Files
EMS-ESP32/src/ems.cpp
Paul Derbyshire 2a2a50b8c3 tidy up includes
2019-07-29 22:40:33 +02:00

2768 lines
109 KiB
C++

/**
* ems.cpp
*
* Handles all the processing of the EMS messages
*
* Paul Derbyshire - https://github.com/proddy/EMS-ESP
*/
#include "ems.h"
#include "ems_devices.h"
#include "emsuart.h"
#include <CircularBuffer.h> // https://github.com/rlogiacco/CircularBuffer
#include <MyESP.h>
#include <list> // std::list
#ifdef TESTS
#include "test_data.h"
uint8_t _TEST_DATA_max = ArraySize(TEST_DATA);
#endif
// myESP for logging to telnet and serial
#define myDebug(...) myESP.myDebug(__VA_ARGS__)
#define myDebug_P(...) myESP.myDebug_P(__VA_ARGS__)
_EMS_Sys_Status EMS_Sys_Status; // EMS Status
CircularBuffer<_EMS_TxTelegram, EMS_TX_TELEGRAM_QUEUE_MAX> EMS_TxQueue; // FIFO queue for Tx send buffer
// for storing all detected EMS devices
std::list<_Generic_Device> Devices;
// macros used in the _process* functions
#define _toByte(i) (EMS_RxTelegram->data[i])
#define _toShort(i) ((EMS_RxTelegram->data[i] << 8) + EMS_RxTelegram->data[i + 1])
#define _toLong(i) ((EMS_RxTelegram->data[i] << 16) + (EMS_RxTelegram->data[i + 1] << 8) + (EMS_RxTelegram->data[i + 2]))
#define _bitRead(i, bit) (((EMS_RxTelegram->data[i]) >> (bit)) & 0x01)
//
// process callbacks per type
//
// generic
void _process_Version(_EMS_RxTelegram * EMS_RxTelegram);
// EMS master/Boiler devices
void _process_UBAMonitorFast(_EMS_RxTelegram * EMS_RxTelegram);
void _process_UBAMonitorSlow(_EMS_RxTelegram * EMS_RxTelegram);
void _process_UBAMonitorWWMessage(_EMS_RxTelegram * EMS_RxTelegram);
void _process_UBAParameterWW(_EMS_RxTelegram * EMS_RxTelegram);
void _process_UBATotalUptimeMessage(_EMS_RxTelegram * EMS_RxTelegram);
void _process_UBAParametersMessage(_EMS_RxTelegram * EMS_RxTelegram);
void _process_SetPoints(_EMS_RxTelegram * EMS_RxTelegram);
// SM10
void _process_SM10Monitor(_EMS_RxTelegram * EMS_RxTelegram);
// SM100
void _process_SM100Monitor(_EMS_RxTelegram * EMS_RxTelegram);
void _process_SM100Status(_EMS_RxTelegram * EMS_RxTelegram);
void _process_SM100Status2(_EMS_RxTelegram * EMS_RxTelegram);
void _process_SM100Energy(_EMS_RxTelegram * EMS_RxTelegram);
// ISM1
void _process_ISM1StatusMessage(_EMS_RxTelegram * EMS_RxTelegram);
void _process_ISM1Set(_EMS_RxTelegram * EMS_RxTelegram);
// HeatPump HP
void _process_HPMonitor1(_EMS_RxTelegram * EMS_RxTelegram);
void _process_HPMonitor2(_EMS_RxTelegram * EMS_RxTelegram);
// Common for most thermostats
void _process_RCTime(_EMS_RxTelegram * EMS_RxTelegram);
void _process_RCOutdoorTempMessage(_EMS_RxTelegram * EMS_RxTelegram);
// RC10
void _process_RC10Set(_EMS_RxTelegram * EMS_RxTelegram);
void _process_RC10StatusMessage(_EMS_RxTelegram * EMS_RxTelegram);
// RC20
void _process_RC20Set(_EMS_RxTelegram * EMS_RxTelegram);
void _process_RC20StatusMessage(_EMS_RxTelegram * EMS_RxTelegram);
// RC30
void _process_RC30Set(_EMS_RxTelegram * EMS_RxTelegram);
void _process_RC30StatusMessage(_EMS_RxTelegram * EMS_RxTelegram);
// RC35
void _process_RC35Set(_EMS_RxTelegram * EMS_RxTelegram);
void _process_RC35StatusMessage(_EMS_RxTelegram * EMS_RxTelegram);
// Easy type devices like C100
void _process_EasyStatusMessage(_EMS_RxTelegram * EMS_RxTelegram);
// RC1010, RC300, RC310
void _process_RCPLUSStatusMessage(_EMS_RxTelegram * EMS_RxTelegram);
void _process_RCPLUSSetMessage(_EMS_RxTelegram * EMS_RxTelegram);
void _process_RCPLUSStatusMode(_EMS_RxTelegram * EMS_RxTelegram);
// Junkers FR10 & FW100
void _process_JunkersStatusMessage(_EMS_RxTelegram * EMS_RxTelegram);
/**
* Recognized EMS types and the functions they call to process the telegrams
* Format: MODEL ID, TYPE ID, Description, function, emsplus
*/
const _EMS_Type EMS_Types[] = {
// common
{EMS_MODEL_ALL, EMS_TYPE_Version, "Version", _process_Version},
// Boiler commands
{EMS_MODEL_UBA, EMS_TYPE_UBAMonitorFast, "UBAMonitorFast", _process_UBAMonitorFast},
{EMS_MODEL_UBA, EMS_TYPE_UBAMonitorSlow, "UBAMonitorSlow", _process_UBAMonitorSlow},
{EMS_MODEL_UBA, EMS_TYPE_UBAMonitorWWMessage, "UBAMonitorWWMessage", _process_UBAMonitorWWMessage},
{EMS_MODEL_UBA, EMS_TYPE_UBAParameterWW, "UBAParameterWW", _process_UBAParameterWW},
{EMS_MODEL_UBA, EMS_TYPE_UBATotalUptimeMessage, "UBATotalUptimeMessage", _process_UBATotalUptimeMessage},
{EMS_MODEL_UBA, EMS_TYPE_UBAMaintenanceSettingsMessage, "UBAMaintenanceSettingsMessage", nullptr},
{EMS_MODEL_UBA, EMS_TYPE_UBAParametersMessage, "UBAParametersMessage", _process_UBAParametersMessage},
{EMS_MODEL_UBA, EMS_TYPE_UBASetPoints, "UBASetPoints", _process_SetPoints},
// SM devices
{EMS_MODEL_SM, EMS_TYPE_SM10Monitor, "SM10Monitor", _process_SM10Monitor},
{EMS_MODEL_SM, EMS_TYPE_SM100Monitor, "SM100Monitor", _process_SM100Monitor},
{EMS_MODEL_SM, EMS_TYPE_SM100Status, "SM100Status", _process_SM100Status},
{EMS_MODEL_SM, EMS_TYPE_SM100Status2, "SM100Status2", _process_SM100Status2},
{EMS_MODEL_SM, EMS_TYPE_SM100Energy, "SM100Energy", _process_SM100Energy},
{EMS_MODEL_SM, EMS_TYPE_ISM1StatusMessage, "ISM1StatusMessage", _process_ISM1StatusMessage},
{EMS_MODEL_SM, EMS_TYPE_ISM1Set, "ISM1Set", _process_ISM1Set},
// heatpunps
{EMS_MODEL_HP, EMS_TYPE_HPMonitor1, "HeatPumpMonitor1", _process_HPMonitor1},
{EMS_MODEL_HP, EMS_TYPE_HPMonitor2, "HeatPumpMonitor2", _process_HPMonitor2},
// RC10
{EMS_MODEL_RC10, EMS_TYPE_RCTime, "RCTime", _process_RCTime},
{EMS_MODEL_RC10, EMS_TYPE_RC10Set, "RC10Set", _process_RC10Set},
{EMS_MODEL_RC10, EMS_TYPE_RC10StatusMessage, "RC10StatusMessage", _process_RC10StatusMessage},
// RC20 and RC20F
{EMS_MODEL_RC20, EMS_TYPE_RCOutdoorTempMessage, "RCOutdoorTempMessage", _process_RCOutdoorTempMessage},
{EMS_MODEL_RC20, EMS_TYPE_RCTime, "RCTime", _process_RCTime},
{EMS_MODEL_RC20, EMS_TYPE_RC20Set, "RC20Set", _process_RC20Set},
{EMS_MODEL_RC20, EMS_TYPE_RC20StatusMessage, "RC20StatusMessage", _process_RC20StatusMessage},
{EMS_MODEL_RC20F, EMS_TYPE_RCOutdoorTempMessage, "RCOutdoorTempMessage", _process_RCOutdoorTempMessage},
{EMS_MODEL_RC20F, EMS_TYPE_RCTime, "RCTime", _process_RCTime},
{EMS_MODEL_RC20F, EMS_TYPE_RC20Set, "RC20Set", _process_RC20Set},
{EMS_MODEL_RC20F, EMS_TYPE_RC20StatusMessage, "RC20StatusMessage", _process_RC20StatusMessage},
// RC30
{EMS_MODEL_RC30, EMS_TYPE_RCOutdoorTempMessage, "RCOutdoorTempMessage", _process_RCOutdoorTempMessage},
{EMS_MODEL_RC30, EMS_TYPE_RCTime, "RCTime", _process_RCTime},
{EMS_MODEL_RC30, EMS_TYPE_RC30Set, "RC30Set", _process_RC30Set},
{EMS_MODEL_RC30, EMS_TYPE_RC30StatusMessage, "RC30StatusMessage", _process_RC30StatusMessage},
// RC35
{EMS_MODEL_RC35, EMS_TYPE_RCOutdoorTempMessage, "RCOutdoorTempMessage", _process_RCOutdoorTempMessage},
{EMS_MODEL_RC35, EMS_TYPE_RCTime, "RCTime", _process_RCTime},
{EMS_MODEL_RC35, EMS_TYPE_RC35Set_HC1, "RC35Set_HC1", _process_RC35Set},
{EMS_MODEL_RC35, EMS_TYPE_RC35StatusMessage_HC1, "RC35StatusMessage_HC1", _process_RC35StatusMessage},
{EMS_MODEL_RC35, EMS_TYPE_RC35Set_HC2, "RC35Set_HC2", _process_RC35Set},
{EMS_MODEL_RC35, EMS_TYPE_RC35StatusMessage_HC2, "RC35StatusMessage_HC2", _process_RC35StatusMessage},
// ES73
{EMS_MODEL_ES73, EMS_TYPE_RCOutdoorTempMessage, "RCOutdoorTempMessage", _process_RCOutdoorTempMessage},
{EMS_MODEL_ES73, EMS_TYPE_RCTime, "RCTime", _process_RCTime},
{EMS_MODEL_ES73, EMS_TYPE_RC35Set_HC1, "RC35Set", _process_RC35Set},
{EMS_MODEL_ES73, EMS_TYPE_RC35StatusMessage_HC1, "RC35StatusMessage", _process_RC35StatusMessage},
// Easy
{EMS_MODEL_EASY, EMS_TYPE_EasyStatusMessage, "EasyStatusMessage", _process_EasyStatusMessage},
// Nefit 1010, RC300, RC310 (EMS Plus)
{EMS_MODEL_ALL, EMS_TYPE_RCPLUSStatusMessage, "RCPLUSStatusMessage", _process_RCPLUSStatusMessage},
{EMS_MODEL_ALL, EMS_TYPE_RCPLUSSet, "RCPLUSSetMessage", _process_RCPLUSSetMessage},
{EMS_MODEL_ALL, EMS_TYPE_RCPLUSStatusMode, "RCPLUSStatusMode", _process_RCPLUSStatusMode},
// Junkers FR10
{EMS_MODEL_ALL, EMS_TYPE_JunkersStatusMessage, "JunkersStatusMessage", _process_JunkersStatusMessage}
};
// calculate sizes of arrays at compile
uint8_t _EMS_Types_max = ArraySize(EMS_Types); // number of defined types
uint8_t _Boiler_Devices_max = ArraySize(Boiler_Devices); // number of boiler models
uint8_t _SolarModule_Types_max = ArraySize(SolarModule_Devices); // number of solar module types
uint8_t _Other_Devices_max = ArraySize(Other_Devices); // number of other ems devices
uint8_t _Thermostat_Devices_max = ArraySize(Thermostat_Devices); // number of defined thermostat types
uint8_t _HeatPump_Devices_max = ArraySize(HeatPump_Devices); // number of defined heatpuimp types
// these structs contain the data we store from the specific EMS devices
_EMS_Boiler EMS_Boiler; // for boiler
_EMS_Thermostat EMS_Thermostat; // for thermostat
_EMS_SolarModule EMS_SolarModule; // for solar modules
_EMS_HeatPump EMS_HeatPump; // for heatpumps
_EMS_Other EMS_Other; // for other known EMS devices
// CRC lookup table with poly 12 for faster checking
const uint8_t ems_crc_table[] = {0x00, 0x02, 0x04, 0x06, 0x08, 0x0A, 0x0C, 0x0E, 0x10, 0x12, 0x14, 0x16, 0x18, 0x1A, 0x1C, 0x1E, 0x20, 0x22, 0x24, 0x26,
0x28, 0x2A, 0x2C, 0x2E, 0x30, 0x32, 0x34, 0x36, 0x38, 0x3A, 0x3C, 0x3E, 0x40, 0x42, 0x44, 0x46, 0x48, 0x4A, 0x4C, 0x4E,
0x50, 0x52, 0x54, 0x56, 0x58, 0x5A, 0x5C, 0x5E, 0x60, 0x62, 0x64, 0x66, 0x68, 0x6A, 0x6C, 0x6E, 0x70, 0x72, 0x74, 0x76,
0x78, 0x7A, 0x7C, 0x7E, 0x80, 0x82, 0x84, 0x86, 0x88, 0x8A, 0x8C, 0x8E, 0x90, 0x92, 0x94, 0x96, 0x98, 0x9A, 0x9C, 0x9E,
0xA0, 0xA2, 0xA4, 0xA6, 0xA8, 0xAA, 0xAC, 0xAE, 0xB0, 0xB2, 0xB4, 0xB6, 0xB8, 0xBA, 0xBC, 0xBE, 0xC0, 0xC2, 0xC4, 0xC6,
0xC8, 0xCA, 0xCC, 0xCE, 0xD0, 0xD2, 0xD4, 0xD6, 0xD8, 0xDA, 0xDC, 0xDE, 0xE0, 0xE2, 0xE4, 0xE6, 0xE8, 0xEA, 0xEC, 0xEE,
0xF0, 0xF2, 0xF4, 0xF6, 0xF8, 0xFA, 0xFC, 0xFE, 0x19, 0x1B, 0x1D, 0x1F, 0x11, 0x13, 0x15, 0x17, 0x09, 0x0B, 0x0D, 0x0F,
0x01, 0x03, 0x05, 0x07, 0x39, 0x3B, 0x3D, 0x3F, 0x31, 0x33, 0x35, 0x37, 0x29, 0x2B, 0x2D, 0x2F, 0x21, 0x23, 0x25, 0x27,
0x59, 0x5B, 0x5D, 0x5F, 0x51, 0x53, 0x55, 0x57, 0x49, 0x4B, 0x4D, 0x4F, 0x41, 0x43, 0x45, 0x47, 0x79, 0x7B, 0x7D, 0x7F,
0x71, 0x73, 0x75, 0x77, 0x69, 0x6B, 0x6D, 0x6F, 0x61, 0x63, 0x65, 0x67, 0x99, 0x9B, 0x9D, 0x9F, 0x91, 0x93, 0x95, 0x97,
0x89, 0x8B, 0x8D, 0x8F, 0x81, 0x83, 0x85, 0x87, 0xB9, 0xBB, 0xBD, 0xBF, 0xB1, 0xB3, 0xB5, 0xB7, 0xA9, 0xAB, 0xAD, 0xAF,
0xA1, 0xA3, 0xA5, 0xA7, 0xD9, 0xDB, 0xDD, 0xDF, 0xD1, 0xD3, 0xD5, 0xD7, 0xC9, 0xCB, 0xCD, 0xCF, 0xC1, 0xC3, 0xC5, 0xC7,
0xF9, 0xFB, 0xFD, 0xFF, 0xF1, 0xF3, 0xF5, 0xF7, 0xE9, 0xEB, 0xED, 0xEF, 0xE1, 0xE3, 0xE5, 0xE7};
const uint8_t TX_WRITE_TIMEOUT_COUNT = 2; // 3 retries before timeout
const uint32_t EMS_BUS_TIMEOUT = 15000; // timeout in ms before recognizing the ems bus is offline (15 seconds)
const uint32_t EMS_POLL_TIMEOUT = 5000000; // timeout in microseconds before recognizing the ems bus is offline (5 seconds)
// init stats and counters and buffers
void ems_init() {
// overall status
EMS_Sys_Status.emsRxPgks = 0;
EMS_Sys_Status.emsTxPkgs = 0;
EMS_Sys_Status.emxCrcErr = 0;
EMS_Sys_Status.emsRxStatus = EMS_RX_STATUS_IDLE;
EMS_Sys_Status.emsTxStatus = EMS_TX_STATUS_IDLE;
EMS_Sys_Status.emsRefreshed = false;
EMS_Sys_Status.emsPollEnabled = false; // start up with Poll disabled
EMS_Sys_Status.emsBusConnected = false;
EMS_Sys_Status.emsRxTimestamp = 0;
EMS_Sys_Status.emsTxCapable = false;
EMS_Sys_Status.emsTxDisabled = false;
EMS_Sys_Status.emsPollFrequency = 0;
EMS_Sys_Status.txRetryCount = 0;
EMS_Sys_Status.emsReverse = false;
EMS_Sys_Status.emsTxMode = 0;
// thermostat
EMS_Thermostat.setpoint_roomTemp = EMS_VALUE_SHORT_NOTSET;
EMS_Thermostat.curr_roomTemp = EMS_VALUE_SHORT_NOTSET;
EMS_Thermostat.hour = 0;
EMS_Thermostat.minute = 0;
EMS_Thermostat.second = 0;
EMS_Thermostat.day = 0;
EMS_Thermostat.month = 0;
EMS_Thermostat.year = 0;
EMS_Thermostat.mode = EMS_VALUE_INT_NOTSET;
EMS_Thermostat.day_mode = EMS_VALUE_INT_NOTSET;
EMS_Thermostat.device_id = EMS_ID_NONE;
EMS_Thermostat.write_supported = false;
EMS_Thermostat.hc = 1; // default heating circuit is 1
EMS_Thermostat.daytemp = EMS_VALUE_INT_NOTSET; // 0x47 byte
EMS_Thermostat.nighttemp = EMS_VALUE_INT_NOTSET; // 0x47 byte
EMS_Thermostat.holidaytemp = EMS_VALUE_INT_NOTSET; // 0x47 byte
EMS_Thermostat.heatingtype = EMS_VALUE_INT_NOTSET; // 0x47 byte floor heating = 3
EMS_Thermostat.circuitcalctemp = EMS_VALUE_INT_NOTSET; // 0x48 byte 14
// UBAParameterWW
EMS_Boiler.wWActivated = EMS_VALUE_INT_NOTSET; // Warm Water activated
EMS_Boiler.wWSelTemp = EMS_VALUE_INT_NOTSET; // Warm Water selected temperature
EMS_Boiler.wWCircPump = EMS_VALUE_INT_NOTSET; // Warm Water circulation pump available
EMS_Boiler.wWDesiredTemp = EMS_VALUE_INT_NOTSET; // Warm Water desired temperature to prevent infection
EMS_Boiler.wWComfort = EMS_VALUE_INT_NOTSET;
// UBAMonitorFast
EMS_Boiler.selFlowTemp = EMS_VALUE_INT_NOTSET; // Selected flow temperature
EMS_Boiler.curFlowTemp = EMS_VALUE_USHORT_NOTSET; // Current flow temperature
EMS_Boiler.retTemp = EMS_VALUE_USHORT_NOTSET; // Return temperature
EMS_Boiler.burnGas = EMS_VALUE_INT_NOTSET; // Gas on/off
EMS_Boiler.fanWork = EMS_VALUE_INT_NOTSET; // Fan on/off
EMS_Boiler.ignWork = EMS_VALUE_INT_NOTSET; // Ignition on/off
EMS_Boiler.heatPmp = EMS_VALUE_INT_NOTSET; // Boiler pump on/off
EMS_Boiler.wWHeat = EMS_VALUE_INT_NOTSET; // 3-way valve on WW
EMS_Boiler.wWCirc = EMS_VALUE_INT_NOTSET; // Circulation on/off
EMS_Boiler.selBurnPow = EMS_VALUE_INT_NOTSET; // Burner max power
EMS_Boiler.curBurnPow = EMS_VALUE_INT_NOTSET; // Burner current power
EMS_Boiler.flameCurr = EMS_VALUE_SHORT_NOTSET; // Flame current in micro amps
EMS_Boiler.sysPress = EMS_VALUE_INT_NOTSET; // System pressure
strlcpy(EMS_Boiler.serviceCodeChar, "??", sizeof(EMS_Boiler.serviceCodeChar));
EMS_Boiler.serviceCode = EMS_VALUE_SHORT_NOTSET;
// UBAMonitorSlow
EMS_Boiler.extTemp = EMS_VALUE_SHORT_NOTSET; // Outside temperature
EMS_Boiler.boilTemp = EMS_VALUE_USHORT_NOTSET; // Boiler temperature
EMS_Boiler.pumpMod = EMS_VALUE_INT_NOTSET; // Pump modulation
EMS_Boiler.burnStarts = EMS_VALUE_LONG_NOTSET; // # burner restarts
EMS_Boiler.burnWorkMin = EMS_VALUE_LONG_NOTSET; // Total burner operating time
EMS_Boiler.heatWorkMin = EMS_VALUE_LONG_NOTSET; // Total heat operating time
// UBAMonitorWWMessage
EMS_Boiler.wWCurTmp = EMS_VALUE_USHORT_NOTSET; // Warm Water current temperature
EMS_Boiler.wWStarts = EMS_VALUE_LONG_NOTSET; // Warm Water # starts
EMS_Boiler.wWWorkM = EMS_VALUE_LONG_NOTSET; // Warm Water # minutes
EMS_Boiler.wWOneTime = EMS_VALUE_INT_NOTSET; // Warm Water one time function on/off
EMS_Boiler.wWCurFlow = EMS_VALUE_INT_NOTSET;
// UBATotalUptimeMessage
EMS_Boiler.UBAuptime = EMS_VALUE_LONG_NOTSET; // Total UBA working hours
// UBAParametersMessage
EMS_Boiler.heating_temp = EMS_VALUE_INT_NOTSET; // Heating temperature setting on the boiler
EMS_Boiler.pump_mod_max = EMS_VALUE_INT_NOTSET; // Boiler circuit pump modulation max. power
EMS_Boiler.pump_mod_min = EMS_VALUE_INT_NOTSET; // Boiler circuit pump modulation min. power
// Solar Module values
EMS_SolarModule.collectorTemp = EMS_VALUE_SHORT_NOTSET; // collector temp from SM10/SM100
EMS_SolarModule.bottomTemp = EMS_VALUE_SHORT_NOTSET; // bottom temp from SM10/SM100
EMS_SolarModule.pumpModulation = EMS_VALUE_INT_NOTSET; // modulation solar pump SM10/SM100
EMS_SolarModule.pump = EMS_VALUE_INT_NOTSET; // pump active
EMS_SolarModule.EnergyLastHour = EMS_VALUE_USHORT_NOTSET;
EMS_SolarModule.EnergyToday = EMS_VALUE_USHORT_NOTSET;
EMS_SolarModule.EnergyTotal = EMS_VALUE_USHORT_NOTSET;
EMS_SolarModule.device_id = EMS_ID_NONE;
EMS_SolarModule.model_id = EMS_MODEL_NONE;
EMS_SolarModule.product_id = EMS_ID_NONE;
EMS_SolarModule.pumpWorkMin = EMS_VALUE_LONG_NOTSET;
EMS_SolarModule.setpoint_maxBottomTemp = EMS_VALUE_SHORT_NOTSET;
// Other EMS devices values
EMS_HeatPump.HPModulation = EMS_VALUE_INT_NOTSET;
EMS_HeatPump.HPSpeed = EMS_VALUE_INT_NOTSET;
EMS_HeatPump.device_id = EMS_ID_NONE;
EMS_HeatPump.model_id = EMS_MODEL_NONE;
EMS_HeatPump.product_id = EMS_ID_NONE;
// calculated values
EMS_Boiler.tapwaterActive = EMS_VALUE_INT_NOTSET; // Hot tap water is on/off
EMS_Boiler.heatingActive = EMS_VALUE_INT_NOTSET; // Central heating is on/off
// set boiler type
EMS_Boiler.product_id = EMS_ID_NONE;
strlcpy(EMS_Boiler.version, "?", sizeof(EMS_Boiler.version));
// set thermostat model
EMS_Thermostat.model_id = EMS_MODEL_NONE;
EMS_Thermostat.product_id = EMS_ID_NONE;
strlcpy(EMS_Thermostat.version, "?", sizeof(EMS_Thermostat.version));
// default logging is none
ems_setLogging(EMS_SYS_LOGGING_DEFAULT);
}
// Getters and Setters for parameters
void ems_setPoll(bool b) {
EMS_Sys_Status.emsPollEnabled = b;
myDebug_P(PSTR("EMS Bus Poll is set to %s"), EMS_Sys_Status.emsPollEnabled ? "enabled" : "disabled");
}
bool ems_getPoll() {
return EMS_Sys_Status.emsPollEnabled;
}
void ems_setTxMode(uint8_t mode) {
EMS_Sys_Status.emsTxMode = mode;
// special case for Junkers. If tx_mode is 3 then set the reverse poll flag
// https://github.com/proddy/EMS-ESP/issues/103#issuecomment-495945850
if (mode == 3) {
EMS_Sys_Status.emsReverse = true;
myDebug_P(PSTR("Forcing emsReverse for Junkers"));
} else {
EMS_Sys_Status.emsReverse = false;
}
}
uint8_t ems_getTxMode() {
return EMS_Sys_Status.emsTxMode;
}
bool ems_getEmsRefreshed() {
return EMS_Sys_Status.emsRefreshed;
}
void ems_setEmsRefreshed(bool b) {
EMS_Sys_Status.emsRefreshed = b;
}
void ems_setThermostatHC(uint8_t hc) {
EMS_Thermostat.hc = hc;
}
bool ems_getBoilerEnabled() {
return (EMS_Boiler.device_id != EMS_ID_NONE);
}
bool ems_getThermostatEnabled() {
return (EMS_Thermostat.device_id != EMS_ID_NONE);
}
bool ems_getSolarModuleEnabled() {
return (EMS_SolarModule.device_id != EMS_ID_NONE);
}
bool ems_getHeatPumpEnabled() {
return (EMS_HeatPump.device_id != EMS_ID_NONE);
}
uint8_t ems_getThermostatModel() {
return (EMS_Thermostat.model_id);
}
uint8_t ems_getSolarModuleModel() {
return (EMS_SolarModule.model_id);
}
void ems_setTxDisabled(bool b) {
EMS_Sys_Status.emsTxDisabled = b;
}
bool ems_getTxDisabled() {
return (EMS_Sys_Status.emsTxDisabled);
}
uint32_t ems_getPollFrequency() {
return EMS_Sys_Status.emsPollFrequency;
}
bool ems_getTxCapable() {
if ((EMS_Sys_Status.emsPollFrequency == 0) || (EMS_Sys_Status.emsPollFrequency > EMS_POLL_TIMEOUT)) {
EMS_Sys_Status.emsTxCapable = false;
}
return EMS_Sys_Status.emsTxCapable;
}
bool ems_getBusConnected() {
if ((millis() - EMS_Sys_Status.emsRxTimestamp) > EMS_BUS_TIMEOUT) {
EMS_Sys_Status.emsBusConnected = false;
}
return EMS_Sys_Status.emsBusConnected;
}
_EMS_SYS_LOGGING ems_getLogging() {
return EMS_Sys_Status.emsLogging;
}
void ems_setLogging(_EMS_SYS_LOGGING loglevel) {
if (loglevel <= EMS_SYS_LOGGING_VERBOSE) {
EMS_Sys_Status.emsLogging = loglevel;
if (loglevel == EMS_SYS_LOGGING_NONE) {
myDebug_P(PSTR("System Logging set to None"));
} else if (loglevel == EMS_SYS_LOGGING_BASIC) {
myDebug_P(PSTR("System Logging set to Basic"));
} else if (loglevel == EMS_SYS_LOGGING_VERBOSE) {
myDebug_P(PSTR("System Logging set to Verbose"));
} else if (loglevel == EMS_SYS_LOGGING_THERMOSTAT) {
myDebug_P(PSTR("System Logging set to Thermostat only"));
} else if (loglevel == EMS_SYS_LOGGING_SOLARMODULE) {
myDebug_P(PSTR("System Logging set to Solar Module only"));
} else if (loglevel == EMS_SYS_LOGGING_RAW) {
myDebug_P(PSTR("System Logging set to Raw mode"));
}
}
}
/**
* Calculate CRC checksum using lookup table for speed
* len is length of all the data in bytes (including the header & CRC byte at end)
*/
uint8_t _crcCalculator(uint8_t * data, uint8_t len) {
uint8_t crc = 0;
// read data and stop before the CRC
for (uint8_t i = 0; i < len - 1; i++) {
crc = ems_crc_table[crc];
crc ^= data[i];
}
return crc;
}
// like itoa but for hex, and quicker
char * _hextoa(uint8_t value, char * buffer) {
char * p = buffer;
byte nib1 = (value >> 4) & 0x0F;
byte nib2 = (value >> 0) & 0x0F;
*p++ = nib1 < 0xA ? '0' + nib1 : 'A' + nib1 - 0xA;
*p++ = nib2 < 0xA ? '0' + nib2 : 'A' + nib2 - 0xA;
*p = '\0'; // null terminate just in case
return buffer;
}
// for decimals 0 to 99, printed as a string
char * _smallitoa(uint8_t value, char * buffer) {
buffer[0] = ((value / 10) == 0) ? '0' : (value / 10) + '0';
buffer[1] = (value % 10) + '0';
buffer[2] = '\0';
return buffer;
}
/* for decimals 0 to 999, printed as a string
* From @nomis
*/
char * _smallitoa3(uint16_t value, char * buffer) {
buffer[0] = ((value / 100) == 0) ? '0' : (value / 100) + '0';
buffer[1] = (((value % 100) / 10) == 0) ? '0' : ((value % 100) / 10) + '0';
buffer[2] = (value % 10) + '0';
buffer[3] = '\0';
return buffer;
}
/**
* Find the pointer to the EMS_Types array for a given type ID
* or -1 if not found
*/
int _ems_findType(uint16_t type) {
uint8_t i = 0;
bool typeFound = false;
// scan through known ID types
while (i < _EMS_Types_max) {
if (EMS_Types[i].type == type) {
typeFound = true; // we have a match
break;
}
i++;
}
return (typeFound ? i : -1);
}
/**
* debug print a telegram to telnet/serial including the CRC
*/
void _debugPrintTelegram(const char * prefix, _EMS_RxTelegram * EMS_RxTelegram, const char * color, bool raw = false) {
char output_str[200] = {0};
char buffer[16] = {0};
uint8_t * data = EMS_RxTelegram->telegram;
uint8_t data_len = EMS_RxTelegram->data_length; // length of data block
uint8_t length = EMS_RxTelegram->length; // includes CRC
strlcpy(output_str, "(", sizeof(output_str));
strlcat(output_str, COLOR_CYAN, sizeof(output_str));
strlcat(output_str, _smallitoa((uint8_t)((EMS_RxTelegram->timestamp / 3600000) % 24), buffer), sizeof(output_str));
strlcat(output_str, ":", sizeof(output_str));
strlcat(output_str, _smallitoa((uint8_t)((EMS_RxTelegram->timestamp / 60000) % 60), buffer), sizeof(output_str));
strlcat(output_str, ":", sizeof(output_str));
strlcat(output_str, _smallitoa((uint8_t)((EMS_RxTelegram->timestamp / 1000) % 60), buffer), sizeof(output_str));
strlcat(output_str, ".", sizeof(output_str));
strlcat(output_str, _smallitoa3(EMS_RxTelegram->timestamp % 1000, buffer), sizeof(output_str));
strlcat(output_str, COLOR_RESET, sizeof(output_str));
strlcat(output_str, ") ", sizeof(output_str));
strlcat(output_str, color, sizeof(output_str));
strlcat(output_str, prefix, sizeof(output_str));
if (!raw) {
strlcat(output_str, "telegram: ", sizeof(output_str));
}
for (int i = 0; i < (length - 1); i++) {
strlcat(output_str, _hextoa(data[i], buffer), sizeof(output_str));
strlcat(output_str, " ", sizeof(output_str)); // add space
}
if (raw) {
strlcat(output_str, _hextoa(data[length - 1], buffer), sizeof(output_str));
} else {
strlcat(output_str, "(CRC=", sizeof(output_str));
strlcat(output_str, _hextoa(data[length - 1], buffer), sizeof(output_str));
strlcat(output_str, ")", sizeof(output_str));
// print number of data bytes only if its a valid telegram
if (data_len) {
strlcat(output_str, " #data=", sizeof(output_str));
strlcat(output_str, itoa(data_len, buffer, 10), sizeof(output_str));
}
}
strlcat(output_str, COLOR_RESET, sizeof(output_str));
myDebug(output_str);
}
/**
* send the contents of the Tx buffer to the UART
* we take telegram from the queue and send it, but don't remove it until later when its confirmed successful
*/
void _ems_sendTelegram() {
// check if we have something in the queue to send
if (EMS_TxQueue.isEmpty()) {
return;
}
// if we're preventing all outbound traffic, quit
if (EMS_Sys_Status.emsTxDisabled) {
EMS_TxQueue.shift(); // remove from queue
if (ems_getLogging() != EMS_SYS_LOGGING_NONE) {
myDebug_P(PSTR("in Listen Mode. All Tx is disabled."));
}
return;
}
// get the first in the queue, which is at the head
// we don't remove from the queue yet
_EMS_TxTelegram EMS_TxTelegram = EMS_TxQueue.first();
// if there is no destination, also delete it from the queue
if (EMS_TxTelegram.dest == EMS_ID_NONE) {
EMS_TxQueue.shift(); // remove from queue
return;
}
// if we're in raw mode just fire and forget
if (EMS_TxTelegram.action == EMS_TX_TELEGRAM_RAW) {
if (EMS_Sys_Status.emsLogging != EMS_SYS_LOGGING_NONE) {
_EMS_RxTelegram EMS_RxTelegram; // create new Rx object
EMS_RxTelegram.length = EMS_TxTelegram.length; // full length of telegram
EMS_RxTelegram.telegram = EMS_TxTelegram.data;
EMS_RxTelegram.timestamp = millis(); // now
_debugPrintTelegram("Sending raw: ", &EMS_RxTelegram, COLOR_CYAN, true);
}
EMS_TxTelegram.data[EMS_TxTelegram.length - 1] = _crcCalculator(EMS_TxTelegram.data, EMS_TxTelegram.length); // add the CRC
emsuart_tx_buffer(EMS_TxTelegram.data, EMS_TxTelegram.length); // send the telegram to the UART Tx
EMS_TxQueue.shift(); // and remove from queue
return;
}
// create the header
EMS_TxTelegram.data[0] = (EMS_Sys_Status.emsReverse) ? EMS_ID_ME | 0x80 : EMS_ID_ME; // src
// dest
if (EMS_TxTelegram.action == EMS_TX_TELEGRAM_WRITE) {
EMS_TxTelegram.data[1] = EMS_TxTelegram.dest;
} else {
// for a READ or VALIDATE
EMS_TxTelegram.data[1] = EMS_TxTelegram.dest | 0x80; // read has 8th bit set
}
// complete the rest of the header depending on EMS or EMS+
if (EMS_TxTelegram.type > 0xFF) {
// EMS 2.0 / emsplus
EMS_TxTelegram.data[2] = 0xFF; // fixed value indicating an extended message
EMS_TxTelegram.data[3] = EMS_TxTelegram.offset;
EMS_TxTelegram.data[4] = EMS_TxTelegram.dataValue; // for read its #bytes to return, for write it the value to set
EMS_TxTelegram.data[5] = EMS_TxTelegram.type >> 8; // type, 1st byte
EMS_TxTelegram.data[6] = EMS_TxTelegram.type & 0xFF; // type, 2nd byte
EMS_TxTelegram.length += 2; // add 2 bytes to length to compensate the extra FF and byte for the type
} else {
// EMS 1.0
EMS_TxTelegram.data[2] = EMS_TxTelegram.type; // type
EMS_TxTelegram.data[3] = EMS_TxTelegram.offset; // offset
if (EMS_TxTelegram.length == EMS_MIN_TELEGRAM_LENGTH) {
EMS_TxTelegram.data[4] = EMS_TxTelegram.dataValue; // for read its #bytes to return, for write it the value to set
}
}
// finally calculate CRC and add it to the end
EMS_TxTelegram.data[EMS_TxTelegram.length - 1] = _crcCalculator(EMS_TxTelegram.data, EMS_TxTelegram.length);
// print debug info
if (EMS_Sys_Status.emsLogging == EMS_SYS_LOGGING_VERBOSE) {
char s[64] = {0};
if (EMS_TxTelegram.action == EMS_TX_TELEGRAM_WRITE) {
snprintf(s, sizeof(s), "Sending write of type 0x%02X to 0x%02X:", EMS_TxTelegram.type, EMS_TxTelegram.dest & 0x7F);
} else if (EMS_TxTelegram.action == EMS_TX_TELEGRAM_READ) {
snprintf(s, sizeof(s), "Sending read of type 0x%02X to 0x%02X:", EMS_TxTelegram.type, EMS_TxTelegram.dest & 0x7F);
} else if (EMS_TxTelegram.action == EMS_TX_TELEGRAM_VALIDATE) {
snprintf(s, sizeof(s), "Sending validate of type 0x%02X to 0x%02X:", EMS_TxTelegram.type, EMS_TxTelegram.dest & 0x7F);
}
_EMS_RxTelegram EMS_RxTelegram;
EMS_RxTelegram.length = EMS_TxTelegram.length; // complete length of telegram
EMS_RxTelegram.telegram = EMS_TxTelegram.data;
EMS_RxTelegram.timestamp = millis(); // now
_debugPrintTelegram(s, &EMS_RxTelegram, COLOR_CYAN);
}
// send the telegram to the UART Tx
emsuart_tx_buffer(EMS_TxTelegram.data, EMS_TxTelegram.length);
EMS_Sys_Status.emsTxStatus = EMS_TX_STATUS_WAIT;
}
/**
* Takes the last write command and turns into a validate request
* placing it on the queue
*/
void _createValidate() {
if (EMS_TxQueue.isEmpty()) {
return;
}
// release the Tx lock
EMS_Sys_Status.emsTxStatus = EMS_TX_STATUS_IDLE;
// get the first in the queue, which is at the head
_EMS_TxTelegram EMS_TxTelegram = EMS_TxQueue.first();
// safety check: only do a validate after a write and when we have a type to validate
if ((EMS_TxTelegram.action != EMS_TX_TELEGRAM_WRITE) || (EMS_TxTelegram.type_validate == EMS_ID_NONE)) {
EMS_TxQueue.shift(); // remove from queue
return;
}
// create a new Telegram copying from the last write
_EMS_TxTelegram new_EMS_TxTelegram;
new_EMS_TxTelegram.action = EMS_TX_TELEGRAM_VALIDATE;
// copy old Write record
new_EMS_TxTelegram.type_validate = EMS_TxTelegram.type_validate;
new_EMS_TxTelegram.dest = EMS_TxTelegram.dest;
new_EMS_TxTelegram.type = EMS_TxTelegram.type;
new_EMS_TxTelegram.comparisonValue = EMS_TxTelegram.comparisonValue;
new_EMS_TxTelegram.comparisonPostRead = EMS_TxTelegram.comparisonPostRead;
new_EMS_TxTelegram.comparisonOffset = EMS_TxTelegram.comparisonOffset;
// this is what is different
new_EMS_TxTelegram.offset = EMS_TxTelegram.comparisonOffset; // location of byte to fetch
new_EMS_TxTelegram.dataValue = 1; // fetch single byte
new_EMS_TxTelegram.length = EMS_MIN_TELEGRAM_LENGTH; // is always 6 bytes long (including CRC at end)
// remove old telegram from queue and add this new read one
EMS_TxQueue.shift(); // remove from queue
EMS_TxQueue.unshift(new_EMS_TxTelegram); // add back to queue making it first to be picked up next (FIFO)
}
/**
* Entry point triggered by an interrupt in emsuart.cpp
* length is the number of all the telegram bytes up to and including the CRC at the end
* Read commands are asynchronous as they're handled by the interrupt
* When a telegram is processed we forcefully erase it from the stack to prevent overflow
*/
void ems_parseTelegram(uint8_t * telegram, uint8_t length) {
static uint32_t _last_emsPollFrequency = 0;
/*
* check if we just received a single byte
* it could well be a Poll request from the boiler for us, which will have a value of 0x8B (0x0B | 0x80)
* or either a return code like 0x01 or 0x04 from the last Write command
* Roger Wilco: we have different types here:
* EMS_ID_ME && length == 1 && EMS_TX_STATUS_IDLE && EMS_RX_STATUS_IDLE: polling request
* EMS_ID_ME && length > 1 && EMS_TX_STATUS_IDLE && EMS_RX_STATUS_IDLE: direct telegram
* (EMS_TX_SUCCESS || EMS_TX_ERROR) && EMS_TX_STATUS_WAIT: response, free the EMS bus
*
* In addition, it may happen that we where interrupted (f.e. by WIFI activity) and the
* buffer isn't valid anymore, so we must not answer at all...
*/
if (EMS_Sys_Status.emsRxStatus != EMS_RX_STATUS_IDLE) {
if (EMS_Sys_Status.emsLogging > EMS_SYS_LOGGING_NONE) {
myDebug_P(PSTR("** [DEBUG MODE] We missed the bus - Rx non-idle!")); //TODO tidy up error logging
}
return;
}
if (length == 1) {
uint8_t value = telegram[0]; // 1st byte of data package
// check first for a Poll for us
// the poll has the MSB set - seems to work on both EMS and Junkers
if ((value & 0x7F) == EMS_ID_ME) {
EMS_Sys_Status.emsTxCapable = true;
uint32_t timenow_microsecs = micros();
EMS_Sys_Status.emsPollFrequency = (timenow_microsecs - _last_emsPollFrequency);
_last_emsPollFrequency = timenow_microsecs;
// do we have something to send thats waiting in the Tx queue?
// if so send it if the Queue is not in a wait state
if ((!EMS_TxQueue.isEmpty()) && (EMS_Sys_Status.emsTxStatus == EMS_TX_STATUS_IDLE)) {
_ems_sendTelegram(); // perform the read/write command immediately
} else {
// nothing to send so just send a poll acknowledgement back
if (EMS_Sys_Status.emsPollEnabled) {
emsuart_tx_poll();
}
}
} else if (EMS_Sys_Status.emsTxStatus == EMS_TX_STATUS_WAIT) {
// this may be a single byte 01 (success) or 04 (error) from a recent write command?
if (value == EMS_TX_SUCCESS) {
EMS_Sys_Status.emsTxPkgs++;
// got a success 01. Send a validate to check the value of the last write
emsuart_tx_poll(); // send a poll to free the EMS bus
_createValidate(); // create a validate Tx request (if needed)
} else if (value == EMS_TX_ERROR) {
// last write failed (04), delete it from queue and dont bother to retry
if (EMS_Sys_Status.emsLogging == EMS_SYS_LOGGING_VERBOSE) {
myDebug_P(PSTR("** Write command failed from host"));
}
emsuart_tx_poll(); // send a poll to free the EMS bus
_removeTxQueue(); // remove from queue
}
}
return; // all done here
}
// ignore anything that doesn't resemble a proper telegram package
// minimal is 5 bytes, excluding CRC at the end
if (length <= 4) {
//_debugPrintTelegram("Noisy data:", &EMS_RxTelegram COLOR_RED);
return;
}
static _EMS_RxTelegram EMS_RxTelegram; // create the Rx package
EMS_RxTelegram.telegram = telegram;
EMS_RxTelegram.timestamp = millis();
EMS_RxTelegram.length = length;
EMS_RxTelegram.src = telegram[0] & 0x7F; // removing 8th bit as we deal with both reads and writes here
EMS_RxTelegram.dest = telegram[1] & 0x7F; // remove 8th bit (don't care if read or write)
EMS_RxTelegram.offset = telegram[3]; // offset is always 4th byte
// determing if its normal ems or ems plus
if (telegram[2] >= 0xF0) {
// its EMS plus / EMS 2.0
EMS_RxTelegram.emsplus = true;
if (telegram[2] == 0xFF) {
EMS_RxTelegram.type = (telegram[4] << 8) + telegram[5]; // is a long in bytes 5 & 6
EMS_RxTelegram.data = telegram + 6;
if (length <= 7) {
EMS_RxTelegram.data_length = 0; // special broadcast on ems+ have no data values
} else {
EMS_RxTelegram.data_length = length - 7; // remove 6 byte header plus CRC
}
} else {
// its F9 or F7
uint8_t shift = (telegram[4] != 0xFF); // true (1) if byte 4 is not 0xFF, then telegram is 1 byte longer
EMS_RxTelegram.type = (telegram[5 + shift] << 8) + telegram[6 + shift];
EMS_RxTelegram.data = telegram + 6 + shift; // there is a special byte after the typeID which we ignore for now
if (length <= (9 + shift)) {
EMS_RxTelegram.data_length = 0; // special broadcast on ems+ have no data values
} else {
EMS_RxTelegram.data_length = length - (9 + shift);
}
}
} else {
// Normal EMS 1.0
EMS_RxTelegram.emsplus = false;
EMS_RxTelegram.type = telegram[2]; // 3rd byte
EMS_RxTelegram.data = telegram + 4;
EMS_RxTelegram.data_length = length - 5; // remove 4 bytes header plus CRC
}
// if we are in raw logging mode then just print out the telegram as it is
// but still continue to process it
if (EMS_Sys_Status.emsLogging == EMS_SYS_LOGGING_RAW) {
_debugPrintTelegram("", &EMS_RxTelegram, COLOR_WHITE, true);
}
// Assume at this point we have something that vaguely resembles a telegram in the format [src] [dest] [type] [offset] [data] [crc]
// validate the CRC, if it's bad ignore it
if (telegram[length - 1] != _crcCalculator(telegram, length)) {
LA_PULSE(200);
EMS_Sys_Status.emxCrcErr++;
if (EMS_Sys_Status.emsLogging == EMS_SYS_LOGGING_VERBOSE) {
_debugPrintTelegram("Corrupt telegram: ", &EMS_RxTelegram, COLOR_RED, true);
}
return;
}
// here we know its a valid incoming telegram of at least 6 bytes
// we use this to see if we always have a connection to the boiler, in case of drop outs
EMS_Sys_Status.emsRxTimestamp = EMS_RxTelegram.timestamp; // timestamp of last read
EMS_Sys_Status.emsBusConnected = true;
// now lets process it and see what to do next
_processType(&EMS_RxTelegram);
}
/**
* print the telegram
*/
void _printMessage(_EMS_RxTelegram * EMS_RxTelegram) {
// header info
uint8_t src = EMS_RxTelegram->src;
uint8_t dest = EMS_RxTelegram->dest;
uint16_t type = EMS_RxTelegram->type;
uint8_t length = EMS_RxTelegram->data_length;
char output_str[200] = {0};
char buffer[16] = {0};
char color_s[20] = {0};
// source
if (src == EMS_Boiler.device_id) {
strlcpy(output_str, "Boiler", sizeof(output_str));
} else if (src == EMS_Thermostat.device_id) {
strlcpy(output_str, "Thermostat", sizeof(output_str));
} else if (src == EMS_ID_SM) {
strlcpy(output_str, "SM", sizeof(output_str));
} else if (src == EMS_ID_HP) {
strlcpy(output_str, "HP", sizeof(output_str));
} else if (src == EMS_ID_GATEWAY) {
strlcpy(output_str, "Gateway", sizeof(output_str));
} else {
strlcpy(output_str, "0x", sizeof(output_str));
strlcat(output_str, _hextoa(src, buffer), sizeof(output_str));
}
strlcat(output_str, " -> ", sizeof(output_str));
// destination
if (dest == EMS_ID_ME) {
strlcat(output_str, "me", sizeof(output_str));
strlcpy(color_s, COLOR_YELLOW, sizeof(color_s));
} else if (dest == EMS_ID_NONE) {
strlcat(output_str, "all", sizeof(output_str));
strlcpy(color_s, COLOR_GREEN, sizeof(color_s));
} else if (dest == EMS_Boiler.device_id) {
strlcat(output_str, "Boiler", sizeof(output_str));
strlcpy(color_s, COLOR_MAGENTA, sizeof(color_s));
} else if (dest == EMS_ID_SM) {
strlcat(output_str, "SM", sizeof(output_str));
strlcpy(color_s, COLOR_MAGENTA, sizeof(color_s));
} else if (dest == EMS_ID_HP) {
strlcat(output_str, "HP", sizeof(output_str));
strlcpy(color_s, COLOR_MAGENTA, sizeof(color_s));
} else if (dest == EMS_ID_GATEWAY) {
strlcat(output_str, "Gateway", sizeof(output_str));
strlcpy(color_s, COLOR_MAGENTA, sizeof(color_s));
} else if (dest == EMS_Thermostat.device_id) {
strlcat(output_str, "Thermostat", sizeof(output_str));
strlcpy(color_s, COLOR_MAGENTA, sizeof(color_s));
} else {
strlcat(output_str, "0x", sizeof(output_str));
strlcat(output_str, _hextoa(dest, buffer), sizeof(output_str));
strlcpy(color_s, COLOR_MAGENTA, sizeof(color_s));
}
if (length != 0) {
// type
strlcat(output_str, ", type 0x", sizeof(output_str));
if (EMS_RxTelegram->emsplus) {
strlcat(output_str, _hextoa(type >> 8, buffer), sizeof(output_str));
strlcat(output_str, _hextoa(type & 0xFF, buffer), sizeof(output_str));
} else {
strlcat(output_str, _hextoa(type, buffer), sizeof(output_str));
}
}
strlcat(output_str, ", ", sizeof(output_str));
if (EMS_Sys_Status.emsLogging == EMS_SYS_LOGGING_THERMOSTAT) {
// only print ones to/from thermostat if logging is set to thermostat only
if ((src == EMS_Thermostat.device_id) || (dest == EMS_Thermostat.device_id)) {
_debugPrintTelegram(output_str, EMS_RxTelegram, color_s);
}
} else if (EMS_Sys_Status.emsLogging == EMS_SYS_LOGGING_SOLARMODULE) {
// only print ones to/from thermostat if logging is set to thermostat only
if ((src == EMS_SolarModule.device_id) || (dest == EMS_SolarModule.device_id)) {
_debugPrintTelegram(output_str, EMS_RxTelegram, color_s);
}
} else {
// always print
_debugPrintTelegram(output_str, EMS_RxTelegram, color_s);
}
}
/**
* print detailed telegram
* and then call its callback if there is one defined
*/
void _ems_processTelegram(_EMS_RxTelegram * EMS_RxTelegram) {
// print out the telegram for verbose mode
if (EMS_Sys_Status.emsLogging >= EMS_SYS_LOGGING_THERMOSTAT) {
_printMessage(EMS_RxTelegram);
}
// ignore telegrams that don't have any data
if (EMS_RxTelegram->data_length == 0) {
return;
}
// header
uint8_t dest = EMS_RxTelegram->dest;
uint16_t type = EMS_RxTelegram->type;
// see if we recognize the type first by scanning our known EMS types list
bool typeFound = false;
uint8_t i = 0;
while (i < _EMS_Types_max) {
if (EMS_Types[i].type == type) {
// is it a broadcast or something sent to us?
// we don't really care where it is from
if ((dest == EMS_ID_NONE) || (dest == EMS_ID_ME)) {
typeFound = true;
break;
}
}
i++;
}
// if it's a common type (across ems devices) or something specifically for us process it.
// dest will be EMS_ID_NONE and offset 0x00 for a broadcast message
if (typeFound) {
if ((EMS_Types[i].processType_cb) != nullptr) {
// print non-verbose message
if ((EMS_Sys_Status.emsLogging == EMS_SYS_LOGGING_BASIC) || (EMS_Sys_Status.emsLogging == EMS_SYS_LOGGING_VERBOSE)) {
myDebug_P(PSTR("<--- %s(0x%02X)"), EMS_Types[i].typeString, type);
}
// call callback function to process the telegram, only if there is data
if (EMS_RxTelegram->emsplus) {
// if EMS+ always proces it
(void)EMS_Types[i].processType_cb(EMS_RxTelegram);
} else {
// only if the offset is 0 as we want to handle full telegrams and not partial
if (EMS_RxTelegram->offset == EMS_ID_NONE) {
(void)EMS_Types[i].processType_cb(EMS_RxTelegram);
}
}
}
}
EMS_Sys_Status.emsTxStatus = EMS_TX_STATUS_IDLE;
}
/**
* Remove current Tx telegram from queue and release lock on Tx
*/
void _removeTxQueue() {
if (!EMS_TxQueue.isEmpty()) {
EMS_TxQueue.shift(); // remove item from top of the queue
}
EMS_Sys_Status.emsTxStatus = EMS_TX_STATUS_IDLE;
}
/**
* deciphers the telegram packet, which has already been checked for valid CRC and has a complete header (min of 5 bytes)
* length is only data bytes, excluding the BRK
* We only remove from the Tx queue if the read or write was successful
*/
void _processType(_EMS_RxTelegram * EMS_RxTelegram) {
uint8_t * telegram = EMS_RxTelegram->telegram;
// if its an echo of ourselves from the master UBA, ignore. This should never happen mind you
if (EMS_RxTelegram->src == EMS_ID_ME) {
// _debugPrintTelegram("echo:", EMS_RxTelegram, COLOR_WHITE);
return;
}
// if its a broadcast and we didn't just send anything, process it and exit
if (EMS_Sys_Status.emsTxStatus == EMS_TX_STATUS_IDLE) {
_ems_processTelegram(EMS_RxTelegram);
return;
}
// release the lock on the TxQueue
EMS_Sys_Status.emsTxStatus = EMS_TX_STATUS_IDLE;
// at this point we can assume Txstatus is EMS_TX_STATUS_WAIT so we just sent a read/write/validate
// for READ, WRITE or VALIDATE the dest (telegram[1]) is always us, so check for this
// and if not we probably didn't get any response so remove the last Tx from the queue and process the telegram anyway
if ((telegram[1] & 0x7F) != EMS_ID_ME) {
_removeTxQueue();
_ems_processTelegram(EMS_RxTelegram);
return;
}
// first double check we actually have something in the queue
if (EMS_TxQueue.isEmpty()) {
_ems_processTelegram(EMS_RxTelegram);
return;
}
// get the Tx telegram we just sent
_EMS_TxTelegram EMS_TxTelegram = EMS_TxQueue.first();
// check action
// if READ, match the current inbound telegram to what we sent
// if WRITE, should not happen
// if VALIDATE, check the contents
if (EMS_TxTelegram.action == EMS_TX_TELEGRAM_READ) {
// remove MSB from src/dest
if (((EMS_RxTelegram->src & 0x7F) == (EMS_TxTelegram.dest & 0x7F)) && (EMS_RxTelegram->type == EMS_TxTelegram.type)) {
// all checks out, read was successful, remove tx from queue and continue to process telegram
_removeTxQueue();
EMS_Sys_Status.emsRxPgks++; // increment Rx happy counter
ems_setEmsRefreshed(EMS_TxTelegram.forceRefresh); // does mqtt need refreshing?
} else {
// read not OK, we didn't get back a telegram we expected
// first see if we got a response back from the sender saying its an unknown command
if (EMS_RxTelegram->data_length == 0) {
_removeTxQueue();
} else {
// leave on queue and try again, but continue to process what we received as it may be important
EMS_Sys_Status.txRetryCount++;
// if retried too many times, give up and remove it
if (EMS_Sys_Status.txRetryCount >= TX_WRITE_TIMEOUT_COUNT) {
if (EMS_Sys_Status.emsLogging >= EMS_SYS_LOGGING_BASIC) {
myDebug_P(PSTR("Read failed. Giving up, removing from queue"));
}
_removeTxQueue();
} else {
if (EMS_Sys_Status.emsLogging >= EMS_SYS_LOGGING_BASIC) {
myDebug_P(PSTR("Read failed. Retrying attempt %d/%d..."), EMS_Sys_Status.txRetryCount, TX_WRITE_TIMEOUT_COUNT);
}
}
}
}
_ems_processTelegram(EMS_RxTelegram); // process it always
}
if (EMS_TxTelegram.action == EMS_TX_TELEGRAM_WRITE) {
// should not get here, since this is handled earlier receiving a 01 or 04
myDebug_P(PSTR("** Error! Write - should not be here"));
}
if (EMS_TxTelegram.action == EMS_TX_TELEGRAM_VALIDATE) {
// this is a read telegram which we use to validate the last write
uint8_t * data = telegram + 4; // data block starts at position 5
uint8_t dataReceived = data[0]; // only a single byte is returned after a read
if (EMS_TxTelegram.comparisonValue == dataReceived) {
// validate was successful, the write changed the value
_removeTxQueue(); // now we can remove the Tx validate command the queue
if (EMS_Sys_Status.emsLogging >= EMS_SYS_LOGGING_BASIC) {
myDebug_P(PSTR("Write to 0x%02X was successful"), EMS_TxTelegram.dest);
}
// follow up with the post read command
ems_doReadCommand(EMS_TxTelegram.comparisonPostRead, EMS_TxTelegram.dest, true);
} else {
// write failed
if (EMS_Sys_Status.emsLogging >= EMS_SYS_LOGGING_BASIC) {
myDebug_P(PSTR("Last write failed. Compared set value 0x%02X with received value 0x%02X"), EMS_TxTelegram.comparisonValue, dataReceived);
}
if (++EMS_Sys_Status.txRetryCount > TX_WRITE_TIMEOUT_COUNT) {
if (EMS_Sys_Status.emsLogging >= EMS_SYS_LOGGING_BASIC) {
myDebug_P(PSTR("Write failed. Giving up, removing from queue"));
}
_removeTxQueue();
} else {
// retry, turn the validate back into a write and try again
if (EMS_Sys_Status.emsLogging >= EMS_SYS_LOGGING_BASIC) {
myDebug_P(PSTR("...Retrying write. Attempt %d/%d..."), EMS_Sys_Status.txRetryCount, TX_WRITE_TIMEOUT_COUNT);
}
EMS_TxTelegram.action = EMS_TX_TELEGRAM_WRITE;
EMS_TxTelegram.dataValue = EMS_TxTelegram.comparisonValue; // restore old value
EMS_TxTelegram.offset = EMS_TxTelegram.comparisonOffset; // restore old value
EMS_TxQueue.shift(); // remove validate from queue
EMS_TxQueue.unshift(EMS_TxTelegram); // add back to queue making it next in line
}
}
}
emsuart_tx_poll(); // send Acknowledgement back to free the EMS bus since we have the telegram
}
/**
* Check if hot tap water or heating is active
* using a quick hack for checking the heating. Selected Flow Temp >= 70
*/
void _checkActive() {
// hot tap water, using flow to check instead of the burner power
if (EMS_Boiler.wWCurFlow != EMS_VALUE_INT_NOTSET && EMS_Boiler.burnGas != EMS_VALUE_INT_NOTSET) {
EMS_Boiler.tapwaterActive = ((EMS_Boiler.wWCurFlow != 0) && (EMS_Boiler.burnGas == EMS_VALUE_INT_ON));
}
// heating
if (EMS_Boiler.selFlowTemp != EMS_VALUE_INT_NOTSET && EMS_Boiler.burnGas != EMS_VALUE_INT_NOTSET) {
EMS_Boiler.heatingActive = ((EMS_Boiler.selFlowTemp >= EMS_BOILER_SELFLOWTEMP_HEATING) && (EMS_Boiler.burnGas == EMS_VALUE_INT_ON));
}
}
/**
* UBAParameterWW - type 0x33 - warm water parameters
* received only after requested (not broadcasted)
*/
void _process_UBAParameterWW(_EMS_RxTelegram * EMS_RxTelegram) {
EMS_Boiler.wWActivated = (_toByte(1) == 0xFF); // 0xFF means on
EMS_Boiler.wWSelTemp = _toByte(2);
EMS_Boiler.wWCircPump = (_toByte(6) == 0xFF); // 0xFF means on
EMS_Boiler.wWDesiredTemp = _toByte(8);
EMS_Boiler.wWComfort = _toByte(EMS_OFFSET_UBAParameterWW_wwComfort);
EMS_Sys_Status.emsRefreshed = true; // when we receieve this, lets force an MQTT publish
}
/**
* UBATotalUptimeMessage - type 0x14 - total uptime
* received only after requested (not broadcasted)
*/
void _process_UBATotalUptimeMessage(_EMS_RxTelegram * EMS_RxTelegram) {
EMS_Boiler.UBAuptime = _toLong(0);
EMS_Sys_Status.emsRefreshed = true; // when we receieve this, lets force an MQTT publish
}
/**
* UBAParametersMessage - type 0x16
*/
void _process_UBAParametersMessage(_EMS_RxTelegram * EMS_RxTelegram) {
EMS_Boiler.heating_temp = _toByte(1);
EMS_Boiler.pump_mod_max = _toByte(9);
EMS_Boiler.pump_mod_min = _toByte(10);
}
/**
* UBAMonitorWWMessage - type 0x34 - warm water monitor. 19 bytes long
* received every 10 seconds
*/
void _process_UBAMonitorWWMessage(_EMS_RxTelegram * EMS_RxTelegram) {
EMS_Boiler.wWCurTmp = _toShort(1);
EMS_Boiler.wWStarts = _toLong(13);
EMS_Boiler.wWWorkM = _toLong(10);
EMS_Boiler.wWOneTime = _bitRead(5, 1);
EMS_Boiler.wWCurFlow = _toByte(9);
}
/**
* UBAMonitorFast - type 0x18 - central heating monitor part 1 (25 bytes long)
* received every 10 seconds
*/
void _process_UBAMonitorFast(_EMS_RxTelegram * EMS_RxTelegram) {
EMS_Boiler.selFlowTemp = _toByte(0);
EMS_Boiler.curFlowTemp = _toShort(1);
EMS_Boiler.retTemp = _toShort(13);
EMS_Boiler.burnGas = _bitRead(7, 0);
EMS_Boiler.fanWork = _bitRead(7, 2);
EMS_Boiler.ignWork = _bitRead(7, 3);
EMS_Boiler.heatPmp = _bitRead(7, 5);
EMS_Boiler.wWHeat = _bitRead(7, 6);
EMS_Boiler.wWCirc = _bitRead(7, 7);
EMS_Boiler.curBurnPow = _toByte(4);
EMS_Boiler.selBurnPow = _toByte(3); // burn power max setting
EMS_Boiler.flameCurr = _toShort(15);
// read the service code / installation status as appears on the display
EMS_Boiler.serviceCodeChar[0] = char(_toByte(18)); // ascii character 1
EMS_Boiler.serviceCodeChar[1] = char(_toByte(19)); // ascii character 2
EMS_Boiler.serviceCodeChar[2] = '\0'; // null terminate string
// read error code
EMS_Boiler.serviceCode = _toShort(20);
// system pressure. FF means missing
EMS_Boiler.sysPress = _toByte(17); // this is *10
// at this point do a quick check to see if the hot water or heating is active
_checkActive();
}
/**
* UBAMonitorSlow - type 0x19 - central heating monitor part 2 (27 bytes long)
* received every 60 seconds
*/
void _process_UBAMonitorSlow(_EMS_RxTelegram * EMS_RxTelegram) {
EMS_Boiler.extTemp = _toShort(0); // 0x8000 if not available
EMS_Boiler.boilTemp = _toShort(2); // 0x8000 if not available
EMS_Boiler.pumpMod = _toByte(9);
EMS_Boiler.burnStarts = _toLong(10);
EMS_Boiler.burnWorkMin = _toLong(13);
EMS_Boiler.heatWorkMin = _toLong(19);
}
/**
* type 0xB1 - data from the RC10 thermostat (0x17)
* For reading the temp values only
* received every 60 seconds
* e.g. 17 0B 91 00 80 1E 00 CB 27 00 00 00 00 05 01 00 CB 00 (CRC=47), #data=14
*/
void _process_RC10StatusMessage(_EMS_RxTelegram * EMS_RxTelegram) {
EMS_Thermostat.setpoint_roomTemp = _toByte(EMS_OFFSET_RC10StatusMessage_setpoint); // is * 2
EMS_Thermostat.curr_roomTemp = _toShort(EMS_OFFSET_RC10StatusMessage_curr); // is * 10
EMS_Sys_Status.emsRefreshed = true; // triggers a send the values back via MQTT
}
/**
* type 0x91 - data from the RC20 thermostat (0x17) - 15 bytes long
* For reading the temp values only
* received every 60 seconds
*/
void _process_RC20StatusMessage(_EMS_RxTelegram * EMS_RxTelegram) {
EMS_Thermostat.setpoint_roomTemp = _toByte(EMS_OFFSET_RC20StatusMessage_setpoint); // is * 2
EMS_Thermostat.curr_roomTemp = _toShort(EMS_OFFSET_RC20StatusMessage_curr); // is * 10
EMS_Sys_Status.emsRefreshed = true; // triggers a send the values back via MQTT
}
/**
* type 0x41 - data from the RC30 thermostat(0x10) - 14 bytes long
* For reading the temp values only * received every 60 seconds
*/
void _process_RC30StatusMessage(_EMS_RxTelegram * EMS_RxTelegram) {
EMS_Thermostat.setpoint_roomTemp = _toByte(EMS_OFFSET_RC30StatusMessage_setpoint); // is * 2
EMS_Thermostat.curr_roomTemp = _toShort(EMS_OFFSET_RC30StatusMessage_curr); // note, its 2 bytes here
EMS_Sys_Status.emsRefreshed = true; // triggers a send the values back via MQTT
}
/**
* type 0x3E and 0x48 - data from the RC35 thermostat (0x10) - 16 bytes
* For reading the temp values only
* received every 60 seconds
*/
void _process_RC35StatusMessage(_EMS_RxTelegram * EMS_RxTelegram) {
EMS_Thermostat.setpoint_roomTemp = _toByte(EMS_OFFSET_RC35StatusMessage_setpoint); // is * 2
// check if temp sensor is unavailable
if (EMS_RxTelegram->data[3] == 0x7D) {
EMS_Thermostat.curr_roomTemp = EMS_VALUE_SHORT_NOTSET;
} else {
EMS_Thermostat.curr_roomTemp = _toShort(EMS_OFFSET_RC35StatusMessage_curr);
}
EMS_Thermostat.day_mode = _bitRead(EMS_OFFSET_RC35Get_mode_day, 1); // get day mode flag
EMS_Thermostat.circuitcalctemp = _toByte(EMS_OFFSET_RC35Set_circuitcalctemp); // 0x48 calculated temperature
EMS_Sys_Status.emsRefreshed = true; // triggers a send the values back via MQTT
}
/**
* type 0x0A - data from the Nefit Easy/TC100 thermostat (0x18) - 31 bytes long
* The Easy has a digital precision of its floats to 2 decimal places, so values must be divided by 100
*/
void _process_EasyStatusMessage(_EMS_RxTelegram * EMS_RxTelegram) {
EMS_Thermostat.curr_roomTemp = _toShort(EMS_OFFSET_EasyStatusMessage_curr); // is *100
EMS_Thermostat.setpoint_roomTemp = _toShort(EMS_OFFSET_EasyStatusMessage_setpoint); // is *100
EMS_Sys_Status.emsRefreshed = true; // triggers a send the values back via MQTT
}
/**
* type 0x01A5 - data from the Nefit RC1010/3000 thermostat (0x18) and RC300/310s on 0x10
* EMS+ messages may come in with different offsets so handle them here
*/
void _process_RCPLUSStatusMessage(_EMS_RxTelegram * EMS_RxTelegram) {
if (EMS_RxTelegram->offset == 0) {
// the whole telegram
// e.g. Thermostat -> all, telegram: 10 00 FF 00 01 A5 00 D7 21 00 00 00 00 30 01 84 01 01 03 01 84 01 F1 00 00 11 01 00 08 63 00
// 10 00 FF 00 01 A5 80 00 01 30 28 00 30 28 01 54 03 03 01 01 54 02 A8 00 00 11 01 03 FF FF 00
EMS_Thermostat.curr_roomTemp = _toShort(EMS_OFFSET_RCPLUSStatusMessage_curr); // value is * 10
EMS_Thermostat.setpoint_roomTemp = _toByte(EMS_OFFSET_RCPLUSStatusMessage_setpoint); // value is * 2
EMS_Thermostat.day_mode = _bitRead(EMS_OFFSET_RCPLUSGet_mode_day, 1); // get day mode flag
EMS_Thermostat.mode = _bitRead(EMS_OFFSET_RCPLUSStatusMessage_mode, 0); // bit 1, mode (auto=1 or manual=0)
}
// actual set point
// e.g. Thermostat -> all, telegram: 10 00 FF 07 01 A5 32
if (EMS_RxTelegram->offset == 7) {
// to add...
}
// next set point
// e.g. Thermostat -> all, telegram: 18 00 FF 06 01 A5 22
if (EMS_RxTelegram->offset == 6) {
// to add...
}
// thermostat mode auto/manual, examples:
// manual : 10 00 FF 0A 01 A5 02 (CRC=16) #data=1
// auto : Thermostat -> all, type 0x01A5 telegram: 10 00 FF 0A 01 A5 03 (CRC=17) #data=1
if (EMS_RxTelegram->offset == EMS_OFFSET_RCPLUSStatusMessage_mode) {
EMS_Thermostat.mode = _bitRead(0, 0); // bit 0
}
}
/**
* type 0x01AF - summer/winter mode from the Nefit RC1010 thermostat (0x18) and RC300/310s on 0x10
*/
void _process_RCPLUSStatusMode(_EMS_RxTelegram * EMS_RxTelegram) {
// _toByte(0); // 0x00=OFF 0x01=Automatic 0x02=Forced
}
/**
* FR10 Junkers - type x6F01
*/
void _process_JunkersStatusMessage(_EMS_RxTelegram * EMS_RxTelegram) {
if (EMS_RxTelegram->offset == 0) {
// e.g. for FR10: 90 00 FF 00 00 6F 03 01 00 BE 00 BF
// e.g. for FW100: 90 00 FF 00 00 6F 03 02 00 D7 00 DA F3 34 00 C4
EMS_Thermostat.curr_roomTemp = _toShort(EMS_OFFSET_JunkersStatusMessage_curr); // value is * 10
EMS_Thermostat.setpoint_roomTemp = _toShort(EMS_OFFSET_JunkersStatusMessage_setpoint); // value is * 10
}
}
/**
* type 0x01B9 EMS+ for reading the mode from RC300/RC310 thermostat
*/
void _process_RCPLUSSetMessage(_EMS_RxTelegram * EMS_RxTelegram) {
EMS_Thermostat.mode = _toByte(EMS_OFFSET_RCPLUSSet_mode);
EMS_Thermostat.daytemp = _toByte(EMS_OFFSET_RCPLUSSet_temp_comfort2); // is * 2
EMS_Thermostat.nighttemp = _toByte(EMS_OFFSET_RCPLUSSet_temp_eco); // is * 2
EMS_Sys_Status.emsRefreshed = true; // triggers a send the values back via MQTT
}
/**
* type 0xB0 - for reading the mode from the RC10 thermostat (0x17)
* received only after requested
*/
void _process_RC10Set(_EMS_RxTelegram * EMS_RxTelegram) {
// mode not implemented yet
}
/**
* type 0xA8 - for reading the mode from the RC20 thermostat (0x17)
* received only after requested
*/
void _process_RC20Set(_EMS_RxTelegram * EMS_RxTelegram) {
EMS_Thermostat.mode = _toByte(EMS_OFFSET_RC20Set_mode);
}
/**
* type 0xA7 - for reading the mode from the RC30 thermostat (0x10)
* received only after requested
*/
void _process_RC30Set(_EMS_RxTelegram * EMS_RxTelegram) {
EMS_Thermostat.mode = _toByte(EMS_OFFSET_RC30Set_mode);
}
/**
* type 0x3D and 0x47 - for reading the mode from the RC35 thermostat (0x10)
* Working Mode Heating Circuit 1 & 2 (HC1, HC2)
* received only after requested
*/
void _process_RC35Set(_EMS_RxTelegram * EMS_RxTelegram) {
EMS_Thermostat.mode = _toByte(EMS_OFFSET_RC35Set_mode);
EMS_Thermostat.daytemp = _toByte(EMS_OFFSET_RC35Set_temp_day); // is * 2
EMS_Thermostat.nighttemp = _toByte(EMS_OFFSET_RC35Set_temp_night); // is * 2
EMS_Thermostat.holidaytemp = _toByte(EMS_OFFSET_RC35Set_temp_holiday); // is * 2
EMS_Thermostat.heatingtype = _toByte(EMS_OFFSET_RC35Set_heatingtype); // byte 0 bit floor heating = 3 0x47
EMS_Sys_Status.emsRefreshed = true; // triggers a send the values back via MQTT
}
/**
* type 0xA3 - for external temp settings from the the RC* thermostats
*/
void _process_RCOutdoorTempMessage(_EMS_RxTelegram * EMS_RxTelegram) {
// add support here if you're reading external sensors
}
/*
* SM10Monitor - type 0x97
*/
void _process_SM10Monitor(_EMS_RxTelegram * EMS_RxTelegram) {
EMS_SolarModule.collectorTemp = _toShort(2); // collector temp from SM10, is *10
EMS_SolarModule.bottomTemp = _toShort(5); // bottom temp from SM10, is *10
EMS_SolarModule.pumpModulation = _toByte(4); // modulation solar pump
EMS_SolarModule.pump = _bitRead(7, 1); // active if bit 1 is set
EMS_Sys_Status.emsRefreshed = true; // triggers a send the values back via MQTT
}
/*
* SM100Monitor - type 0x0262 EMS+
* e.g, 30 00 FF 00 02 62 01 AC
* 30 00 FF 18 02 62 80 00
* 30 00 FF 00 02 62 01 A1 - for bottom temps
*/
void _process_SM100Monitor(_EMS_RxTelegram * EMS_RxTelegram) {
// only process the complete telegram, not partial
if (EMS_RxTelegram->offset != 0) {
return;
}
EMS_SolarModule.collectorTemp = _toShort(0); // collector temp from SM100, is *10
if (EMS_RxTelegram->data_length > 2) {
EMS_SolarModule.bottomTemp = _toShort(2); // bottom temp from SM100, is *10
}
EMS_Sys_Status.emsRefreshed = true; // triggers a send the values back via MQTT
}
/*
* SM100Status - type 0x0264 EMS+ for pump modulation
* e.g. 30 00 FF 09 02 64 64 = 100%
* 30 00 FF 09 02 64 1E = 30%
*/
void _process_SM100Status(_EMS_RxTelegram * EMS_RxTelegram) {
// check for complete telegram
if (EMS_RxTelegram->offset == 0) {
EMS_SolarModule.pumpModulation = _toByte(9); // modulation solar pump
} else if (EMS_RxTelegram->offset == 0x09) {
// or short telegram with a single byte with offset 09
EMS_SolarModule.pumpModulation = _toByte(0); // modulation solar pump
}
EMS_Sys_Status.emsRefreshed = true; // triggers a send the values back via MQTT
}
/*
* SM100Status2 - type 0x026A EMS+ for pump on/off at offset 0x0A
*/
void _process_SM100Status2(_EMS_RxTelegram * EMS_RxTelegram) {
// check for complete telegram
if (EMS_RxTelegram->offset == 0) {
EMS_SolarModule.pump = _bitRead(10, 2); // 03=off 04=on at offset 10 which is byte 10
} else if (EMS_RxTelegram->offset == 0x0A) {
// or short telegram with a single byte with offset 0A
EMS_SolarModule.pump = _bitRead(0, 2); // 03=off 04=on
}
EMS_Sys_Status.emsRefreshed = true; // triggers a send the values back via MQTT
}
/*
* SM100Energy - type 0x028E EMS+ for energy readings
* e.g. 30 00 FF 00 02 8E 00 00 00 00 00 00 06 C5 00 00 76 35
*/
void _process_SM100Energy(_EMS_RxTelegram * EMS_RxTelegram) {
EMS_SolarModule.EnergyLastHour = _toShort(2); // last hour / 10 in Wh
EMS_SolarModule.EnergyToday = _toShort(6); // todays in Wh
EMS_SolarModule.EnergyTotal = _toShort(10); // total / 10 in kWh
EMS_Sys_Status.emsRefreshed = true; // triggers a send the values back via MQTT
}
/*
* Type 0xE3 - HeatPump Monitor 1
*/
void _process_HPMonitor1(_EMS_RxTelegram * EMS_RxTelegram) {
EMS_HeatPump.HPModulation = _toByte(14); // modulation %
EMS_Sys_Status.emsRefreshed = true; // triggers a send the values back via MQTT
}
/*
* Type 0xE5 - HeatPump Monitor 2
*/
void _process_HPMonitor2(_EMS_RxTelegram * EMS_RxTelegram) {
EMS_HeatPump.HPSpeed = _toByte(25); // speed %
EMS_Sys_Status.emsRefreshed = true; // triggers a send the values back via MQTT
}
/*
* Junkers ISM1 Solar Module - type 0x0003 EMS+ for energy readings
*/
void _process_ISM1StatusMessage(_EMS_RxTelegram * EMS_RxTelegram) {
if (EMS_RxTelegram->offset == 0) {
// e.g. B0 00 FF 00 00 03 32 00 00 00 00 13 00 D6 00 00 00 FB D0 F0
EMS_SolarModule.collectorTemp = _toShort(4); // Collector Temperature
EMS_SolarModule.bottomTemp = _toShort(6); // Temperature Bottom of Solar Boiler
EMS_SolarModule.EnergyLastHour = _toShort(2); // Solar Energy produced in last hour - is * 10 and handled in ems-esp.cpp
EMS_SolarModule.pump = _bitRead(8, 0); // Solar pump on (1) or off (0)
EMS_SolarModule.pumpWorkMin = _toLong(10);
}
if (EMS_RxTelegram->offset == 4) {
// e.g. B0 00 FF 04 00 03 02 E5
EMS_SolarModule.collectorTemp = _toShort(0); // Collector Temperature
}
}
/*
* Junkers ISM1 Solar Module - type 0x0001 EMS+ for setting values
*/
void _process_ISM1Set(_EMS_RxTelegram * EMS_RxTelegram) {
if (EMS_RxTelegram->offset == 6) {
// e.g. 90 30 FF 06 00 01 50 (CRC=2C)
// to implement: change max solar boiler temperature
EMS_SolarModule.setpoint_maxBottomTemp = _toByte(0);
}
}
/**
* UBASetPoint 0x1A
*/
void _process_SetPoints(_EMS_RxTelegram * EMS_RxTelegram) {
if (EMS_Sys_Status.emsLogging == EMS_SYS_LOGGING_VERBOSE) {
if (EMS_RxTelegram->data_length != 0) {
uint8_t setpoint = EMS_RxTelegram->data[0]; // flow temp
//uint8_t ww_power = data[2]; // power in %
/* use this logic if the value is *2
char s[5];
char s2[5];
strlcpy(s, itoa(setpoint >> 1, s2, 10), 5);
strlcat(s, ".", sizeof(s));
strlcat(s, ((setpoint & 0x01) ? "5" : "0"), 5);
myDebug_P(PSTR(" Boiler flow temp %s C, Warm Water power %d %"), s, ww_power);
*/
myDebug_P(PSTR(" Boiler flow temperature is %d C"), setpoint);
}
}
}
/**
* process_RCTime - type 0x06 - date and time from a thermostat - 14 bytes long
* common for all thermostats
*/
void _process_RCTime(_EMS_RxTelegram * EMS_RxTelegram) {
if ((EMS_Thermostat.model_id == EMS_MODEL_EASY)) {
return; // not supported
}
EMS_Thermostat.hour = _toByte(2);
EMS_Thermostat.minute = _toByte(4);
EMS_Thermostat.second = _toByte(5);
EMS_Thermostat.day = _toByte(3);
EMS_Thermostat.month = _toByte(1);
EMS_Thermostat.year = _toByte(0);
}
/*
* Clear devices list
*/
void ems_clearDeviceList() {
Devices.clear();
}
/*
* add an EMS device to our list of detected devices
*/
void _addDevice(uint8_t product_id, uint8_t device_id, char * version, const char * model_string) {
_Generic_Device device;
// if its a duplicate don't add
bool found = false;
for (std::list<_Generic_Device>::iterator it = Devices.begin(); it != Devices.end(); it++) {
if (((it)->product_id == product_id) && ((it)->device_id == device_id)) {
found = true;
}
}
if (!found) {
device.product_id = product_id;
device.device_id = device_id;
strlcpy(device.version, version, sizeof(device.version));
strlcpy(device.model_string, model_string, sizeof(device.model_string));
Devices.push_back(device);
}
}
/**
* type 0x02 - get the firmware version and type of an EMS device
* look up known devices via the product id and setup if not already set
*/
void _process_Version(_EMS_RxTelegram * EMS_RxTelegram) {
// ignore short messages that we can't interpret
if (EMS_RxTelegram->data_length < 3) {
return;
}
uint8_t product_id = _toByte(0);
char version[10] = {0};
snprintf(version, sizeof(version), "%02d.%02d", _toByte(1), _toByte(2));
// see if its a known boiler
int i = 0;
bool typeFound = false;
while (i < _Boiler_Devices_max) {
if ((Boiler_Devices[i].product_id == product_id) && ((EMS_RxTelegram->src & 0x7F) == EMS_ID_BOILER)) {
typeFound = true; // we have a matching product id. i is the index.
break;
}
i++;
}
if (typeFound) {
// its a boiler
myDebug_P(PSTR("Boiler found: %s (DeviceID:0x%02X ProductID:%d Version:%s)"), Boiler_Devices[i].model_string, EMS_ID_BOILER, product_id, version);
// add to list
_addDevice(product_id, EMS_ID_BOILER, version, Boiler_Devices[i].model_string);
// if its a boiler set it, unless it already has been set by checking for a productID
// it will take the first one found in the list
if ((EMS_Boiler.device_id == EMS_ID_NONE) || ((EMS_Boiler.device_id == EMS_ID_BOILER) && EMS_Boiler.product_id == EMS_ID_NONE)) {
myDebug_P(PSTR("* Setting Boiler to model %s (DeviceID:0x%02X ProductID:%d Version:%s)"),
Boiler_Devices[i].model_string,
EMS_ID_BOILER,
product_id,
version);
EMS_Boiler.device_id = EMS_ID_BOILER;
EMS_Boiler.product_id = Boiler_Devices[i].product_id;
strlcpy(EMS_Boiler.version, version, sizeof(EMS_Boiler.version));
// check to see if its a Junkers Heatronic3, which has a different poll'ing logic
if (EMS_Boiler.product_id == EMS_PRODUCTID_HEATRONICS) {
EMS_Sys_Status.emsReverse = true;
}
myESP.fs_saveConfig(); // save config to SPIFFS
ems_getBoilerValues(); // get Boiler values that we would usually have to wait for
}
return;
}
// its not a boiler, maybe its a known thermostat?
i = 0;
while (i < _Thermostat_Devices_max) {
if (Thermostat_Devices[i].product_id == product_id) {
typeFound = true; // we have a matching product id. i is the index.
break;
}
i++;
}
if (typeFound) {
// its a known thermostat
if (EMS_Sys_Status.emsLogging >= EMS_SYS_LOGGING_BASIC) {
myDebug_P(PSTR("Thermostat found: %s (DeviceID:0x%02X ProductID:%d Version:%s)"),
Thermostat_Devices[i].model_string,
Thermostat_Devices[i].device_id,
product_id,
version);
}
// add to list
_addDevice(product_id, Thermostat_Devices[i].device_id, version, Thermostat_Devices[i].model_string);
// if we don't have a thermostat set, use this one
if (((EMS_Thermostat.device_id == EMS_ID_NONE) || (EMS_Thermostat.model_id == EMS_MODEL_NONE)
|| (EMS_Thermostat.device_id == Thermostat_Devices[i].device_id))
&& EMS_Thermostat.product_id == EMS_ID_NONE) {
myDebug_P(PSTR("* Setting Thermostat to %s (DeviceID:0x%02X ProductID:%d Version:%s)"),
Thermostat_Devices[i].model_string,
Thermostat_Devices[i].device_id,
product_id,
version);
EMS_Thermostat.model_id = Thermostat_Devices[i].model_id;
EMS_Thermostat.device_id = Thermostat_Devices[i].device_id;
EMS_Thermostat.write_supported = Thermostat_Devices[i].write_supported;
EMS_Thermostat.product_id = product_id;
strlcpy(EMS_Thermostat.version, version, sizeof(EMS_Thermostat.version));
myESP.fs_saveConfig(); // save config to SPIFFS
// get Thermostat values (if supported)
ems_getThermostatValues();
}
return;
}
// look for Solar Modules
i = 0;
while (i < _SolarModule_Types_max) {
if (SolarModule_Devices[i].product_id == product_id) {
typeFound = true; // we have a matching product id. i is the index.
break;
}
i++;
}
if (typeFound) {
myDebug_P(PSTR("Solar Module found: %s (DeviceID:0x%02X ProductID:%d Version:%s)"),
SolarModule_Devices[i].model_string,
SolarModule_Devices[i].device_id,
product_id,
version);
// add to list
_addDevice(product_id, SolarModule_Devices[i].device_id, version, SolarModule_Devices[i].model_string);
myDebug_P(PSTR("Solar Module support enabled."));
EMS_SolarModule.device_id = SolarModule_Devices[i].device_id;
EMS_SolarModule.product_id = product_id;
strlcpy(EMS_SolarModule.version, version, sizeof(EMS_SolarModule.version));
// fetch Solar Module values
ems_getSolarModuleValues();
return;
}
// look for heatpumps
i = 0;
while (i < _HeatPump_Devices_max) {
if (HeatPump_Devices[i].product_id == product_id) {
typeFound = true; // we have a matching product id. i is the index.
break;
}
i++;
}
if (typeFound) {
myDebug_P(PSTR("Heat Pump found: %s (DeviceID:0x%02X ProductID:%d Version:%s)"),
HeatPump_Devices[i].model_string,
HeatPump_Devices[i].device_id,
product_id,
version);
// add to list
_addDevice(product_id, HeatPump_Devices[i].device_id, version, HeatPump_Devices[i].model_string);
myDebug_P(PSTR("Heat Pump support enabled."));
EMS_HeatPump.device_id = SolarModule_Devices[i].device_id;
EMS_HeatPump.product_id = product_id;
strlcpy(EMS_HeatPump.version, version, sizeof(EMS_HeatPump.version));
return;
}
// finally look for the other EMS devices
i = 0;
while (i < _Other_Devices_max) {
if (Other_Devices[i].product_id == product_id) {
typeFound = true; // we have a matching product id. i is the index.
break;
}
i++;
}
if (typeFound) {
myDebug_P(PSTR("Device found: %s (DeviceID:0x%02X ProductID:%d Version:%s)"), Other_Devices[i].model_string, Other_Devices[i].device_id, product_id, version);
// add to list
_addDevice(product_id, Other_Devices[i].device_id, version, Other_Devices[i].model_string);
return;
} else {
myDebug_P(PSTR("Unrecognized device found: %s (DeviceID:0x%02X ProductID:%d Version:%s)"), EMS_RxTelegram->src, product_id, version);
// add to list
_addDevice(product_id, EMS_RxTelegram->src, version, "unknown?");
}
}
/*
* See if we have a Junkers Heatronic3 compatible device
* Do a read command for the version with the src having the MSB set
*/
void _ems_detectJunkers() {
char s[30] = {0};
snprintf(s, sizeof(s), "%02X %02X %02X 00 %02X", (EMS_ID_ME | 0x80), (EMS_ID_BOILER | 0x080), EMS_TYPE_Version, EMS_MAX_TELEGRAM_LENGTH);
ems_sendRawTelegram(s);
}
/*
* Figure out the boiler and thermostat types
*/
void ems_discoverModels() {
myDebug_P(PSTR("Starting auto discover of EMS devices..."));
// boiler...
ems_doReadCommand(EMS_TYPE_Version, EMS_ID_BOILER);
_ems_detectJunkers(); // special hack for Junkers detection
// solar module...
ems_doReadCommand(EMS_TYPE_Version, EMS_ID_SM); // check if there is Solar Module available
// heatpump module...
ems_doReadCommand(EMS_TYPE_Version, EMS_ID_HP); // check if there is HeatPump Module available
// thermostat...
// if it hasn't been set, auto discover it
if (EMS_Thermostat.device_id == EMS_ID_NONE) {
ems_scanDevices(); // auto-discover it
} else {
// set the model as hardcoded (see my_devices.h) and fetch the version and product id
ems_doReadCommand(EMS_TYPE_Version, EMS_Thermostat.device_id);
}
}
/**
* Print the Tx queue - for debugging
*/
void ems_printTxQueue() {
_EMS_TxTelegram EMS_TxTelegram;
char sType[20] = {0};
if (EMS_TxQueue.size() == 0) {
myDebug_P(PSTR("Tx queue is empty"));
return;
}
myDebug_P(PSTR("Tx queue (%d/%d)"), EMS_TxQueue.size(), EMS_TxQueue.capacity);
for (byte i = 0; i < EMS_TxQueue.size(); i++) {
EMS_TxTelegram = EMS_TxQueue[i]; // retrieves the i-th element from the buffer without removing it
// get action
if (EMS_TxTelegram.action == EMS_TX_TELEGRAM_WRITE) {
strlcpy(sType, "write", sizeof(sType));
} else if (EMS_TxTelegram.action == EMS_TX_TELEGRAM_READ) {
strlcpy(sType, "read", sizeof(sType));
} else if (EMS_TxTelegram.action == EMS_TX_TELEGRAM_VALIDATE) {
strlcpy(sType, "validate", sizeof(sType));
} else if (EMS_TxTelegram.action == EMS_TX_TELEGRAM_RAW) {
strlcpy(sType, "raw", sizeof(sType));
} else {
strlcpy(sType, "?", sizeof(sType));
}
char addedTime[15] = {0};
uint32_t upt = EMS_TxTelegram.timestamp;
snprintf(addedTime,
sizeof(addedTime),
"(%02d:%02d:%02d)",
(uint8_t)((upt / (1000 * 60 * 60)) % 24),
(uint8_t)((upt / (1000 * 60)) % 60),
(uint8_t)((upt / 1000) % 60));
myDebug_P(PSTR(" [%d] action=%s dest=0x%02x type=0x%02x offset=%d length=%d dataValue=%d "
"comparisonValue=%d type_validate=0x%02x comparisonPostRead=0x%02x @ %s"),
i + 1,
sType,
EMS_TxTelegram.dest & 0x7F,
EMS_TxTelegram.type,
EMS_TxTelegram.offset,
EMS_TxTelegram.length,
EMS_TxTelegram.dataValue,
EMS_TxTelegram.comparisonValue,
EMS_TxTelegram.type_validate,
EMS_TxTelegram.comparisonPostRead,
addedTime);
}
}
/**
* Generic function to return various settings from the thermostat
*/
void ems_getThermostatValues() {
if (!ems_getThermostatEnabled()) {
return;
}
uint8_t model_id = EMS_Thermostat.model_id;
uint8_t device_id = EMS_Thermostat.device_id;
uint8_t hc = EMS_Thermostat.hc;
switch (model_id) {
case EMS_MODEL_RC20:
ems_doReadCommand(EMS_TYPE_RC20StatusMessage, device_id); // to get the temps
ems_doReadCommand(EMS_TYPE_RC20Set, device_id); // to get the mode
break;
case EMS_MODEL_RC30:
ems_doReadCommand(EMS_TYPE_RC30StatusMessage, device_id); // to get the temps
ems_doReadCommand(EMS_TYPE_RC30Set, device_id); // to get the mode
break;
case EMS_MODEL_EASY:
ems_doReadCommand(EMS_TYPE_EasyStatusMessage, device_id);
break;
case EMS_MODEL_RC35:
case EMS_MODEL_ES73:
if (hc == 1) {
ems_doReadCommand(EMS_TYPE_RC35StatusMessage_HC1, device_id); // to get the temps
ems_doReadCommand(EMS_TYPE_RC35Set_HC1, device_id); // to get the mode
} else if (hc == 2) {
ems_doReadCommand(EMS_TYPE_RC35StatusMessage_HC2, device_id); // to get the temps
ems_doReadCommand(EMS_TYPE_RC35Set_HC2, device_id); // to get the mode
}
break;
case EMS_MODEL_RC300:
ems_doReadCommand(EMS_TYPE_RCPLUSStatusMessage, device_id);
default:
break;
}
ems_doReadCommand(EMS_TYPE_RCTime, device_id); // get Thermostat time
}
/**
* Generic function to return various settings from the thermostat
*/
void ems_getBoilerValues() {
ems_doReadCommand(EMS_TYPE_UBAMonitorFast, EMS_Boiler.device_id); // get boiler stats, instead of waiting 10secs for the broadcast
ems_doReadCommand(EMS_TYPE_UBAMonitorSlow, EMS_Boiler.device_id); // get more boiler stats, instead of waiting 60secs for the broadcast
ems_doReadCommand(EMS_TYPE_UBAParameterWW, EMS_Boiler.device_id); // get Warm Water values
ems_doReadCommand(EMS_TYPE_UBAParametersMessage, EMS_Boiler.device_id); // get MC10 boiler values
ems_doReadCommand(EMS_TYPE_UBATotalUptimeMessage, EMS_Boiler.device_id); // get uptime from boiler
}
/*
* Get other values from EMS devices
*/
void ems_getSolarModuleValues() {
uint8_t product_id = EMS_SolarModule.product_id;
if (ems_getSolarModuleEnabled()) {
if (product_id == EMS_PRODUCTID_SM10) {
ems_doReadCommand(EMS_TYPE_SM10Monitor, EMS_ID_SM); // fetch all from SM10Monitor
} else if (product_id == EMS_PRODUCTID_SM100) {
ems_doReadCommand(EMS_TYPE_SM100Monitor, EMS_ID_SM); // fetch all from SM100Monitor
}
}
}
/**
* returns current thermostat type as a string
* by looking up the product_id
*/
char * ems_getThermostatDescription(char * buffer) {
uint8_t size = 128;
if (!ems_getThermostatEnabled()) {
strlcpy(buffer, "<not enabled>", size);
} else {
int i = 0;
bool found = false;
char tmp[6] = {0};
// scan through known ID types
while (i < _Thermostat_Devices_max) {
if (Thermostat_Devices[i].product_id == EMS_Thermostat.product_id) {
found = true; // we have a match
break;
}
i++;
}
if (found) {
strlcpy(buffer, Thermostat_Devices[i].model_string, size);
} else {
strlcpy(buffer, "DeviceID: 0x", size);
strlcat(buffer, _hextoa(EMS_Thermostat.device_id, tmp), size);
}
strlcat(buffer, " (ProductID:", size);
if (EMS_Thermostat.product_id == EMS_ID_NONE) {
strlcat(buffer, "?", size);
} else {
strlcat(buffer, itoa(EMS_Thermostat.product_id, tmp, 10), size);
}
strlcat(buffer, " Version:", size);
strlcat(buffer, EMS_Thermostat.version, size);
strlcat(buffer, ")", size);
}
return buffer;
}
/**
* returns current boiler type as a string
*/
char * ems_getBoilerDescription(char * buffer) {
uint8_t size = 128;
if (!ems_getBoilerEnabled()) {
strlcpy(buffer, "<not enabled>", size);
} else {
int i = 0;
bool found = false;
char tmp[6] = {0};
// scan through known ID types
while (i < _Boiler_Devices_max) {
if (Boiler_Devices[i].product_id == EMS_Boiler.product_id) {
found = true; // we have a match
break;
}
i++;
}
if (found) {
strlcpy(buffer, Boiler_Devices[i].model_string, size);
} else {
strlcpy(buffer, "DeviceID: 0x", size);
strlcat(buffer, _hextoa(EMS_Boiler.device_id, tmp), size);
}
strlcat(buffer, " (ProductID:", size);
if (EMS_Boiler.product_id == EMS_ID_NONE) {
strlcat(buffer, "?", size);
} else {
strlcat(buffer, itoa(EMS_Boiler.product_id, tmp, 10), size);
}
strlcat(buffer, " Version:", size);
strlcat(buffer, EMS_Boiler.version, size);
strlcat(buffer, ")", size);
}
return buffer;
}
/**
* returns current Solar Module type as a string
*/
char * ems_getSolarModuleDescription(char * buffer) {
uint8_t size = 128;
if (!ems_getSolarModuleEnabled()) {
strlcpy(buffer, "<not enabled>", size);
} else {
int i = 0;
bool found = false;
char tmp[6] = {0};
// scan through known ID types
while (i < _SolarModule_Types_max) {
if (SolarModule_Devices[i].product_id == EMS_SolarModule.product_id) {
found = true; // we have a match
break;
}
i++;
}
if (found) {
strlcpy(buffer, SolarModule_Devices[i].model_string, size);
} else {
strlcpy(buffer, "DeviceID: 0x", size);
strlcat(buffer, _hextoa(EMS_SolarModule.device_id, tmp), size);
}
strlcat(buffer, " (ProductID:", size);
if (EMS_SolarModule.product_id == EMS_ID_NONE) {
strlcat(buffer, "?", size);
} else {
strlcat(buffer, itoa(EMS_SolarModule.product_id, tmp, 10), size);
}
strlcat(buffer, " Version:", size);
strlcat(buffer, EMS_SolarModule.version, size);
strlcat(buffer, ")", size);
}
return buffer;
}
/**
* returns current Heat Pump type as a string
*/
char * ems_getHeatPumpDescription(char * buffer) {
uint8_t size = 128;
if (!ems_getHeatPumpEnabled()) {
strlcpy(buffer, "<not enabled>", size);
} else {
int i = 0;
bool found = false;
char tmp[6] = {0};
// scan through known ID types
while (i < _HeatPump_Devices_max) {
if (HeatPump_Devices[i].product_id == EMS_HeatPump.product_id) {
found = true; // we have a match
break;
}
i++;
}
if (found) {
strlcpy(buffer, HeatPump_Devices[i].model_string, size);
} else {
strlcpy(buffer, "DeviceID: 0x", size);
strlcat(buffer, _hextoa(EMS_HeatPump.device_id, tmp), size);
}
strlcat(buffer, " (ProductID:", size);
if (EMS_HeatPump.product_id == EMS_ID_NONE) {
strlcat(buffer, "?", size);
} else {
strlcat(buffer, itoa(EMS_HeatPump.product_id, tmp, 10), size);
}
strlcat(buffer, " Version:", size);
strlcat(buffer, EMS_HeatPump.version, size);
strlcat(buffer, ")", size);
}
return buffer;
}
/**
* Find the versions of our connected devices
*/
void ems_scanDevices() {
myDebug_P(PSTR("Started scan on EMS bus for known devices"));
std::list<uint8_t> Device_Ids; // create a new list
// add boiler device_id which is always 0x08
Device_Ids.push_back(EMS_ID_BOILER);
// copy over thermostats
for (_Thermostat_Device tt : Thermostat_Devices) {
Device_Ids.push_back(tt.device_id);
}
// copy over solar modules
for (_SolarModule_Device sm : SolarModule_Devices) {
Device_Ids.push_back(sm.device_id);
}
// copy over others
for (_Other_Device ot : Other_Devices) {
Device_Ids.push_back(ot.device_id);
}
// remove duplicates and reserved IDs (like our own device)
Device_Ids.sort();
Device_Ids.unique();
Device_Ids.remove(EMS_MODEL_NONE);
// send the read command with Version command
for (uint8_t device_id : Device_Ids) {
ems_doReadCommand(EMS_TYPE_Version, device_id);
}
// add a check for Junkers onto the queue
_ems_detectJunkers();
}
/**
* Print out all handled types
*/
void ems_printAllDevices() {
uint8_t i;
myDebug_P(PSTR("\nThese %d devices are supported as boiler units:"), _Boiler_Devices_max);
for (i = 0; i < _Boiler_Devices_max; i++) {
myDebug_P(PSTR(" %s%s%s (DeviceID:0x%02X ProductID:%d)"),
COLOR_BOLD_ON,
Boiler_Devices[i].model_string,
COLOR_BOLD_OFF,
EMS_ID_BOILER,
Boiler_Devices[i].product_id);
}
myDebug_P(PSTR("\nThese %d devices are supported as solar module devices:"), _SolarModule_Types_max);
for (i = 0; i < _SolarModule_Types_max; i++) {
myDebug_P(PSTR(" %s%s%s (DeviceID:0x%02X ProductID:%d)"),
COLOR_BOLD_ON,
SolarModule_Devices[i].model_string,
COLOR_BOLD_OFF,
SolarModule_Devices[i].device_id,
SolarModule_Devices[i].product_id);
}
myDebug_P(PSTR("\nThese %d devices are supported as other known EMS devices:"), _Other_Devices_max);
for (i = 0; i < _Other_Devices_max; i++) {
myDebug_P(PSTR(" %s%s%s (DeviceID:0x%02X ProductID:%d)"),
COLOR_BOLD_ON,
Other_Devices[i].model_string,
COLOR_BOLD_OFF,
Other_Devices[i].device_id,
Other_Devices[i].product_id);
}
myDebug_P(PSTR("\nThe following telegram type IDs are supported:"));
for (i = 0; i < _EMS_Types_max; i++) {
if ((EMS_Types[i].model_id == EMS_MODEL_ALL) || (EMS_Types[i].model_id == EMS_MODEL_UBA)) {
myDebug_P(PSTR(" type %02X (%s)"), EMS_Types[i].type, EMS_Types[i].typeString);
}
}
myDebug_P(PSTR("\nThese %d thermostat devices are supported:"), _Thermostat_Devices_max);
for (i = 0; i < _Thermostat_Devices_max; i++) {
myDebug_P(PSTR(" %s%s%s (DeviceID:0x%02X ProductID:%d) can write:%c"),
COLOR_BOLD_ON,
Thermostat_Devices[i].model_string,
COLOR_BOLD_OFF,
Thermostat_Devices[i].device_id,
Thermostat_Devices[i].product_id,
(Thermostat_Devices[i].write_supported) ? 'y' : 'n');
}
// print out known devices
ems_printDevices();
myDebug_P(PSTR("")); // newline
}
/**
* print out contents of the device list that was captured
*/
void ems_printDevices() {
if (Devices.size() != 0) {
myDebug_P(PSTR("\nThese %d EMS devices were detected:"), Devices.size());
for (std::list<_Generic_Device>::iterator it = Devices.begin(); it != Devices.end(); it++) {
myDebug_P(PSTR(" %s%s%s (DeviceID:0x%02X ProductID:%d Version:%s)"),
COLOR_BOLD_ON,
(it)->model_string,
COLOR_BOLD_OFF,
(it)->device_id,
(it)->product_id,
(it)->version);
}
myDebug_P(PSTR("\nNote: if any devices are marked as 'unknown?' please report this as a GitHub issue so the EMS devices list can be "
"updated.\n"));
}
}
/*
* prints the device list to a string for html parsing
*/
uint8_t ems_printDevices_s(char * buffer, uint16_t len) {
if (Devices.size() == 0) {
return 0;
}
char s[100];
for (std::list<_Generic_Device>::iterator it = Devices.begin(); it != Devices.end(); it++) {
sprintf(s, "%s (DeviceID:0x%02X ProductID:%d Version:%s)<br>", (it)->model_string, (it)->device_id, (it)->product_id, (it)->version);
strlcat(buffer, s, len);
}
return Devices.size();
}
/**
* Send a command to UART Tx to Read from another device
* Read commands when sent must respond by the destination (target) immediately (or within 10ms)
*/
void ems_doReadCommand(uint16_t type, uint8_t dest, bool forceRefresh) {
// if not a valid type of boiler is not accessible then quits
if ((type == EMS_ID_NONE) || (dest == EMS_ID_NONE)) {
return;
}
// if we're preventing all outbound traffic, quit
if (EMS_Sys_Status.emsTxDisabled) {
if (ems_getLogging() != EMS_SYS_LOGGING_NONE) {
myDebug_P(PSTR("in Listen Mode. All Tx is disabled."));
}
return;
}
_EMS_TxTelegram EMS_TxTelegram = EMS_TX_TELEGRAM_NEW; // create new Tx
EMS_TxTelegram.timestamp = millis(); // set timestamp
EMS_Sys_Status.txRetryCount = 0; // reset retry counter
// see if its a known type
int i = _ems_findType(type);
if ((ems_getLogging() == EMS_SYS_LOGGING_BASIC) || (ems_getLogging() == EMS_SYS_LOGGING_VERBOSE)) {
if (i == -1) {
myDebug_P(PSTR("Requesting type (0x%02X) from dest 0x%02X"), type, dest);
} else {
myDebug_P(PSTR("Requesting type %s(0x%02X) from dest 0x%02X"), EMS_Types[i].typeString, type, dest);
}
}
EMS_TxTelegram.action = EMS_TX_TELEGRAM_READ; // read command
EMS_TxTelegram.dest = dest; // 8th bit will be set to indicate a read
EMS_TxTelegram.offset = 0; // 0 for all data
EMS_TxTelegram.type = type;
EMS_TxTelegram.length = EMS_MIN_TELEGRAM_LENGTH; // EMS 1.0: 6 bytes long (including CRC at end), EMS+ will add 2 bytes. includes CRC
EMS_TxTelegram.dataValue = EMS_MAX_TELEGRAM_LENGTH; // for a read this is the # bytes we want back
EMS_TxTelegram.type_validate = EMS_ID_NONE;
EMS_TxTelegram.comparisonValue = 0;
EMS_TxTelegram.comparisonOffset = 0;
EMS_TxTelegram.comparisonPostRead = EMS_ID_NONE;
EMS_TxTelegram.forceRefresh = forceRefresh; // send to MQTT after a successful read
EMS_TxQueue.push(EMS_TxTelegram);
}
/**
* Send a raw telegram to the bus
* telegram is a string of hex values
*/
void ems_sendRawTelegram(char * telegram) {
uint8_t count = 0;
char * p;
char value[10] = {0};
if (EMS_Sys_Status.emsTxDisabled) {
return; // user has disabled all Tx
}
_EMS_TxTelegram EMS_TxTelegram = EMS_TX_TELEGRAM_NEW; // create new Tx
EMS_TxTelegram.timestamp = millis(); // set timestamp
EMS_Sys_Status.txRetryCount = 0; // reset retry counter
// get first value, which should be the src
if ((p = strtok(telegram, " ,"))) { // delimiter
strlcpy(value, p, sizeof(value));
EMS_TxTelegram.data[0] = (uint8_t)strtol(value, 0, 16);
}
// and interate until end
while (p != 0) {
if ((p = strtok(nullptr, " ,"))) {
strlcpy(value, p, sizeof(value));
uint8_t val = (uint8_t)strtol(value, 0, 16);
EMS_TxTelegram.data[++count] = val;
if (count == 1) {
EMS_TxTelegram.dest = val;
} else if (count == 2) {
EMS_TxTelegram.type = val;
} else if (count == 3) {
EMS_TxTelegram.offset = val;
}
}
}
if (count == 0) {
return; // nothing to send
}
// calculate length including header and CRC
EMS_TxTelegram.length = count + 2;
EMS_TxTelegram.type_validate = EMS_ID_NONE;
EMS_TxTelegram.action = EMS_TX_TELEGRAM_RAW;
// add to Tx queue. Assume it's not full.
EMS_TxQueue.push(EMS_TxTelegram);
}
/**
* Set the temperature of the thermostat
* temptype 0 = normal, 1=night temp, 2=day temp, 3=holiday temp
*/
void ems_setThermostatTemp(float temperature, uint8_t temptype) {
if (!ems_getThermostatEnabled()) {
return;
}
if (!EMS_Thermostat.write_supported) {
myDebug_P(PSTR("Write not supported for this Thermostat model"));
return;
}
_EMS_TxTelegram EMS_TxTelegram = EMS_TX_TELEGRAM_NEW; // create new Tx
EMS_TxTelegram.timestamp = millis(); // set timestamp
EMS_Sys_Status.txRetryCount = 0; // reset retry counter
uint8_t model_id = EMS_Thermostat.model_id;
uint8_t device_id = EMS_Thermostat.device_id;
uint8_t hc = EMS_Thermostat.hc; // heating circuit
EMS_TxTelegram.action = EMS_TX_TELEGRAM_WRITE;
EMS_TxTelegram.dest = device_id;
myDebug_P(PSTR("Setting new thermostat temperature"));
if (model_id == EMS_MODEL_RC20) {
EMS_TxTelegram.type = EMS_TYPE_RC20Set;
EMS_TxTelegram.offset = EMS_OFFSET_RC20Set_temp;
EMS_TxTelegram.comparisonPostRead = EMS_TYPE_RC20StatusMessage;
} else if (model_id == EMS_MODEL_RC10) {
EMS_TxTelegram.type = EMS_TYPE_RC10Set;
EMS_TxTelegram.offset = EMS_OFFSET_RC10Set_temp;
EMS_TxTelegram.comparisonPostRead = EMS_TYPE_RC10StatusMessage;
} else if (model_id == EMS_MODEL_RC30) {
EMS_TxTelegram.type = EMS_TYPE_RC30Set;
EMS_TxTelegram.offset = EMS_OFFSET_RC30Set_temp;
EMS_TxTelegram.comparisonPostRead = EMS_TYPE_RC30StatusMessage;
} else if (model_id == EMS_MODEL_RC300) {
EMS_TxTelegram.type = EMS_TYPE_RCPLUSSet; // for 3000 and 1010, e.g. 0B 10 FF (0A | 08) 01 89 2B
// check mode
if (EMS_Thermostat.mode == 1) { // auto
EMS_TxTelegram.offset = 0x08; // auto offset
} else if (EMS_Thermostat.mode == 0) { // manuaL
EMS_TxTelegram.offset = 0x0A; // manual offset
}
} else if ((model_id == EMS_MODEL_RC35) || (model_id == EMS_MODEL_ES73)) {
switch (temptype) {
case 1: // change the night temp
EMS_TxTelegram.offset = EMS_OFFSET_RC35Set_temp_night;
break;
case 2: // change the day temp
EMS_TxTelegram.offset = EMS_OFFSET_RC35Set_temp_day;
break;
case 3: // change the holiday temp
EMS_TxTelegram.offset = 3; //holiday on RC35
break;
default:
case 0: // automatic selection, if no type is defined, we use the standard code
if (EMS_Thermostat.day_mode == 0) {
EMS_TxTelegram.offset = EMS_OFFSET_RC35Set_temp_night;
} else if (EMS_Thermostat.day_mode == 1) {
EMS_TxTelegram.offset = EMS_OFFSET_RC35Set_temp_day;
}
break;
}
if (hc == 1) {
// heating circuit 1
EMS_TxTelegram.type = EMS_TYPE_RC35Set_HC1;
EMS_TxTelegram.comparisonPostRead = EMS_TYPE_RC35StatusMessage_HC1;
} else {
// heating circuit 2
EMS_TxTelegram.type = EMS_TYPE_RC35Set_HC2;
EMS_TxTelegram.comparisonPostRead = EMS_TYPE_RC35StatusMessage_HC2;
}
}
EMS_TxTelegram.length = EMS_MIN_TELEGRAM_LENGTH;
EMS_TxTelegram.dataValue = (uint8_t)((float)temperature * (float)2); // value * 2
EMS_TxTelegram.type_validate = EMS_TxTelegram.type;
EMS_TxTelegram.comparisonOffset = EMS_TxTelegram.offset;
EMS_TxTelegram.comparisonValue = EMS_TxTelegram.dataValue;
EMS_TxTelegram.forceRefresh = false; // send to MQTT is done automatically in EMS_TYPE_RC*StatusMessage
EMS_TxQueue.push(EMS_TxTelegram);
}
/**
* Set the thermostat working mode
* (0=low/night, 1=manual/day, 2=auto/clock), 0xA8 on a RC20 and 0xA7 on RC30
* 0x01B9 for EMS+ 300/1000/3000, Auto=0xFF Manual=0x00. See https://github.com/proddy/EMS-ESP/wiki/RC3xx-Thermostats
*/
void ems_setThermostatMode(uint8_t mode) {
if (!ems_getThermostatEnabled()) {
return;
}
if (!EMS_Thermostat.write_supported) {
myDebug_P(PSTR("Write not supported for this model Thermostat"));
return;
}
uint8_t model_id = EMS_Thermostat.model_id;
uint8_t device_id = EMS_Thermostat.device_id;
uint8_t hc = EMS_Thermostat.hc;
// RC300/1000/3000 have different settings
if (model_id == EMS_MODEL_RC300) {
if (mode == 1) {
mode = 0; // manual
} else {
mode = 0xFF; // auto
}
}
myDebug_P(PSTR("Setting thermostat mode to %d"), mode);
_EMS_TxTelegram EMS_TxTelegram = EMS_TX_TELEGRAM_NEW; // create new Tx
EMS_TxTelegram.timestamp = millis(); // set timestamp
EMS_Sys_Status.txRetryCount = 0; // reset retry counter
EMS_TxTelegram.action = EMS_TX_TELEGRAM_WRITE;
EMS_TxTelegram.dest = device_id;
EMS_TxTelegram.length = EMS_MIN_TELEGRAM_LENGTH;
EMS_TxTelegram.dataValue = mode;
// handle different thermostat types
if (model_id == EMS_MODEL_RC20) {
EMS_TxTelegram.type = EMS_TYPE_RC20Set;
EMS_TxTelegram.offset = EMS_OFFSET_RC20Set_mode;
} else if (model_id == EMS_MODEL_RC30) {
EMS_TxTelegram.type = EMS_TYPE_RC30Set;
EMS_TxTelegram.offset = EMS_OFFSET_RC30Set_mode;
} else if ((model_id == EMS_MODEL_RC35) || (model_id == EMS_MODEL_ES73)) {
EMS_TxTelegram.type = (hc == 2) ? EMS_TYPE_RC35Set_HC2 : EMS_TYPE_RC35Set_HC1;
EMS_TxTelegram.offset = EMS_OFFSET_RC35Set_mode;
} else if (model_id == EMS_MODEL_RC300) {
EMS_TxTelegram.type = EMS_TYPE_RCPLUSSet; // for 3000 and 1010, e.g. 48 10 FF 00 01 B9 00 for manual
EMS_TxTelegram.offset = EMS_OFFSET_RCPLUSSet_mode;
}
EMS_TxTelegram.type_validate = EMS_TxTelegram.type; // callback to EMS_TYPE_RC30Temperature to fetch temps
EMS_TxTelegram.comparisonOffset = EMS_TxTelegram.offset;
EMS_TxTelegram.comparisonValue = EMS_TxTelegram.dataValue;
EMS_TxTelegram.comparisonPostRead = EMS_TxTelegram.type;
EMS_TxTelegram.forceRefresh = false; // send to MQTT is done automatically in 0xA8 process
EMS_TxQueue.push(EMS_TxTelegram);
}
/**
* Set the warm water temperature 0x33
*/
void ems_setWarmWaterTemp(uint8_t temperature) {
// check for invalid temp values
if ((temperature < 30) || (temperature > EMS_BOILER_TAPWATER_TEMPERATURE_MAX)) {
return;
}
myDebug_P(PSTR("Setting boiler warm water temperature to %d C"), temperature);
_EMS_TxTelegram EMS_TxTelegram = EMS_TX_TELEGRAM_NEW; // create new Tx
EMS_TxTelegram.timestamp = millis(); // set timestamp
EMS_Sys_Status.txRetryCount = 0; // reset retry counter
EMS_TxTelegram.action = EMS_TX_TELEGRAM_WRITE;
EMS_TxTelegram.dest = EMS_Boiler.device_id;
EMS_TxTelegram.type = EMS_TYPE_UBAParameterWW;
EMS_TxTelegram.offset = EMS_OFFSET_UBAParameterWW_wwtemp;
EMS_TxTelegram.length = EMS_MIN_TELEGRAM_LENGTH;
EMS_TxTelegram.dataValue = temperature; // value to compare against. must be a single int
EMS_TxTelegram.type_validate = EMS_TYPE_UBAParameterWW; // validate
EMS_TxTelegram.comparisonOffset = EMS_OFFSET_UBAParameterWW_wwtemp;
EMS_TxTelegram.comparisonValue = temperature;
EMS_TxTelegram.comparisonPostRead = EMS_TYPE_UBAParameterWW;
EMS_TxTelegram.forceRefresh = false; // no need to send since this is done by 0x33 process
EMS_TxQueue.push(EMS_TxTelegram);
}
/**
* Set the boiler flow temp
*/
void ems_setFlowTemp(uint8_t temperature) {
myDebug_P(PSTR("Setting boiler flow temperature to %d C"), temperature);
_EMS_TxTelegram EMS_TxTelegram = EMS_TX_TELEGRAM_NEW; // create new Tx
EMS_TxTelegram.timestamp = millis(); // set timestamp
EMS_Sys_Status.txRetryCount = 0; // reset retry counter
EMS_TxTelegram.action = EMS_TX_TELEGRAM_WRITE;
EMS_TxTelegram.dest = EMS_Boiler.device_id;
EMS_TxTelegram.type = EMS_TYPE_UBASetPoints;
EMS_TxTelegram.offset = EMS_OFFSET_UBASetPoints_flowtemp;
EMS_TxTelegram.length = EMS_MIN_TELEGRAM_LENGTH;
EMS_TxTelegram.dataValue = temperature; // value to compare against. must be a single int
EMS_TxTelegram.type_validate = EMS_TYPE_UBASetPoints; // validate
EMS_TxTelegram.comparisonOffset = EMS_OFFSET_UBASetPoints_flowtemp;
EMS_TxTelegram.comparisonValue = temperature;
EMS_TxTelegram.comparisonPostRead = EMS_TYPE_UBASetPoints;
EMS_TxTelegram.forceRefresh = false;
EMS_TxQueue.push(EMS_TxTelegram);
}
/**
* Set the warm water mode to comfort to Eco/Comfort
* 1 = Hot, 2 = Eco, 3 = Intelligent
*/
void ems_setWarmWaterModeComfort(uint8_t comfort) {
_EMS_TxTelegram EMS_TxTelegram = EMS_TX_TELEGRAM_NEW; // create new Tx
EMS_TxTelegram.timestamp = millis(); // set timestamp
EMS_Sys_Status.txRetryCount = 0; // reset retry counter
if (comfort == 1) {
myDebug_P(PSTR("Setting boiler warm water comfort mode to Hot"));
EMS_TxTelegram.dataValue = EMS_VALUE_UBAParameterWW_wwComfort_Hot;
} else if (comfort == 2) {
myDebug_P(PSTR("Setting boiler warm water comfort mode to Eco"));
EMS_TxTelegram.dataValue = EMS_VALUE_UBAParameterWW_wwComfort_Eco;
} else if (comfort == 3) {
myDebug_P(PSTR("Setting boiler warm water comfort mode to Intelligent"));
EMS_TxTelegram.dataValue = EMS_VALUE_UBAParameterWW_wwComfort_Intelligent;
} else {
return; // invalid comfort value
}
EMS_TxTelegram.action = EMS_TX_TELEGRAM_WRITE;
EMS_TxTelegram.dest = EMS_Boiler.device_id;
EMS_TxTelegram.type = EMS_TYPE_UBAParameterWW;
EMS_TxTelegram.offset = EMS_OFFSET_UBAParameterWW_wwComfort;
EMS_TxTelegram.length = EMS_MIN_TELEGRAM_LENGTH;
EMS_TxTelegram.type_validate = EMS_ID_NONE; // don't validate
EMS_TxQueue.push(EMS_TxTelegram);
}
/**
* Activate / De-activate the Warm Water 0x33
* true = on, false = off
*/
void ems_setWarmWaterActivated(bool activated) {
myDebug_P(PSTR("Setting boiler warm water %s"), activated ? "on" : "off");
_EMS_TxTelegram EMS_TxTelegram = EMS_TX_TELEGRAM_NEW; // create new Tx
EMS_TxTelegram.timestamp = millis(); // set timestamp
EMS_Sys_Status.txRetryCount = 0; // reset retry counter
EMS_TxTelegram.action = EMS_TX_TELEGRAM_WRITE;
EMS_TxTelegram.dest = EMS_Boiler.device_id;
EMS_TxTelegram.type = EMS_TYPE_UBAParameterWW;
EMS_TxTelegram.offset = EMS_OFFSET_UBAParameterWW_wwactivated;
EMS_TxTelegram.length = EMS_MIN_TELEGRAM_LENGTH;
EMS_TxTelegram.type_validate = EMS_ID_NONE; // don't validate
EMS_TxTelegram.dataValue = (activated ? 0xFF : 0x00); // 0xFF is on, 0x00 is off
EMS_TxQueue.push(EMS_TxTelegram);
}
/**
* Activate / De-activate the Warm Tap Water
* true = on, false = off
* Using the type 0x1D to put the boiler into Test mode. This may be shown on the boiler with a flashing 'T'
*/
void ems_setWarmTapWaterActivated(bool activated) {
myDebug_P(PSTR("Setting boiler warm tap water %s"), activated ? "on" : "off");
_EMS_TxTelegram EMS_TxTelegram = EMS_TX_TELEGRAM_NEW; // create new Tx
EMS_TxTelegram.timestamp = millis(); // set timestamp
EMS_Sys_Status.txRetryCount = 0; // reset retry counter
// clear Tx to make sure all data is set to 0x00
for (int i = 0; (i < EMS_MAX_TELEGRAM_LENGTH); i++) {
EMS_TxTelegram.data[i] = 0x00;
}
EMS_TxTelegram.action = EMS_TX_TELEGRAM_WRITE;
EMS_TxTelegram.dest = EMS_Boiler.device_id;
EMS_TxTelegram.type = EMS_TYPE_UBAFunctionTest;
EMS_TxTelegram.offset = 0;
EMS_TxTelegram.type_validate = EMS_TxTelegram.type;
EMS_TxTelegram.comparisonOffset = 0; // 1st byte
EMS_TxTelegram.comparisonValue = (activated ? 0 : 1); // value is 1 if in Test mode (not activated)
EMS_TxTelegram.comparisonPostRead = EMS_TxTelegram.type;
EMS_TxTelegram.forceRefresh = true; // send new value to MQTT after successful write
// create header
EMS_TxTelegram.data[0] = EMS_ID_ME; // src
EMS_TxTelegram.data[1] = EMS_TxTelegram.dest; // dest
EMS_TxTelegram.data[2] = EMS_TxTelegram.type; // type
EMS_TxTelegram.data[3] = EMS_TxTelegram.offset; // offset
// we use the special test mode 0x1D for this. Setting the first data to 5A puts the system into test mode and
// a setting of 0x00 puts it back into normal operarting mode
// when in test mode we're able to mess around with the 3-way valve settings
if (!activated) {
// on
EMS_TxTelegram.data[4] = 0x5A; // test mode on
EMS_TxTelegram.data[5] = 0x00; // burner output 0%
EMS_TxTelegram.data[7] = 0x64; // boiler pump capacity 100%
EMS_TxTelegram.data[8] = 0xFF; // 3-way valve hot water only
EMS_TxTelegram.length = 22; // 17 bytes of data including header and CRC. We send all zeros just to be sure.
} else {
// get out of test mode
// telegram: 0B 08 1D 00 00
EMS_TxTelegram.data[4] = 0x00; // test mode off
EMS_TxTelegram.length = EMS_MIN_TELEGRAM_LENGTH;
}
EMS_TxQueue.push(EMS_TxTelegram); // add to queue
}
/**
* Start up sequence for UBA Master, hopefully to initialize a handshake
* Still experimental
*/
void ems_startupTelegrams() {
if ((EMS_Sys_Status.emsTxDisabled) || (!EMS_Sys_Status.emsBusConnected)) {
myDebug_P(PSTR("Unable to send startup sequence when in listen mode or the bus is disabled"));
}
myDebug_P(PSTR("Sending startup sequence..."));
char s[20] = {0};
// Write type 0x1D to get out of function test mode
snprintf(s, sizeof(s), "%02X %02X 1D 00 00", EMS_ID_ME, EMS_Boiler.device_id);
ems_sendRawTelegram(s);
// Read type 0x01
snprintf(s, sizeof(s), "%02X %02X 01 00 1B", EMS_ID_ME, EMS_Boiler.device_id | 0x80);
ems_sendRawTelegram(s);
}
/**
* Test parsing of telgrams by injecting fake telegrams and simulating the response
*/
void ems_testTelegram(uint8_t test_num) {
#ifdef TESTS
if ((test_num == 0) || (test_num > _TEST_DATA_max)) {
myDebug_P(PSTR("Invalid test. Pick between 1 and %d"), _TEST_DATA_max);
return;
}
// stop all Tx
if (!EMS_TxQueue.isEmpty()) {
EMS_TxQueue.clear();
EMS_Sys_Status.emsTxStatus = EMS_TX_STATUS_IDLE;
}
static uint8_t * telegram = (uint8_t *)malloc(EMS_MAX_TELEGRAM_LENGTH); // warning, memory is never set free so use only for debugging
char telegram_string[200];
strlcpy(telegram_string, TEST_DATA[test_num - 1], sizeof(telegram_string));
uint8_t length = 0;
char * p;
char value[10] = {0};
// get first value, which should be the src
if ((p = strtok(telegram_string, " ,"))) {
strlcpy(value, p, sizeof(value));
telegram[0] = (uint8_t)strtol(value, 0, 16);
}
// and interate until end
while (p != 0) {
if ((p = strtok(nullptr, " ,"))) {
strlcpy(value, p, sizeof(value));
uint8_t val = (uint8_t)strtol(value, 0, 16);
telegram[++length] = val;
}
}
length++; // this is the total amount of bytes
telegram[length] = _crcCalculator(telegram, length + 1); // add the CRC
myDebug_P(PSTR("[TEST %d] Injecting telegram %s"), test_num, TEST_DATA[test_num - 1]);
// go an parse it
ems_parseTelegram(telegram, length + 1); // include CRC in length
#else
myDebug_P(PSTR("Firmware not compiled with test data. Use -DTESTS"));
#endif
}