog_enabled_) {
node["syslogStarted"] = syslog_.started();
node["syslogLevel"] = FL_(list_syslog_level)[syslog_.log_level() + 1];
node["syslogIP"] = syslog_.ip();
node["syslogQueue"] = syslog_.queued();
}
#endif
// Sensor Status
node = output["sensor"].to<JsonObject>();
if (EMSESP::sensor_enabled()) {
node["temperatureSensors"] = EMSESP::temperaturesensor_.count_entities();
node["temperatureSensorReads"] = EMSESP::temperaturesensor_.reads();
node["temperatureSensorFails"] = EMSESP::temperaturesensor_.fails();
}
if (EMSESP::analog_enabled()) {
node["analogSensors"] = EMSESP::analogsensor_.count_entities();
node["analogSensorReads"] = EMSESP::analogsensor_.reads();
node["analogSensorFails"] = EMSESP::analogsensor_.fails();
}
// API Status
node = output["api"].to<JsonObject>();
// if we're generating test data for Unit Tests we dont want to count these API calls as it will pollute the data response
#if defined(EMSESP_UNITY)
node["APICalls"] = 0;
node["APIFails"] = 0;
#else
node["APICalls"] = WebAPIService::api_count();
node["APIFails"] = WebAPIService::api_fails();
#endif
// EMS Bus Status
node = output["bus"].to<JsonObject>();
switch (EMSESP::bus_status()) {
case EMSESP::BUS_STATUS_OFFLINE:
node["busStatus"] = "disconnected";
break;
case EMSESP::BUS_STATUS_TX_ERRORS:
node["busStatus"] = "connected, tx issues - try a different Tx Mode";
break;
case EMSESP::BUS_STATUS_CONNECTED:
node["busStatus"] = "connected";
break;
default:
node["busStatus"] = "unknown";
break;
}
node["busProtocol"] = EMSbus::is_ht3() ? "HT3" : "Buderus";
node["busTelegramsReceived"] = EMSESP::rxservice_.telegram_count();
node["busReads"] = EMSESP::txservice_.telegram_read_count();
node["busWrites"] = EMSESP::txservice_.telegram_write_count();
node["busIncompleteTelegrams"] = EMSESP::rxservice_.telegram_error_count();
node["busReadsFailed"] = EMSESP::txservice_.telegram_read_fail_count();
node["busWritesFailed"] = EMSESP::txservice_.telegram_write_fail_count();
node["busRxLineQuality"] = EMSESP::rxservice_.quality();
node["busTxLineQuality"] = (EMSESP::txservice_.read_quality() + EMSESP::txservice_.write_quality()) / 2;
// Settings
node = output["settings"].to<JsonObject>();
EMSESP::webSettingsService.read([&](const WebSettings & settings) {
node["boardProfile"] = settings.board_profile;
node["locale"] = settings.locale;
node["txMode"] = settings.tx_mode;
node["emsBusID"] = settings.ems_bus_id;
node["showerTimer"] = settings.shower_timer;
node["showerMinDuration"] = settings.shower_min_duration; // seconds
node["showerAlert"] = settings.shower_alert;
if (settings.shower_alert) {
node["showerAlertColdshot"] = settings.shower_alert_coldshot; // seconds
node["showerAlertTrigger"] = settings.shower_alert_trigger; // minutes
}
if (settings.board_profile == "CUSTOM") {
node["phyType"] = settings.phy_type;
if (settings.phy_type != PHY_type::PHY_TYPE_NONE) {
node["ethPower"] = settings.eth_power;
node["ethPhyAddr"] = settings.eth_phy_addr;
node["ethClockMmode"] = settings.eth_clock_mode;
}
node["rxGPIO"] = EMSESP::system_.rx_gpio_;
node["txGPIO"] = EMSESP::system_.tx_gpio_;
node["dallasGPIO"] = EMSESP::system_.dallas_gpio_;
node["pbuttonGPIO"] = EMSESP::system_.pbutton_gpio_;
node["ledGPIO"] = EMSESP::system_.led_gpio_;
node["ledType"] = settings.led_type;
node["ledType"] = settings.led_type;
}
node["hideLed"] = settings.hide_led;
node["noTokenApi"] = settings.notoken_api;
node["readonlyMode"] = settings.readonly_mode;
node["fahrenheit"] = settings.fahrenheit;
node["dallasParasite"] = settings.dallas_parasite;
node["boolFormat"] = settings.bool_format;
node["boolDashboard"] = settings.bool_dashboard;
node["enumFormat"] = settings.enum_format;
node["analogEnabled"] = settings.analog_enabled;
node["telnetEnabled"] = settings.telnet_enabled;
node["maxWebLogBuffer"] = settings.weblog_buffer;
/*
#if defined(EMSESP_UNITY)
node["webLogBuffer"] = 0;
#else
node["webLogBuffer"] = EMSESP::webLogService.num_log_messages();
#endif
*/
node["modbusEnabled"] = settings.modbus_enabled;
node["forceHeatingOff"] = settings.boiler_heatingoff;
node["developerMode"] = settings.developer_mode;
});
// Devices - show EMS devices if we have any
JsonArray devices = output["devices"].to<JsonArray>();
if (!EMSESP::emsdevices.empty()) {
for (const auto & device_class : EMSFactory::device_handlers()) {
for (const auto & emsdevice : EMSESP::emsdevices) {
if (emsdevice && (emsdevice->device_type() == device_class.first)) {
JsonObject obj = devices.add<JsonObject>();
obj["type"] = emsdevice->device_type_name(); // non translated name
obj["name"] = emsdevice->name(); // custom name
obj["deviceID"] = Helpers::hextoa(emsdevice->device_id());
obj["productID"] = emsdevice->product_id();
obj["brand"] = emsdevice->brand_to_char();
obj["version"] = emsdevice->version();
obj["entities"] = emsdevice->count_entities();
char result[1000];
(void)emsdevice->show_telegram_handlers(result, sizeof(result), EMSdevice::Handlers::RECEIVED);
if (result[0] != '\0') {
obj["handlersReceived"] = result; // don't show handlers if there aren't any
}
(void)emsdevice->show_telegram_handlers(result, sizeof(result), EMSdevice::Handlers::FETCHED);
if (result[0] != '\0') {
obj["handlersFetched"] = result;
}
(void)emsdevice->show_telegram_handlers(result, sizeof(result), EMSdevice::Handlers::PENDING);
if (result[0] != '\0') {
obj["handlersPending"] = result;
}
(void)emsdevice->show_telegram_handlers(result, sizeof(result), EMSdevice::Handlers::IGNORED);
if (result[0] != '\0') {
obj["handlersIgnored"] = result;
}
}
}
}
}
// Also show EMSESP devices if we have any
if (EMSESP::temperaturesensor_.count_entities()) {
JsonObject obj = devices.add<JsonObject>();
obj["type"] = F_(temperaturesensor);
obj["name"] = F_(temperaturesensor);
obj["entities"] = EMSESP::temperaturesensor_.count_entities();
}
if (EMSESP::analogsensor_.count_entities()) {
JsonObject obj = devices.add<JsonObject>();
obj["type"] = F_(analogsensor);
obj["name"] = F_(analogsensor);
obj["entities"] = EMSESP::analogsensor_.count_entities();
}
if (EMSESP::webSchedulerService.count_entities()) {
JsonObject obj = devices.add<JsonObject>();
obj["type"] = F_(scheduler);
obj["name"] = F_(scheduler);
obj["entities"] = EMSESP::webSchedulerService.count_entities();
}
if (EMSESP::webCustomEntityService.count_entities()) {
JsonObject obj = devices.add<JsonObject>();
obj["type"] = F_(custom);
obj["name"] = F_(custom);
obj["entities"] = EMSESP::webCustomEntityService.count_entities();
}
return true; // this function always returns true!
}
#if defined(EMSESP_TEST)
// run a test, e.g. http://ems-esp/api?device=system&cmd=test&data=boiler
bool System::command_test(const char * value, const int8_t id) {
if (value) {
return Test::test(value, id);
} else {
return false;
}
}
#endif
// takes a board profile and populates a data array with GPIO configurations
// returns false if profile is unknown
//
// data = led, dallas, rx, tx, button, phy_type, eth_power, eth_phy_addr, eth_clock_mode, led_type
//
// clock modes:
// 0 = RMII clock input to GPIO0
// 1 = RMII clock output from GPIO0
// 2 = RMII clock output from GPIO16
// 3 = RMII clock output from GPIO17, for 50hz inverted clock
bool System::load_board_profile(std::vector<int8_t> & data, const std::string & board_profile) {
if (board_profile == "S32") {
data = {2, 18, 23, 5, 0, PHY_type::PHY_TYPE_NONE, 0, 0, 0, 0}; // BBQKees Gateway S32
} else if (board_profile == "E32") {
data = {2, 4, 5, 17, 33, PHY_type::PHY_TYPE_LAN8720, 16, 1, 0, 0}; // BBQKees Gateway E32
} else if (board_profile == "E32V2") {
data = {2, 14, 4, 5, 34, PHY_type::PHY_TYPE_LAN8720, 15, 0, 1, 0}; // BBQKees Gateway E32 V2
} else if (board_profile == "E32V2_2") {
data = {32, 14, 4, 5, 34, PHY_type::PHY_TYPE_LAN8720, 15, 0, 1, 1}; // BBQKees Gateway E32 V2.2, rgb led
} else if (board_profile == "MH-ET") {
data = {2, 18, 23, 5, 0, PHY_type::PHY_TYPE_NONE, 0, 0, 0, 0}; // MH-ET Live D1 Mini
} else if (board_profile == "NODEMCU") {
data = {2, 18, 23, 5, 0, PHY_type::PHY_TYPE_NONE, 0, 0, 0, 0}; // NodeMCU 32S
} else if (board_profile == "LOLIN") {
data = {2, 18, 17, 16, 0, PHY_type::PHY_TYPE_NONE, 0, 0, 0, 0}; // Lolin D32
} else if (board_profile == "OLIMEX") {
data = {0, 0, 36, 4, 34, PHY_type::PHY_TYPE_LAN8720, -1, 0, 0, 0}; // Olimex ESP32-EVB (uses U1TXD/U1RXD/BUTTON, no LED or Temperature sensor)
} else if (board_profile == "OLIMEXPOE") {
data = {0, 0, 36, 4, 34, PHY_type::PHY_TYPE_LAN8720, 12, 0, 3, 0}; // Olimex ESP32-POE
} else if (board_profile == "C3MINI") {
#if defined(BOARD_C3_MINI_V1)
data = {7, 1, 4, 5, 9, PHY_type::PHY_TYPE_NONE, 0, 0, 0, 0}; // Lolin C3 Mini V1
#else
data = {7, 1, 4, 5, 9, PHY_type::PHY_TYPE_NONE, 0, 0, 0, 1}; // Lolin C3 Mini with RGB Led
#endif
} else if (board_profile == "S2MINI") {
data = {15, 7, 11, 12, 0, PHY_type::PHY_TYPE_NONE, 0, 0, 0, 0}; // Lolin S2 Mini
} else if (board_profile == "S3MINI") {
data = {17, 18, 8, 5, 0, PHY_type::PHY_TYPE_NONE, 0, 0, 0, 0}; // Liligo S3
} else if (board_profile == "S32S3") {
data = {2, 18, 5, 17, 0, PHY_type::PHY_TYPE_NONE, 0, 0, 0, 0}; // BBQKees Gateway S3
} else if (board_profile == "CUSTOM") {
// send back current values
data = {(int8_t)EMSESP::system_.led_gpio_,
(int8_t)EMSESP::system_.dallas_gpio_,
(int8_t)EMSESP::system_.rx_gpio_,
(int8_t)EMSESP::system_.tx_gpio_,
(int8_t)EMSESP::system_.pbutton_gpio_,
(int8_t)EMSESP::system_.phy_type_,
EMSESP::system_.eth_power_,
(int8_t)EMSESP::system_.eth_phy_addr_,
(int8_t)EMSESP::system_.eth_clock_mode_,
(int8_t)EMSESP::system_.led_type_};
} else {
LOG_DEBUG("Couldn't identify board profile %s", board_profile.c_str());
return false; // unknown, return false
}
// LOG_DEBUG("Found data for board profile %s", board_profile.c_str());
return true;
}
// format command - factory reset, removing all config files
bool System::command_format(const char * value, const int8_t id) {
LOG_INFO("Formatting FS, removing all config files");
#ifndef EMSESP_STANDALONE
if (LittleFS.format()) {
LOG_INFO("FS formatted successfully");
} else {
LOG_ERROR("Format failed");
}
#endif
// restart will be handled by the main loop
EMSESP::system_.systemStatus(SYSTEM_STATUS::SYSTEM_STATUS_RESTART_REQUESTED);
return true;
}
// restart command - perform a hard reset (system reboot)
bool System::command_restart(const char * value, const int8_t id) {
if (id == 0) {
// if it has an id then it's a web call and we need to queue the restart
// default id is -1 when calling /api/system/restart directly for example
LOG_INFO("Preparing to restart system");
EMSESP::system_.systemStatus(SYSTEM_STATUS::SYSTEM_STATUS_PENDING_RESTART);
return true;
}
LOG_INFO("Restarting system immediately");
// restart will be handled by the main loop
EMSESP::system_.systemStatus(SYSTEM_STATUS::SYSTEM_STATUS_RESTART_REQUESTED);
return true;
}
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wswitch"
std::string System::reset_reason(uint8_t cpu) const {
#ifndef EMSESP_STANDALONE
switch (rtc_get_reset_reason(cpu)) {
case 1:
return ("Power on reset");
// case 2 :reset pin not on esp32
case 3:
return ("Software reset");
case 4: // not on S2, C3
return ("Legacy watch dog reset");
case 5:
return ("Deep sleep reset");
case 6: // not on S2, C3
return ("Reset by SDIO");
case 7:
return ("Timer group0 watch dog reset");
case 8:
return ("Timer group1 watch dog reset");
case 9:
return ("RTC watch dog reset");
case 10:
return ("Intrusion reset CPU");
case 11:
return ("Timer group reset CPU");
case 12:
return ("Software reset CPU");
case 13:
return ("RTC watch dog reset: CPU");
case 14: // not on S2, C3
return ("APP CPU reset by PRO CPU");
case 15:
return ("Brownout reset");
case 16:
return ("RTC watch dog reset: CPU+RTC");
default:
break;
}
#endif
return "Unknown";
}
#pragma GCC diagnostic pop
// set NTP status
void System::ntp_connected(bool b) {
if (b != ntp_connected_) {
if (b) {
LOG_INFO("NTP connected");
} else {
LOG_WARNING("NTP disconnected"); // if turned off report it
}
}
ntp_connected_ = b;
ntp_last_check_ = b ? uuid::get_uptime_sec() : 0;
}
// get NTP status
bool System::ntp_connected() {
// timeout 2 hours, ntp sync is normally every hour.
if ((uuid::get_uptime_sec() - ntp_last_check_ > 7201) && ntp_connected_) {
ntp_connected(false);
}
return ntp_connected_;
}
// see if its a BBQKees Gateway by checking the nvs values
String System::getBBQKeesGatewayDetails(uint8_t detail) {
#ifndef EMSESP_STANDALONE
/*
if (!EMSESP::nvs_.isKey("mfg")) {
return "";
}
// mfg can be either "BBQKees" or "BBQKees Electronics"
auto mfg = EMSESP::nvs_.getString("mfg");
if (mfg) {
if (!mfg.startsWith("BBQKees")) {
return "";
}
}
return "BBQKees Gateway Model " + EMSESP::nvs_.getString("model") + " v" + EMSESP::nvs_.getString("hwrevision") + "/" + EMSESP::nvs_.getString("batch");
*/
union {
struct {
uint32_t no : 4;
uint32_t month : 4;
uint32_t year : 8;
uint32_t rev_minor : 4;
uint32_t rev_major : 4;
uint32_t model : 4;
uint32_t mfg : 4;
};
uint32_t reg;
} gw;
for (uint8_t reg = 0; reg < 8; reg++) {
gw.reg = esp_efuse_read_reg(EFUSE_BLK3, reg);
if (reg == 7 || esp_efuse_read_reg(EFUSE_BLK3, reg + 1) == 0)
break;
}
const char * mfg[] = {"unknown", "BBQKees Electronics", "", "", "", "", "", ""};
const char * model[] = {"unknown", "S3", "E32V2", "E32V2.2", "S32", "E32", "", "", ""};
const char * board[] = {"CUSTOM", "S32S3", "E32V2", "E32V2_2", "S32", "E32", "", "", ""};
switch (detail) {
case FUSE_VALUE::MFG:
return gw.mfg < 2 ? String(mfg[gw.mfg]) : "unknown";
case FUSE_VALUE::MODEL:
return gw.model < 6 ? String(model[gw.model]) : "unknown";
case FUSE_VALUE::BOARD:
return gw.model < 6 ? String(board[gw.model]) : board_profile_;
case FUSE_VALUE::REV:
return String(gw.rev_major) + "." + String(gw.rev_minor);
case FUSE_VALUE::BATCH:
return String(2000 + gw.year) + (gw.month < 10 ? "0" : "") + String(gw.month) + String(gw.no);
case FUSE_VALUE::FUSE:
return "0x" + String(gw.reg, 16);
case FUSE_VALUE::ALL:
default:
break;
}
if (!gw.reg || gw.mfg > 1 || gw.model > 5) {
return "";
}
return String(mfg[gw.mfg]) + " " + String(model[gw.model]) + " rev." + String(gw.rev_major) + "." + String(gw.rev_minor) + "/" + String(2000 + gw.year)
+ (gw.month < 10 ? "0" : "") + String(gw.month) + String(gw.no);
#else
return "";
#endif
}
// Stream from an URL and send straight to OTA uploader service.
//
// This function needs to be called twice, 1st pass once with a url to persist it, 2nd pass with no arguments to start the upload
// This is to avoid timeouts in callback functions, like calling from a web hook.
bool System::uploadFirmwareURL(const char * url) {
#ifndef EMSESP_STANDALONE
static String saved_url;
if (url && strlen(url) > 0) {
// if the passed URL is "reset" abort the current upload. This is called when an error happens during OTA
if (strncmp(url, "reset", 5) == 0) {
LOG_DEBUG("Firmware upload - resetting");
saved_url.clear();
return true;
}
// given a URL to download from, save it ready for the 2nd pass
saved_url = url;
LOG_INFO("Firmware location: %s", saved_url.c_str());
EMSESP::system_.systemStatus(SYSTEM_STATUS::SYSTEM_STATUS_PENDING_UPLOAD); // we're ready to start the upload
return true;
}
// check we have a valid URL from the 1st pass
if (saved_url.isEmpty()) {
LOG_ERROR("Firmware upload failed - invalid URL");
return false; // error
}
Shell::loop_all(); // flush log buffers so latest messages are shown in console
// Configure temporary client
HTTPClient http;
http.setFollowRedirects(HTTPC_STRICT_FOLLOW_REDIRECTS); // important for GitHub 302's
http.setTimeout(8000);
http.useHTTP10(true); // use HTTP/1.0 for update since the update handler does not support any transfer Encoding
http.begin(saved_url);
// start a connection, returns -1 if fails
int httpCode = http.GET();
if (httpCode != HTTP_CODE_OK) {
LOG_ERROR("Firmware upload failed - HTTP code %d", httpCode);
http.end();
return false; // error
}
// check we have enough space for the upload in the ota partition
int firmware_size = http.getSize();
LOG_INFO("Firmware uploading (size: %d bytes). Please wait...", firmware_size);
if (!Update.begin(firmware_size)) {
LOG_ERROR("Firmware upload failed - no space");
http.end();
return false; // error
}
Shell::loop_all(); // flush log buffers so latest messages are shown in console
// we're about to start the upload, set the status so the Web System Monitor spots it
EMSESP::system_.systemStatus(SYSTEM_STATUS::SYSTEM_STATUS_UPLOADING);
// TODO do we need to stop the UART first with EMSuart::stop() ?
// set a callback so we can monitor progress in the WebUI
Update.onProgress([](size_t progress, size_t total) { EMSESP::system_.systemStatus(SYSTEM_STATUS::SYSTEM_STATUS_UPLOADING + (progress * 100 / total)); });
// get tcp stream and send it to Updater
WiFiClient * stream = http.getStreamPtr();
if (Update.writeStream(*stream) != firmware_size) {
LOG_ERROR("Firmware upload failed - size differences");
http.end();
EMSESP::system_.systemStatus(SYSTEM_STATUS::SYSTEM_STATUS_ERROR_UPLOAD);
return false; // error
}
if (!Update.end(true)) {
LOG_ERROR("Firmware upload failed - general error");
http.end();
EMSESP::system_.systemStatus(SYSTEM_STATUS::SYSTEM_STATUS_ERROR_UPLOAD);
return false; // error
}
// finished with upload
http.end();
saved_url.clear(); // prevent from downloading again
LOG_INFO("Firmware uploaded successfully. Restarting...");
EMSESP::system_.systemStatus(SYSTEM_STATUS::SYSTEM_STATUS_PENDING_RESTART);
#endif
return true; // OK
}
// read command, e.g. read <deviceID> <type ID> [offset] [length] from console or API
// from Console use quotes so: call system read "<deviceID> <type ID> [offset] [length]"
bool System::readCommand(const char * data) {
if (!data) {
return false;
}
// extract <deviceID> <type ID> [offset] [length] from string
char * p;
char value[11];
// make a copy so we can iterate, max 15 chars (XX XXXX XX XX)
char data_args[15];
strlcpy(data_args, data, sizeof(data_args));
uint8_t device_id = 0; // is in hex
uint16_t type_id = 0; // is in hex
uint8_t length = 0;
uint8_t offset = 0;
// first check deviceID
if ((p = strtok(data_args, " ,"))) { // delimiter comma or space
strlcpy(value, p, sizeof(value)); // get string
device_id = (uint8_t)Helpers::hextoint(value); // convert hex to int
if (!EMSESP::valid_device(device_id)) {
LOG_ERROR("Invalid device ID (0x%02X) in read command", device_id);
return false; // invalid device
}
}
// iterate until end
uint8_t num_args = 0;
while (p != 0) {
if ((p = strtok(nullptr, " ,"))) { // delimiter comma or space
strlcpy(value, p, sizeof(value)); // get string
if (num_args == 0) {
type_id = (uint16_t)Helpers::hextoint(value); // convert hex to int
} else if (num_args == 1) {
offset = Helpers::atoint(value); // decimal
} else if (num_args == 2) {
length = Helpers::atoint(value); // decimal
}
num_args++;
}
}
if (num_args == 0) {
return false; // invalid number of arguments
}
EMSESP::send_read_request(type_id, device_id, offset, length, true);
EMSESP::set_read_id(type_id);
return true;
}
// system read command
bool System::command_read(const char * value, const int8_t id) {
return readCommand(value);
}
// set the system status code - SYSTEM_STATUS in system.h
void System::systemStatus(uint8_t status_code) {
systemStatus_ = status_code;
// LOG_DEBUG("Setting System status code %d", status_code);
}
uint8_t System::systemStatus() {
return systemStatus_;
}
// takes a string range like "6-11, 1, 23, 24-48" which has optional ranges and single values and converts to a vector of ints
std::vector<uint8_t> System::string_range_to_vector(const std::string & range) {
std::vector<uint8_t> gpios;
std::string::size_type pos = 0;
std::string::size_type prev = 0;
auto process_part = [&gpios](std::string part) {
// trim whitespace
part.erase(0, part.find_first_not_of(" \t"));
part.erase(part.find_last_not_of(" \t") + 1);
// check if it's a range (contains '-')
std::string::size_type dash_pos = part.find('-');
if (dash_pos != std::string::npos) {
// it's a range like "6-11"
int start = std::stoi(part.substr(0, dash_pos));
int end = std::stoi(part.substr(dash_pos + 1));
for (int i = start; i <= end; i++) {
gpios.push_back(static_cast<uint8_t>(i));
}
} else {
gpios.push_back(static_cast<uint8_t>(std::stoi(part)));
}
};
while ((pos = range.find(',', prev)) != std::string::npos) {
process_part(range.substr(prev, pos - prev));
prev = pos + 1;
}
// handle the last part
process_part(range.substr(prev));
return gpios;
}
// initialize a list of valid GPIOs based on the ESP32 board
// notes:
// - we allow 0, which is used on some board for the button
// - we also allow input only pins are accepted (34-39) on some boards
// - and allow pins 33-38 for octal SPI for 32M vchip version on some boards
void System::set_valid_system_gpios(bool exclude_used) {
valid_system_gpios_.clear(); // reset system list
used_gpios_.clear(); // reset used list
// get free gpios based on board/platform type
#if CONFIG_IDF_TARGET_ESP32C3
// https://www.wemos.cc/en/latest/c3/c3_mini.html
valid_gpios_ = string_range_to_vector("0-10");
#elif CONFIG_IDF_TARGET_ESP32S2
valid_gpios_ = string_range_to_vector("0-14, 19, 20, 21, 33-38, 45, 46");
#elif CONFIG_IDF_TARGET_ESP32S3
valid_gpios_ = string_range_to_vector("0-2, 4-14, 17, 18, 21, 33-38, 45, 46");
#elif CONFIG_IDF_TARGET_ESP32 || defined(EMSESP_STANDALONE)
valid_system_gpios_ = string_range_to_vector("0, 2, 4, 5, 12-15, 18, 19, 23, 25-27, 32-39");
#else
#endif
#if CONFIG_IDF_TARGET_ESP32
if (ESP.getPsramSize() > 0) {
// if psram is enabled remove pins 16 and 17 from the list, if set
valid_system_gpios_.erase(std::remove(valid_system_gpios_.begin(), valid_system_gpios_.end(), 16), valid_system_gpios_.end());
valid_system_gpios_.erase(std::remove(valid_system_gpios_.begin(), valid_system_gpios_.end(), 17), valid_system_gpios_.end());
}
#endif
}
// check if a pin is valid ESP32 pin and if not already used, add to the used gpio list
bool System::check_valid_gpio(uint8_t pin, const char * source_name) {
bool ok = false;
// check if we're allowed to use this pin
if (std::find(valid_system_gpios_.begin(), valid_system_gpios_.end(), pin) != valid_system_gpios_.end()) {
// It's OK, now check if it's already in the used list
if (std::find(used_gpios_.begin(), used_gpios_.end(), pin) != used_gpios_.end()) {
LOG_DEBUG("GPIO %d for %s is already used", pin, source_name);
ok = false; // Pin is already used, not OK
} else {
ok = true;
}
}
if (ok) {
LOG_DEBUG("Adding GPIO %d for %s to used list", pin, source_name);
used_gpios_.push_back(pin); // add to used list
} else {
LOG_DEBUG("GPIO %d for %s is not valid", pin, source_name);
}
return ok;
}
// return a list of valid and unused GPIOs still available for use
std::vector<uint8_t> System::valid_gpio_list() {
std::vector<uint8_t> gpios;
for (const auto & gpio : valid_system_gpios_) {
if (std::find(used_gpios_.begin(), used_gpios_.end(), gpio) == used_gpios_.end()) {
gpios.push_back(gpio);
}
}
return gpios;
}
} // namespace emsesp
/*
// if ethernet is enabled, remove pins 21 and 22 (I2C) and 1 (ETH.power)
if ((EMSESP::system_.ethernet_connected() || EMSESP::system_.phy_type_ != PHY_type::PHY_TYPE_NONE)) {
gpios_to_remove.push_back(21);
gpios_to_remove.push_back(22);
gpios_to_remove.push_back(1);
}
// filter out GPIOs already used in application settings and analog sensors, if enabled
// if dallas_gpio or led_gpio is disabled (0), don't remove it from the list (as it could be gpio 0 and valid)
if (exclude_used) {
// application settings
gpios_to_remove.push_back(EMSESP::system_.pbutton_gpio_);
if (EMSESP::system_.led_gpio_ != 0) {
gpios_to_remove.push_back(EMSESP::system_.led_gpio_);
}
if (EMSESP::system_.dallas_gpio_ != 0) {
gpios_to_remove.push_back(EMSESP::system_.dallas_gpio_);
}
gpios_to_remove.push_back(EMSESP::system_.rx_gpio_);
gpios_to_remove.push_back(EMSESP::system_.tx_gpio_);
// analog sensors
for (const auto & sensor : EMSESP::analogsensor_.sensors()) {
if (std::find(valid_system_gpios_.begin(), valid_system_gpios_.end(), sensor.gpio()) != valid_system_gpios_.end()) {
gpios_to_remove.push_back(sensor.gpio());
}
}
}
*/