Files
EMS-ESP32/src/MyESP.cpp
2019-10-19 11:05:56 +02:00

2969 lines
99 KiB
C++

/*
* MyESP - my ESP helper class to handle WiFi, MQTT, Telnet, Web and other utils
*
* Paul Derbyshire - first revision: December 2018
*
* with ideas borrowed from Espurna https://github.com/xoseperez/espurna
* and web from https://github.com/esprfid/esp-rfid
*/
#include "MyESP.h"
#ifdef CRASH
EEPROM_Rotate EEPROMr;
#endif
union system_rtcmem_t {
struct {
uint8_t stability_counter;
uint8_t reset_reason;
uint8_t boot_status;
uint8_t _reserved_;
} parts;
uint32_t value;
};
// nasty global variables that are called from internal ws functions
static char * _general_password = nullptr;
static bool _shouldRestart = false;
uint8_t RtcmemSize = (sizeof(RtcmemData) / 4u);
auto Rtcmem = reinterpret_cast<volatile RtcmemData *>(RTCMEM_ADDR);
// constructor
MyESP::MyESP() {
_general_hostname = strdup("myesp");
_app_name = strdup("MyESP");
_app_version = strdup(MYESP_VERSION);
_app_url = nullptr;
_app_updateurl = nullptr;
// general
_timerequest = false;
_formatreq = false;
_suspendOutput = false;
_ota_pre_callback_f = nullptr;
_ota_post_callback_f = nullptr;
_load_average = 100; // calculated load average
_general_serial = true; // serial is set to on as default
_general_log_events = true; // all logs are written to an event log in SPIFFS
_have_ntp_time = false;
// telnet
_command[0] = '\0';
_telnetcommand_callback_f = nullptr;
_telnet_callback_f = nullptr;
// fs
_fs_loadsave_callback_f = nullptr;
_fs_setlist_callback_f = nullptr;
// mqtt
_mqtt_ip = nullptr;
_mqtt_password = nullptr;
_mqtt_user = nullptr;
_mqtt_port = MQTT_PORT;
_mqtt_base = nullptr;
_mqtt_reconnect_delay = MQTT_RECONNECT_DELAY_MIN;
_mqtt_last_connection = 0;
_mqtt_connecting = false;
_mqtt_enabled = false;
_mqtt_heartbeat = false;
_mqtt_keepalive = MQTT_KEEPALIVE;
_mqtt_qos = MQTT_QOS;
_mqtt_retain = MQTT_RETAIN;
_mqtt_will_topic = strdup(MQTT_WILL_TOPIC);
_mqtt_will_online_payload = strdup(MQTT_WILL_ONLINE_PAYLOAD);
_mqtt_will_offline_payload = strdup(MQTT_WILL_OFFLINE_PAYLOAD);
// network
_network_password = nullptr;
_network_ssid = nullptr;
_network_wmode = 1; // default AP
_wifi_callback_f = nullptr;
_wifi_connected = false;
// web
_web_callback_f = nullptr;
_webServer = new AsyncWebServer(80);
_ws = new AsyncWebSocket("/ws");
_http_username = strdup(MYESP_HTTP_PASSWORD);
_general_password = strdup(MYESP_HTTP_PASSWORD);
// system
_rtcmem_status = false;
_systemStable = true;
// ntp
_ntp_server = strdup(MYESP_NTP_SERVER);
_ntp_interval = 60;
_ntp_enabled = false;
// get the build time
_buildTime = _getBuildTime();
// MQTT log
for (uint8_t i = 0; i < MYESP_MQTTLOG_MAX; i++) {
MQTT_log[i].type = 0;
MQTT_log[i].timestamp = 0;
MQTT_log[i].topic = nullptr;
MQTT_log[i].payload = nullptr;
}
}
MyESP::~MyESP() {
end();
}
// end
void MyESP::end() {
SPIFFS.end();
_ws->enable(false);
delete _webServer;
delete _ws;
SerialAndTelnet.end();
jw.disconnect();
}
// general debug to the telnet or serial channels
void MyESP::myDebug(const char * format, ...) {
if (_suspendOutput)
return;
va_list args;
va_start(args, format);
char test[1];
int len = ets_vsnprintf(test, 1, format, args) + 1;
char * buffer = new char[len];
ets_vsnprintf(buffer, len, format, args);
va_end(args);
SerialAndTelnet.println(buffer);
delete[] buffer;
}
// for flashmemory. Must use PSTR()
void MyESP::myDebug_P(PGM_P format_P, ...) {
if (_suspendOutput)
return;
char format[strlen_P(format_P) + 1];
memcpy_P(format, format_P, sizeof(format));
va_list args;
va_start(args, format_P);
char test[1];
int len = ets_vsnprintf(test, 1, format, args) + 1;
char * buffer = new char[len];
ets_vsnprintf(buffer, len, format, args);
va_end(args);
#ifdef MYESP_TIMESTAMP
// capture & print timestamp
char timestamp[10] = {0};
snprintf_P(timestamp, sizeof(timestamp), PSTR("[%06lu] "), millis() % 1000000);
SerialAndTelnet.print(timestamp);
#endif
SerialAndTelnet.println(buffer);
delete[] buffer;
}
// use Serial?
bool MyESP::getUseSerial() {
return (_general_serial);
}
// heartbeat
bool MyESP::getHeartbeat() {
return (_mqtt_heartbeat);
}
// init heap ram
uint32_t MyESP::_getInitialFreeHeap() {
static uint32_t _heap = 0;
if (0 == _heap) {
_heap = ESP.getFreeHeap();
}
return _heap;
}
// called when WiFi is connected, and used to start OTA, MQTT
void MyESP::_wifiCallback(justwifi_messages_t code, char * parameter) {
if (code == MESSAGE_CONNECTED) {
myDebug_P(PSTR("[WIFI] Connected to SSID %s (hostname: %s, IP: %s)"), WiFi.SSID().c_str(), _getESPhostname().c_str(), WiFi.localIP().toString().c_str());
/*
myDebug_P(PSTR("[WIFI] SSID %s"), WiFi.SSID().c_str());
myDebug_P(PSTR("[WIFI] CH %d"), WiFi.channel());
myDebug_P(PSTR("[WIFI] RSSI %d"), WiFi.RSSI());
myDebug_P(PSTR("[WIFI] IP %s"), WiFi.localIP().toString().c_str());
myDebug_P(PSTR("[WIFI] MAC %s"), WiFi.macAddress().c_str());
myDebug_P(PSTR("[WIFI] GW %s"), WiFi.gatewayIP().toString().c_str());
myDebug_P(PSTR("[WIFI] MASK %s"), WiFi.subnetMask().toString().c_str());
myDebug_P(PSTR("[WIFI] DNS %s"), WiFi.dnsIP().toString().c_str());
myDebug_P(PSTR("[WIFI] HOST %s"), _getESPhostname().c_str());
*/
// start OTA
ArduinoOTA.begin(); // moved to support esp32
myDebug_P(PSTR("[OTA] Listening to firmware updates on %s.local:%u"), ArduinoOTA.getHostname().c_str(), OTA_PORT);
/*
// show reason for the restart if any
unsigned char reason = _getCustomResetReason();
if (reason > 0) {
char buffer[32];
strcpy_P(buffer, custom_reset_string[reason - 1]);
myDebug_P(PSTR("[SYSTEM] Last reset reason: %s (count %d)"), buffer, _getSystemStabilityCounter());
} else {
myDebug_P(PSTR("[SYSTEM] Last reset reason: %s (count %d)"), (char *)ESP.getResetReason().c_str(), _getSystemStabilityCounter());
myDebug_P(PSTR("[SYSTEM] Last reset info: %s"), (char *)ESP.getResetInfo().c_str());
}
*/
// MQTT Setup
_mqtt_setup();
// if we don't want Serial anymore, turn it off
if (!_general_serial) {
myDebug_P(PSTR("[SYSTEM] Disabling serial port communication"));
SerialAndTelnet.flush(); // flush so all buffer is printed to serial
setUseSerial(false);
} else {
myDebug_P(PSTR("[SYSTEM] Serial port communication is enabled"));
}
_wifi_connected = true;
// NTP now that we have a WiFi connection
if (_ntp_enabled) {
NTP.Ntp(_ntp_server, _ntp_interval); // set up NTP server
myDebug_P(PSTR("[NTP] NTP internet time enabled via server %s"), _ntp_server);
}
// call any final custom stuff
if (_wifi_callback_f) {
_wifi_callback_f();
}
// jw.enableAPFallback(false); // Disable AP mode after initial connect was successful - test for https://github.com/proddy/EMS-ESP/issues/187
}
if (code == MESSAGE_ACCESSPOINT_CREATED) {
myDebug_P(PSTR("[WIFI] MODE AP"));
myDebug_P(PSTR("[WIFI] SSID %s"), jw.getAPSSID().c_str());
myDebug_P(PSTR("[WIFI] IP %s"), WiFi.softAPIP().toString().c_str());
myDebug_P(PSTR("[WIFI] MAC %s"), WiFi.softAPmacAddress().c_str());
// if we don't want Serial anymore, turn it off
if (!_general_serial) {
myDebug_P(PSTR("[SYSTEM] Disabling serial port communication"));
SerialAndTelnet.flush(); // flush so all buffer is printed to serial
setUseSerial(false);
} else {
myDebug_P(PSTR("[SYSTEM] Serial port communication is enabled"));
}
_wifi_connected = true;
// call any final custom stuff
if (_wifi_callback_f) {
_wifi_callback_f();
}
}
if (code == MESSAGE_CONNECTING) {
myDebug_P(PSTR("[WIFI] Connecting to %s..."), parameter);
_wifi_connected = false;
}
if (code == MESSAGE_CONNECT_FAILED) {
myDebug_P(PSTR("[WIFI] Could not connect to %s"), parameter);
_wifi_connected = false;
}
if (code == MESSAGE_DISCONNECTED) {
myDebug_P(PSTR("[WIFI] Disconnected"));
_wifi_connected = false;
}
if (code == MESSAGE_SCANNING) {
myDebug_P(PSTR("[WIFI] Scanning"));
}
if (code == MESSAGE_SCAN_FAILED) {
myDebug_P(PSTR("[WIFI] Scan failed"));
}
if (code == MESSAGE_NO_NETWORKS) {
myDebug_P(PSTR("[WIFI] No networks found"));
}
if (code == MESSAGE_NO_KNOWN_NETWORKS) {
myDebug_P(PSTR("[WIFI] No known networks found"));
}
if (code == MESSAGE_FOUND_NETWORK) {
myDebug_P(PSTR("[WIFI] %s"), parameter);
}
if (code == MESSAGE_CONNECT_WAITING) {
// too much noise
}
if (code == MESSAGE_ACCESSPOINT_CREATING) {
myDebug_P(PSTR("[WIFI] Creating access point"));
// for setting of wifi mode to AP, but don't save
_network_wmode = 1;
// (void)_fs_writeConfig();
}
if (code == MESSAGE_ACCESSPOINT_FAILED) {
myDebug_P(PSTR("[WIFI] Could not create access point"));
}
}
// return true if in WiFi AP mode
// does not work after wifi reset on ESP32 yet. See https://github.com/espressif/arduino-esp32/issues/1306
bool MyESP::isAPmode() {
return (WiFi.getMode() & WIFI_AP);
}
// received MQTT message
// we send this to the call back function. Important to parse are the event strings such as MQTT_MESSAGE_EVENT and MQTT_CONNECT_EVENT
void MyESP::_mqttOnMessage(char * topic, char * payload, size_t len) {
if (len == 0)
return;
char message[len + 1];
strlcpy(message, (char *)payload, len + 1);
// myDebug_P(PSTR("[MQTT] Received %s => %s"), topic, message); // enable for debugging
// topics are in format MQTT_BASE/HOSTNAME/TOPIC
char * topic_magnitude = strrchr(topic, '/'); // strip out everything until last /
if (topic_magnitude != nullptr) {
topic = topic_magnitude + 1;
}
// check for standard messages
// Restart the device
if (strcmp(topic, MQTT_TOPIC_RESTART) == 0) {
myDebug_P(PSTR("[MQTT] Received restart command"), message);
resetESP();
return;
}
// Send message event to custom service
(_mqtt_callback_f)(MQTT_MESSAGE_EVENT, topic, message);
}
// MQTT subscribe
// returns false if failed
bool MyESP::mqttSubscribe(const char * topic) {
if (mqttClient.connected() && (strlen(topic) > 0)) {
char * topic_s = _mqttTopic(topic);
uint16_t packet_id = mqttClient.subscribe(topic_s, _mqtt_qos);
// myDebug_P(PSTR("[MQTT] Subscribing to %s"), topic_s);
if (packet_id) {
// add to mqtt log
_addMQTTLog(topic_s, "", 2); // type of 2 means Subscribe. Has an empty payload for now
return true;
} else {
myDebug_P(PSTR("[MQTT] Error subscribing to %s, error %d"), _mqttTopic(topic), packet_id);
}
}
return false; // didn't work
}
// MQTT unsubscribe
void MyESP::mqttUnsubscribe(const char * topic) {
if (mqttClient.connected() && (strlen(topic) > 0)) {
(void)mqttClient.unsubscribe(_mqttTopic(topic));
myDebug_P(PSTR("[MQTT] Unsubscribing to %s"), _mqttTopic(topic));
}
}
// Publish using the user's custom retain flag
bool MyESP::mqttPublish(const char * topic, const char * payload) {
// use the custom MQTT retain flag
return mqttPublish(topic, payload, _mqtt_retain);
}
// MQTT Publish
// returns true if all good
bool MyESP::mqttPublish(const char * topic, const char * payload, bool retain) {
if (mqttClient.connected() && (strlen(topic) > 0)) {
//myDebug_P(PSTR("[MQTT] Sending publish to %s with payload %s"), _mqttTopic(topic), payload); // for debugging
uint16_t packet_id = mqttClient.publish(_mqttTopic(topic), _mqtt_qos, retain, payload);
if (packet_id) {
_addMQTTLog(topic, payload, 1); // add to the log, using type of 1 for Publish
return true;
} else {
myDebug_P(PSTR("[MQTT] Error publishing to %s with payload %s [error %d]"), _mqttTopic(topic), payload, packet_id);
}
}
return false; // failed
}
// MQTT onConnect - when a connect is established
void MyESP::_mqttOnConnect() {
myDebug_P(PSTR("[MQTT] MQTT connected established"));
_mqtt_reconnect_delay = MQTT_RECONNECT_DELAY_MIN;
_mqtt_last_connection = millis();
// say we're alive to the Last Will topic
mqttPublish(_mqtt_will_topic, _mqtt_will_online_payload, true); // force retain on
// subscribe to general subs
mqttSubscribe(MQTT_TOPIC_RESTART);
// subscribe to a start message and send the first publish
// forcing retain to off since we only want to send this once
mqttSubscribe(MQTT_TOPIC_START);
mqttPublish(MQTT_TOPIC_START, MQTT_TOPIC_START_PAYLOAD, false);
// send heartbeat if enabled
_heartbeatCheck(true);
// call custom function to handle mqtt receives
(_mqtt_callback_f)(MQTT_CONNECT_EVENT, nullptr, nullptr);
}
// MQTT setup
void MyESP::_mqtt_setup() {
if (!_mqtt_enabled) {
myDebug_P(PSTR("[MQTT] is disabled"));
}
mqttClient.onConnect([this](bool sessionPresent) { _mqttOnConnect(); });
mqttClient.onDisconnect([this](AsyncMqttClientDisconnectReason reason) {
if (reason == AsyncMqttClientDisconnectReason::TCP_DISCONNECTED) {
myDebug_P(PSTR("[MQTT] TCP Disconnected"));
(_mqtt_callback_f)(MQTT_DISCONNECT_EVENT, nullptr, nullptr); // call callback with disconnect
}
if (reason == AsyncMqttClientDisconnectReason::MQTT_IDENTIFIER_REJECTED) {
myDebug_P(PSTR("[MQTT] Identifier Rejected"));
}
if (reason == AsyncMqttClientDisconnectReason::MQTT_SERVER_UNAVAILABLE) {
myDebug_P(PSTR("[MQTT] Server unavailable"));
}
if (reason == AsyncMqttClientDisconnectReason::MQTT_MALFORMED_CREDENTIALS) {
myDebug_P(PSTR("[MQTT] Malformed credentials"));
}
if (reason == AsyncMqttClientDisconnectReason::MQTT_NOT_AUTHORIZED) {
myDebug_P(PSTR("[MQTT] Not authorized"));
}
// Reset reconnection delay
_mqtt_last_connection = millis();
_mqtt_connecting = false;
});
//mqttClient.onSubscribe([this](uint16_t packetId, uint8_t qos) { myDebug_P(PSTR("[MQTT] Subscribe ACK for PID %d"), packetId); });
//mqttClient.onPublish([this](uint16_t packetId) { myDebug_P(PSTR("[MQTT] Publish ACK for PID %d"), packetId); });
mqttClient.onMessage([this](char * topic, char * payload, AsyncMqttClientMessageProperties properties, size_t len, size_t index, size_t total) {
_mqttOnMessage(topic, payload, len);
});
}
// WiFI setup
void MyESP::_wifi_setup() {
jw.setHostname(_general_hostname); // Set WIFI hostname
jw.subscribe([this](justwifi_messages_t code, char * parameter) { _wifiCallback(code, parameter); });
jw.setConnectTimeout(MYESP_WIFI_CONNECT_TIMEOUT);
jw.setReconnectTimeout(MYESP_WIFI_RECONNECT_INTERVAL);
/// wmode 1 is AP, 0 is client
if (_network_wmode == 1) {
jw.enableAP(true);
} else {
jw.enableAP(false);
}
jw.enableAPFallback(true); // AP mode only as fallback
jw.enableSTA(true); // Enable STA mode (connecting to a router)
jw.enableScan(false); // Configure it to not scan available networks and connect in order of dBm
jw.cleanNetworks(); // Clean existing network configuration
jw.addNetwork(_network_ssid, _network_password); // Add a network
#if defined(ESP8266)
WiFi.setSleepMode(WIFI_NONE_SLEEP); // added to possibly fix wifi dropouts in arduino core 2.5.0
#endif
}
// set the callback function for the OTA onstart
void MyESP::setOTA(ota_callback_f OTACallback_pre, ota_callback_f OTACallback_post) {
_ota_pre_callback_f = OTACallback_pre;
_ota_post_callback_f = OTACallback_post;
}
// OTA callback when the upload process starts
void MyESP::_OTACallback() {
myDebug_P(PSTR("[OTA] Start"));
#ifdef CRASH
// If we are not specifically reserving the sectors we are using as
// EEPROM in the memory layout then any OTA upgrade will overwrite
// all but the last one.
// Calling rotate(false) disables rotation so all writes will be done
// to the last sector. It also sets the dirty flag to true so the next commit()
// will actually persist current configuration to that last sector.
// Calling rotate(false) will also prevent any other EEPROM write
// to overwrite the OTA image.
// In case the OTA process fails, reenable rotation.
// See onError callback below.
EEPROMr.rotate(false);
EEPROMr.commit();
#endif
// stop the web server
_ws->enable(false);
if (_ota_pre_callback_f) {
(_ota_pre_callback_f)(); // call custom function
}
}
// OTA Setup
void MyESP::_ota_setup() {
if (!_network_ssid) {
return;
}
ArduinoOTA.setPort(OTA_PORT);
ArduinoOTA.setHostname(_general_hostname);
ArduinoOTA.onStart([this]() { _OTACallback(); });
ArduinoOTA.onEnd([this]() {
myDebug_P(PSTR("[OTA] Done, restarting..."));
_deferredReset(500, CUSTOM_RESET_OTA);
});
ArduinoOTA.onProgress([this](unsigned int progress, unsigned int total) {
static unsigned int _progOld;
unsigned int _prog = (progress / (total / 100));
if (_prog != _progOld) {
myDebug_P(PSTR("[OTA] Progress: %u%%"), _prog);
_progOld = _prog;
}
});
ArduinoOTA.onError([this](ota_error_t error) {
if (error == OTA_AUTH_ERROR)
myDebug_P(PSTR("[OTA] Auth Failed"));
else if (error == OTA_BEGIN_ERROR)
myDebug_P(PSTR("[OTA] Begin Failed"));
else if (error == OTA_CONNECT_ERROR)
myDebug_P(PSTR("[OTA] Connect Failed"));
else if (error == OTA_RECEIVE_ERROR)
myDebug_P(PSTR("[OTA] Receive Failed"));
else if (error == OTA_END_ERROR)
myDebug_P(PSTR("[OTA] End Failed"));
#ifdef CRASH
// There's been an error, reenable eeprom rotation
EEPROMr.rotate(true);
#endif
});
}
// eeprom
void MyESP::_eeprom_setup() {
#ifdef CRASH
EEPROMr.size(4);
EEPROMr.begin(SPI_FLASH_SEC_SIZE);
#endif
}
// Set callback of sketch function to process project messages
void MyESP::setTelnet(telnetcommand_callback_f callback_cmd, telnet_callback_f callback) {
_telnetcommand_callback_f = callback_cmd; // external function to handle commands
_telnet_callback_f = callback;
}
void MyESP::_telnetConnected() {
myDebug_P(PSTR("[TELNET] Connected to %s version %s. Type ? for commands."), _app_name, _app_version);
//_consoleShowHelp(); // Show the initial message
// call callback
if (_telnet_callback_f) {
(_telnet_callback_f)(TELNET_EVENT_CONNECT);
}
}
void MyESP::_telnetDisconnected() {
// myDebug_P(PSTR("[TELNET] Telnet connection closed"));
if (_telnet_callback_f) {
(_telnet_callback_f)(TELNET_EVENT_DISCONNECT); // call callback
}
}
// Initialize the telnet server
void MyESP::_telnet_setup() {
SerialAndTelnet.setWelcomeMsg("");
SerialAndTelnet.setCallbackOnConnect([this]() { _telnetConnected(); });
SerialAndTelnet.setCallbackOnDisconnect([this]() { _telnetDisconnected(); });
SerialAndTelnet.setDebugOutput(false);
SerialAndTelnet.setPingTime(0); // default is 1500ms (1.5 seconds)
SerialAndTelnet.begin(TELNET_SERIAL_BAUD); // default baud is 115200
// init command buffer for console commands
memset(_command, 0, TELNET_MAX_COMMAND_LENGTH);
}
// Show help of commands
void MyESP::_consoleShowHelp() {
myDebug_P(PSTR(""));
myDebug_P(PSTR("* %s version %s"), _app_name, _app_version);
if (isAPmode()) {
myDebug_P(PSTR("* Device is in AP mode with SSID %s"), jw.getAPSSID().c_str());
} else {
myDebug_P(PSTR("* Hostname: %s (%s)"), _getESPhostname().c_str(), WiFi.localIP().toString().c_str());
myDebug_P(PSTR("* WiFi SSID: %s (signal %d%%)"), WiFi.SSID().c_str(), getWifiQuality());
if (isMQTTConnected()) {
myDebug_P(PSTR("* MQTT connected (heartbeat %s)"), getHeartbeat() ? "enabled" : "disabled");
} else {
myDebug_P(PSTR("* MQTT disconnected"));
}
}
myDebug_P(PSTR("*"));
myDebug_P(PSTR("* Commands:"));
myDebug_P(PSTR("* ?/help=show commands, CTRL-D/quit=close telnet session"));
myDebug_P(PSTR("* set, system, restart, mqttlog"));
#ifdef CRASH
myDebug_P(PSTR("* crash <dump | clear | test [n]>"));
// show crash dump if just restarted after a fatal crash
uint32_t crash_time;
EEPROMr.get(SAVE_CRASH_EEPROM_OFFSET + SAVE_CRASH_CRASH_TIME, crash_time);
if ((crash_time) && (crash_time != 0xFFFFFFFF)) {
myDebug_P(PSTR("[SYSTEM] There is stack data available from the last system crash. Use 'crash dump' to view and 'crash clear' to reset"));
}
#endif
// call callback function
if (_telnet_callback_f) {
(_telnet_callback_f)(TELNET_EVENT_SHOWCMD);
}
myDebug_P(PSTR("")); // newline
}
// see if a char * string is empty. It could not be initialized yet.
// return true if there is a value
bool MyESP::_hasValue(const char * s) {
if ((s == nullptr) || (strlen(s) == 0)) {
return false;
}
return (s[0] != '\0');
}
// print all set commands and current values
void MyESP::_printSetCommands() {
myDebug_P(PSTR("\nset commands:\n"));
myDebug_P(PSTR(" set erase"));
myDebug_P(PSTR(" set <wifi_mode <ap | client>"));
myDebug_P(PSTR(" set <wifi_ssid | wifi_password> [value]"));
myDebug_P(PSTR(" set mqtt_enabled <on | off>"));
myDebug_P(PSTR(" set <mqtt_ip | mqtt_username | mqtt_password> [value]"));
myDebug_P(PSTR(" set mqtt_heartbeat <on | off>"));
myDebug_P(PSTR(" set mqtt_base [string]"));
myDebug_P(PSTR(" set mqtt_port [number]"));
myDebug_P(PSTR(" set mqtt_qos [0,1,2,3]"));
myDebug_P(PSTR(" set mqtt_keepalive [seconds]"));
myDebug_P(PSTR(" set mqtt_retain [on | off]"));
myDebug_P(PSTR(" set ntp_enabled <on | off>"));
myDebug_P(PSTR(" set serial <on | off>"));
myDebug_P(PSTR(" set log_events <on | off>"));
// call callback function
if (_telnet_callback_f) {
(_telnet_callback_f)(TELNET_EVENT_SHOWSET);
}
myDebug_P(PSTR("\nCurrent settings:\n"));
if (_network_wmode == 0) {
myDebug_P(PSTR(" wifi_mode=client"));
} else {
myDebug_P(PSTR(" wifi_mode=ap"));
}
if (_hasValue(_network_ssid)) {
myDebug_P(PSTR(" wifi_ssid=%s"), _network_ssid);
} else {
myDebug_P(PSTR(" wifi_ssid="));
}
SerialAndTelnet.print(FPSTR(" wifi_password="));
if (_hasValue(_network_password)) {
for (uint8_t i = 0; i < strlen(_network_password); i++) {
SerialAndTelnet.print(FPSTR("*"));
}
}
myDebug_P(PSTR(""));
myDebug_P(PSTR(" mqtt_enabled=%s"), (_mqtt_enabled) ? "on" : "off");
if (_hasValue(_mqtt_ip)) {
myDebug_P(PSTR(" mqtt_ip=%s"), _mqtt_ip);
} else {
myDebug_P(PSTR(" mqtt_ip="));
}
if (_hasValue(_mqtt_user)) {
myDebug_P(PSTR(" mqtt_username=%s"), _mqtt_user);
} else {
myDebug_P(PSTR(" mqtt_username="));
}
SerialAndTelnet.print(FPSTR(" mqtt_password="));
if (_hasValue(_mqtt_password)) {
for (uint8_t i = 0; i < strlen(_mqtt_password); i++) {
SerialAndTelnet.print(FPSTR("*"));
}
}
myDebug_P(PSTR(""));
if (_hasValue(_mqtt_base)) {
myDebug_P(PSTR(" mqtt_base=%s"), _mqtt_base);
} else {
myDebug_P(PSTR(" mqtt_base="));
}
myDebug_P(PSTR(" mqtt_port=%d"), _mqtt_port);
myDebug_P(PSTR(" mqtt_keepalive=%d"), _mqtt_keepalive);
myDebug_P(PSTR(" mqtt_retain=%d"), (_mqtt_retain) ? "on" : "off");
myDebug_P(PSTR(" mqtt_qos=%d"), _mqtt_qos);
myDebug_P(PSTR(" mqtt_heartbeat=%s"), (_mqtt_heartbeat) ? "on" : "off");
#ifdef FORCE_SERIAL
myDebug_P(PSTR(" serial=%s (this is always when compiled with -DFORCE_SERIAL)"), (_general_serial) ? "on" : "off");
#else
myDebug_P(PSTR(" serial=%s"), (_general_serial) ? "on" : "off");
#endif
myDebug_P(PSTR(" ntp_enabled=%s"), (_ntp_enabled) ? "on" : "off");
myDebug_P(PSTR(" log_events=%s"), (_general_log_events) ? "on" : "off");
// print any custom settings
if (_fs_setlist_callback_f) {
(_fs_setlist_callback_f)(MYESP_FSACTION_LIST, 0, nullptr, nullptr);
}
myDebug_P(PSTR("")); // newline
}
// reset / restart
void MyESP::resetESP() {
myDebug_P(PSTR("* Restart ESP..."));
_deferredReset(500, CUSTOM_RESET_TERMINAL);
end();
#if defined(ARDUINO_ARCH_ESP32)
ESP.restart();
#else
ESP.restart();
#endif
}
// read next word from string buffer
// if parameter true then a word is only terminated by a newline
char * MyESP::_telnet_readWord(bool allow_all_chars) {
if (allow_all_chars) {
return (strtok(nullptr, "\n")); // allow only newline
} else {
return (strtok(nullptr, ", \n")); // allow space and comma
}
}
// change settings - always as strings
// messy code but effective since we don't have too many settings
// wc is word count, number of parameters after the 'set' command
bool MyESP::_changeSetting(uint8_t wc, const char * setting, const char * value) {
bool save_config = false;
bool save_custom_config = false;
bool restart = false;
// check for our internal commands first
if (strcmp(setting, "erase") == 0) {
_fs_eraseConfig();
return true;
} else if (strcmp(setting, "wifi_ssid") == 0) {
save_config = fs_setSettingValue(&_network_ssid, value, "");
restart = save_config;
//jw.enableSTA(false);
} else if (strcmp(setting, "wifi_password") == 0) {
save_config = fs_setSettingValue(&_network_password, value, "");
restart = save_config;
//jw.enableSTA(false);
} else if (strcmp(setting, "wifi_mode") == 0) {
if (value) {
if (strcmp(value, "ap") == 0) {
_network_wmode = 1;
save_config = restart = true;
} else if (strcmp(value, "client") == 0) {
_network_wmode = 0;
save_config = restart = true;
} else {
save_config = false;
}
}
} else if (strcmp(setting, "mqtt_ip") == 0) {
save_config = fs_setSettingValue(&_mqtt_ip, value, "");
} else if (strcmp(setting, "mqtt_username") == 0) {
save_config = fs_setSettingValue(&_mqtt_user, value, "");
} else if (strcmp(setting, "mqtt_password") == 0) {
save_config = fs_setSettingValue(&_mqtt_password, value, "");
} else if (strcmp(setting, "mqtt_base") == 0) {
save_config = fs_setSettingValue(&_mqtt_base, value, MQTT_BASE_DEFAULT);
} else if (strcmp(setting, "mqtt_port") == 0) {
save_config = fs_setSettingValue(&_mqtt_port, value, MQTT_PORT);
} else if (strcmp(setting, "mqtt_keepalive") == 0) {
save_config = fs_setSettingValue(&_mqtt_keepalive, value, MQTT_KEEPALIVE);
} else if (strcmp(setting, "mqtt_qos") == 0) {
save_config = fs_setSettingValue(&_mqtt_qos, value, MQTT_QOS);
} else if (strcmp(setting, "mqtt_enabled") == 0) {
save_config = fs_setSettingValue(&_mqtt_enabled, value, false);
} else if (strcmp(setting, "mqtt_retain") == 0) {
save_config = fs_setSettingValue(&_mqtt_retain, value, MQTT_RETAIN);
} else if (strcmp(setting, "serial") == 0) {
save_config = fs_setSettingValue(&_general_serial, value, false);
restart = save_config;
} else if (strcmp(setting, "mqtt_heartbeat") == 0) {
save_config = fs_setSettingValue(&_mqtt_heartbeat, value, false);
} else if (strcmp(setting, "ntp_enabled") == 0) {
save_config = fs_setSettingValue(&_ntp_enabled, value, false);
} else if (strcmp(setting, "log_events") == 0) {
save_config = fs_setSettingValue(&_general_log_events, value, false);
} else {
// finally check for any custom commands
if (_fs_setlist_callback_f) {
save_custom_config = (_fs_setlist_callback_f)(MYESP_FSACTION_SET, wc, setting, value);
}
}
bool ok = false;
// if we were able to recognize the set command, continue
if ((save_config || save_custom_config)) {
// check for 2 params
if (value == nullptr) {
myDebug_P(PSTR("%s has been reset to its default value."), setting);
} else {
// must be 3 params
myDebug_P(PSTR("%s changed."), setting);
}
}
// now do the saving for system config if something has changed
if (save_config) {
ok = _fs_writeConfig();
}
// and see if we need to also save for custom config
if (save_custom_config) {
ok = _fs_createCustomConfig();
}
if (restart) {
myDebug_P(PSTR("Please 'restart' to apply new settings."));
}
return ok;
}
// force the serial on/off
void MyESP::setUseSerial(bool b) {
_general_serial = b;
SerialAndTelnet.setSerial(b ? &Serial : nullptr);
}
void MyESP::_telnetCommand(char * commandLine) {
char * str = commandLine;
bool state = false;
if (strlen(commandLine) == 0)
return;
// count the number of arguments
unsigned wc = 0;
while (*str) {
if (*str == ' ' || *str == '\n' || *str == '\t') {
state = false;
} else if (state == false) {
state = true;
++wc;
}
++str;
}
// check first for reserved commands
char * temp = strdup(commandLine); // because strotok kills original string buffer
char * ptrToCommandName = strtok((char *)temp, " \n"); // space and newline
// set command
if (strcmp(ptrToCommandName, "set") == 0) {
bool ok = false;
if (wc == 1) {
_printSetCommands();
ok = true;
} else if (wc == 2) { // set <something>
char * setting = _telnet_readWord(false);
ok = _changeSetting(wc - 1, setting, nullptr);
} else { // set <something> <values...>
char * setting = _telnet_readWord(false);
char * value = _telnet_readWord(true); // allow strange characters
ok = _changeSetting(wc - 1, setting, value);
}
if (!ok) {
myDebug_P(PSTR("")); // newline
myDebug_P(PSTR("Unknown set command or wrong number of arguments."));
}
return;
}
// help command
if ((strcmp(ptrToCommandName, "help") == 0) && (wc == 1)) {
_consoleShowHelp();
return;
}
// restart command
if (((strcmp(ptrToCommandName, "restart") == 0) || (strcmp(ptrToCommandName, "reboot") == 0)) && (wc == 1)) {
resetESP();
return;
}
// print mqtt log command
if ((strcmp(ptrToCommandName, "mqttlog") == 0) && (wc == 1)) {
_printMQTTLog();
return;
}
// show system stats
if ((strcmp(ptrToCommandName, "system") == 0) && (wc == 1)) {
showSystemStats();
return;
}
// show system stats
if ((strcmp(ptrToCommandName, "quit") == 0) && (wc == 1)) {
myDebug_P(PSTR("[TELNET] exiting telnet session"));
SerialAndTelnet.disconnectClient();
return;
}
#ifdef CRASH
// crash command
if ((strcmp(ptrToCommandName, "crash") == 0) && (wc >= 2)) {
char * cmd = _telnet_readWord(false);
if (strcmp(cmd, "dump") == 0) {
crashDump();
} else if (strcmp(cmd, "clear") == 0) {
crashClear();
} else {
myDebug_P(PSTR("Error. Usage: crash <dump | clear | test [n]>"));
}
return; // don't call custom command line callback
}
#endif
// call callback function
if (_telnetcommand_callback_f) {
(_telnetcommand_callback_f)(wc, commandLine);
}
}
// returns WiFi hostname as a String object
String MyESP::_getESPhostname() {
String hostname;
#if defined(ARDUINO_ARCH_ESP32)
hostname = String(WiFi.getHostname());
#else
hostname = WiFi.hostname();
#endif
return (hostname);
}
// takes the time from the gcc during compilation
char * MyESP::_getBuildTime() {
const char time_now[] = __TIME__; // hh:mm:ss
uint8_t hour = atoi(&time_now[0]);
uint8_t minute = atoi(&time_now[3]);
uint8_t second = atoi(&time_now[6]);
const char date_now[] = __DATE__; // Mmm dd yyyy
const char * months[] = {"Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", "Sep", "Oct", "Nov", "Dec"};
uint8_t month = 0;
for (int i = 0; i < 12; i++) {
if (strncmp(date_now, months[i], 3) == 0) {
month = i + 1;
break;
}
}
uint8_t day = atoi(&date_now[3]);
uint16_t year = atoi(&date_now[7]);
char buffer[30];
snprintf_P(buffer, sizeof(buffer), PSTR("%04d-%02d-%02d %02d:%02d:%02d"), year, month, day, hour, minute, second);
return (strdup(buffer));
}
// returns system uptime in seconds
unsigned long MyESP::_getUptime() {
static uint32_t last_uptime = 0;
static uint8_t uptime_overflows = 0;
if (millis() < last_uptime) {
++uptime_overflows;
}
last_uptime = millis();
uint32_t uptime_seconds = uptime_overflows * (MYESP_UPTIME_OVERFLOW / 1000) + (last_uptime / 1000);
return uptime_seconds;
}
// init RTC mem
void MyESP::_rtcmemInit() {
memset((uint32_t *)RTCMEM_ADDR, 0, sizeof(uint32_t) * RTCMEM_BLOCKS);
Rtcmem->magic = RTCMEM_MAGIC;
}
uint8_t MyESP::getSystemBootStatus() {
system_rtcmem_t data;
data.value = Rtcmem->sys;
return data.parts.boot_status;
}
void MyESP::_setSystemBootStatus(uint8_t status) {
system_rtcmem_t data;
data.value = Rtcmem->sys;
data.parts.boot_status = status;
Rtcmem->sys = data.value;
// myDebug("*** setting boot status to %d", data.parts.boot_status);
}
uint8_t MyESP::_getSystemStabilityCounter() {
system_rtcmem_t data;
data.value = Rtcmem->sys;
return data.parts.stability_counter;
}
void MyESP::_setSystemStabilityCounter(uint8_t counter) {
system_rtcmem_t data;
data.value = Rtcmem->sys;
data.parts.stability_counter = counter;
Rtcmem->sys = data.value;
}
uint8_t MyESP::_getSystemResetReason() {
system_rtcmem_t data;
data.value = Rtcmem->sys;
return data.parts.reset_reason;
}
void MyESP::_setSystemResetReason(uint8_t reason) {
system_rtcmem_t data;
data.value = Rtcmem->sys;
data.parts.reset_reason = reason;
Rtcmem->sys = data.value;
}
// system_get_rst_info() result is cached by the Core init for internal use
uint32_t MyESP::getSystemResetReason() {
return resetInfo.reason;
}
void MyESP::_rtcmemSetup() {
_rtcmem_status = _rtcmemStatus();
if (!_rtcmem_status) {
_rtcmemInit();
}
}
void MyESP::_setCustomResetReason(uint8_t reason) {
_setSystemResetReason(reason);
}
// returns false if not set and needs to be intialized, causing all rtcmem data to be wiped
bool MyESP::_rtcmemStatus() {
bool readable;
uint32_t reason = getSystemResetReason();
// the last reset could have been caused by manually pressing the reset button
// so before wiping, capture the boot sequence
if (reason == REASON_EXT_SYS_RST) { // external system reset
if (getSystemBootStatus() == MYESP_BOOTSTATUS_BOOTING) {
_setSystemBootStatus(MYESP_BOOTSTATUS_RESETNEEDED);
// _formatreq = true; // do a wipe next in the loop() - commented out for now because we use the web
} else {
_setSystemBootStatus(MYESP_BOOTSTATUS_POWERON);
}
}
switch (reason) {
//case REASON_EXT_SYS_RST: // external system reset
case REASON_WDT_RST: // hardware watch dog reset
case REASON_DEFAULT_RST: // normal startup by power on
case REASON_SOFT_WDT_RST: // Software watchdog
readable = false;
break;
default:
readable = true;
}
readable = readable and (RTCMEM_MAGIC == Rtcmem->magic);
return readable;
}
bool MyESP::_getRtcmemStatus() {
return _rtcmem_status;
}
uint8_t MyESP::_getCustomResetReason() {
static uint8_t status = 255;
if (status == 255) {
if (_rtcmemStatus())
status = _getSystemResetReason();
if (status > 0)
_setCustomResetReason(0);
if (status > CUSTOM_RESET_MAX)
status = 0;
}
return status;
}
void MyESP::_deferredReset(unsigned long delaytime, uint8_t reason) {
_setSystemBootStatus(MYESP_BOOTSTATUS_POWERON);
_setCustomResetReason(reason);
delay(delaytime);
}
// Call this method on boot with stable=true to reset the crash counter
// Each call increments the counter
// If the counter reaches MYESP_SYSTEM_CHECK_MAX then the system is flagged as unstable
void MyESP::_setSystemCheck(bool stable) {
uint8_t value = 0;
if (stable) {
value = 0; // system is ok
} else {
if (!_getRtcmemStatus()) {
_setSystemStabilityCounter(1);
return;
}
value = _getSystemStabilityCounter();
if (++value > MYESP_SYSTEM_CHECK_MAX) {
_systemStable = false;
value = 0; // system is unstable
myDebug_P(PSTR("[SYSTEM] Warning, system UNSTABLE. Serial mode is enabled."));
// enable Serial again
if (!_general_serial) {
SerialAndTelnet.setSerial(&Serial);
_general_serial = true;
}
}
}
_setSystemStabilityCounter(value);
}
// return if system is stable (false=bad)
bool MyESP::_getSystemCheck() {
return _systemStable;
}
// periodically check if system is stable
void MyESP::_systemCheckLoop() {
static bool checked = false;
if (!checked && (millis() > MYESP_SYSTEM_CHECK_TIME)) {
_setSystemCheck(true); // Flag system as stable
checked = true;
}
}
// print out ESP system stats
// for battery power is ESP.getVcc()
void MyESP::showSystemStats() {
#if defined(ESP8266)
myDebug_P(PSTR("%sESP8266 System stats:%s"), COLOR_BOLD_ON, COLOR_BOLD_OFF);
#else
myDebug_P(PSTR("ESP32 System stats:"));
#endif
myDebug_P(PSTR(""));
myDebug_P(PSTR(" [APP] %s version: %s"), _app_name, _app_version);
myDebug_P(PSTR(" [APP] MyESP version: %s"), MYESP_VERSION);
myDebug_P(PSTR(" [APP] Build timestamp: %s"), _buildTime);
// uptime
uint32_t t = _getUptime(); // seconds
uint32_t d = t / 86400L;
uint32_t h = ((t % 86400L) / 3600L) % 60;
uint32_t rem = t % 3600L;
uint8_t m = rem / 60;
uint8_t s = rem % 60;
myDebug_P(PSTR(" [APP] Uptime: %d day%s %d hour%s %d minute%s %d second%s"),
d,
(d == 1) ? "" : "s",
h,
(h == 1) ? "" : "s",
m,
(m == 1) ? "" : "s",
s,
(s == 1) ? "" : "s");
myDebug_P(PSTR(" [APP] System Load: %d%%"), getSystemLoadAverage());
if (!_getSystemCheck()) {
myDebug_P(PSTR(" [SYSTEM] Device is in SAFE MODE"));
}
if (isAPmode()) {
myDebug_P(PSTR(" [WIFI] Device is in AP mode with SSID %s"), jw.getAPSSID().c_str());
} else {
myDebug_P(PSTR(" [WIFI] WiFi Hostname: %s"), _getESPhostname().c_str());
myDebug_P(PSTR(" [WIFI] WiFi IP: %s"), WiFi.localIP().toString().c_str());
myDebug_P(PSTR(" [WIFI] WiFi signal strength: %d%%"), getWifiQuality());
}
myDebug_P(PSTR(" [WIFI] WiFi MAC: %s"), WiFi.macAddress().c_str());
if (isMQTTConnected()) {
myDebug_P(PSTR(" [MQTT] is connected (heartbeat %s)"), getHeartbeat() ? "enabled" : "disabled");
} else {
myDebug_P(PSTR(" [MQTT] is disconnected"));
}
if (_ntp_enabled) {
myDebug_P(PSTR(" [NTP] Time in UTC is %02d:%02d:%02d"), to_hour(now()), to_minute(now()), to_second(now()));
}
#ifdef CRASH
char output_str[80] = {0};
char buffer[16] = {0};
myDebug_P(PSTR(" [EEPROM] EEPROM size: %u"), EEPROMr.reserved() * SPI_FLASH_SEC_SIZE);
strlcpy(output_str, " [EEPROM] EEPROM Sector pool size is ", sizeof(output_str));
strlcat(output_str, itoa(EEPROMr.size(), buffer, 10), sizeof(output_str));
strlcat(output_str, ", and in use are: ", sizeof(output_str));
for (uint32_t i = 0; i < EEPROMr.size(); i++) {
strlcat(output_str, itoa(EEPROMr.base() - i, buffer, 10), sizeof(output_str));
strlcat(output_str, " ", sizeof(output_str));
}
myDebug(output_str);
#endif
myDebug_P(PSTR(" [SYSTEM] System is %s"), _getSystemCheck() ? "Stable" : "Unstable!");
#ifdef ARDUINO_BOARD
myDebug_P(PSTR(" [SYSTEM] Board: %s"), ARDUINO_BOARD);
#endif
myDebug_P(PSTR(" [SYSTEM] CPU frequency: %u MHz"), ESP.getCpuFreqMHz());
myDebug_P(PSTR(" [SYSTEM] SDK version: %s"), ESP.getSdkVersion());
#if defined(ESP8266)
myDebug_P(PSTR(" [SYSTEM] CPU chip ID: 0x%06X"), ESP.getChipId());
myDebug_P(PSTR(" [SYSTEM] Core version: %s"), ESP.getCoreVersion().c_str());
myDebug_P(PSTR(" [SYSTEM] Boot version: %d"), ESP.getBootVersion());
myDebug_P(PSTR(" [SYSTEM] Boot mode: %d"), ESP.getBootMode());
unsigned char reason = _getCustomResetReason();
if (reason > 0) {
char buffer[32];
strcpy_P(buffer, custom_reset_string[reason - 1]);
myDebug_P(PSTR(" [SYSTEM] Last reset reason: %s"), buffer);
} else {
myDebug_P(PSTR(" [SYSTEM] Last reset reason: %s"), (char *)ESP.getResetReason().c_str());
myDebug_P(PSTR(" [SYSTEM] Last reset info: %s"), (char *)ESP.getResetInfo().c_str());
}
myDebug_P(PSTR(" [SYSTEM] Restart count: %d"), _getSystemStabilityCounter());
myDebug_P(PSTR(" [SYSTEM] rtcmem status: blocks:%u addr:0x%p"), RtcmemSize, Rtcmem);
for (uint8_t block = 0; block < RtcmemSize; ++block) {
myDebug_P(PSTR(" [SYSTEM] rtcmem %02u: %u"), block, reinterpret_cast<volatile uint32_t *>(RTCMEM_ADDR)[block]);
}
#endif
FlashMode_t mode = ESP.getFlashChipMode();
#if defined(ESP8266)
myDebug_P(PSTR(" [FLASH] Flash chip ID: 0x%06X"), ESP.getFlashChipId());
#endif
myDebug_P(PSTR(" [FLASH] Flash speed: %u Hz"), ESP.getFlashChipSpeed());
myDebug_P(PSTR(" [FLASH] Flash mode: %s"), mode == FM_QIO ? "QIO" : mode == FM_QOUT ? "QOUT" : mode == FM_DIO ? "DIO" : mode == FM_DOUT ? "DOUT" : "UNKNOWN");
#if defined(ESP8266)
myDebug_P(PSTR(" [FLASH] Flash size (CHIP): %d"), ESP.getFlashChipRealSize());
#endif
myDebug_P(PSTR(" [FLASH] Flash size (SDK): %d"), ESP.getFlashChipSize());
myDebug_P(PSTR(" [FLASH] Flash Reserved: %d"), 1 * SPI_FLASH_SEC_SIZE);
myDebug_P(PSTR(" [MEM] Firmware size: %d"), ESP.getSketchSize());
myDebug_P(PSTR(" [MEM] Max OTA size: %d"), (ESP.getFreeSketchSpace() - 0x1000) & 0xFFFFF000);
myDebug_P(PSTR(" [MEM] OTA Reserved: %d"), 4 * SPI_FLASH_SEC_SIZE);
uint32_t total_memory = _getInitialFreeHeap();
uint32_t free_memory = ESP.getFreeHeap();
myDebug(" [MEM] Free Heap: %d bytes initially | %d bytes used (%2u%%) | %d bytes free (%2u%%)",
total_memory,
total_memory - free_memory,
100 * (total_memory - free_memory) / total_memory,
free_memory,
100 * free_memory / total_memory);
myDebug_P(PSTR(""));
}
/*
* Send heartbeat via MQTT with all system data
*/
void MyESP::_heartbeatCheck(bool force = false) {
static uint32_t last_heartbeat = 0;
if ((millis() - last_heartbeat > MYESP_HEARTBEAT_INTERVAL) || force) {
last_heartbeat = millis();
// _printHeap("Heartbeat"); // for heartbeat debugging
if (!isMQTTConnected() || !(_mqtt_heartbeat)) {
return;
}
uint32_t total_memory = _getInitialFreeHeap();
uint32_t free_memory = ESP.getFreeHeap();
uint8_t mem_available = 100 * free_memory / total_memory; // as a %
char payload[300] = {0};
char s[10];
strlcpy(payload, "version=", sizeof(payload));
strlcat(payload, _app_version, sizeof(payload)); // version
strlcat(payload, ", IP=", sizeof(payload));
strlcat(payload, WiFi.localIP().toString().c_str(), sizeof(payload)); // IP address
strlcat(payload, ", rssid=", sizeof(payload));
strlcat(payload, itoa(getWifiQuality(), s, 10), sizeof(payload)); // rssi %
strlcat(payload, "%, load=", sizeof(payload));
strlcat(payload, ltoa(getSystemLoadAverage(), s, 10), sizeof(payload)); // load
strlcat(payload, "%, uptime=", sizeof(payload));
strlcat(payload, ltoa(_getUptime(), s, 10), sizeof(payload)); // uptime in secs
strlcat(payload, "secs, freemem=", sizeof(payload));
strlcat(payload, itoa(mem_available, s, 10), sizeof(payload)); // free mem as a %
strlcat(payload, "%", sizeof(payload));
mqttPublish(MQTT_TOPIC_HEARTBEAT, payload, false); // send to MQTT with retain off
}
}
// handler for Telnet
void MyESP::_telnetHandle() {
SerialAndTelnet.handle();
static uint8_t charsRead = 0;
// read asynchronously until full command input
while (SerialAndTelnet.available()) {
char c = SerialAndTelnet.read();
if (c == 0)
return;
SerialAndTelnet.serialPrint(c); // echo to Serial (if connected)
switch (c) {
case '\r': // likely have full command in buffer now, commands are terminated by CR and/or LF
case '\n':
_command[charsRead] = '\0'; // null terminate our command char array
if (charsRead > 0) {
charsRead = 0; // is static, so have to reset
_suspendOutput = false;
/*
if (_general_serial) {
SerialAndTelnet.serialPrint('\n'); // force newline if in Serial
}
*/
SerialAndTelnet.write('\n'); // force NL
_telnetCommand(_command);
}
break;
case '\b': // (^H)
case 0x7F: // (^?)
if (charsRead > 0) {
_command[--charsRead] = '\0';
SerialAndTelnet.write(' ');
SerialAndTelnet.write('\b');
}
break;
case '?':
if (!_suspendOutput) {
_consoleShowHelp();
} else {
_command[charsRead++] = c; // add it to buffer as its part of the string entered
}
break;
case 0x04: // EOT, CTRL-D
myDebug_P(PSTR("[TELNET] exiting telnet session"));
SerialAndTelnet.disconnectClient();
break;
default:
_suspendOutput = true;
if (charsRead < TELNET_MAX_COMMAND_LENGTH) {
_command[charsRead++] = c;
}
_command[charsRead] = '\0'; // just in case
break;
}
}
}
// make sure we have a connection to MQTT broker and the MQTT IP is set
void MyESP::_mqttConnect() {
if ((!_mqtt_enabled) || (!_hasValue(_mqtt_ip))) {
return; // MQTT not enabled
}
// Do not connect if already connected or still trying to connect
if (mqttClient.connected() || _mqtt_connecting || (WiFi.status() != WL_CONNECTED)) {
return;
}
// Check reconnect interval
if (millis() - _mqtt_last_connection < _mqtt_reconnect_delay) {
return;
}
_mqtt_connecting = true; // we're doing a connection
// Increase the reconnect delay
_mqtt_reconnect_delay += MQTT_RECONNECT_DELAY_STEP;
if (_mqtt_reconnect_delay > MQTT_RECONNECT_DELAY_MAX) {
_mqtt_reconnect_delay = MQTT_RECONNECT_DELAY_MAX;
}
mqttClient.setServer(_mqtt_ip, _mqtt_port);
mqttClient.setClientId(_general_hostname);
mqttClient.setKeepAlive(_mqtt_keepalive);
mqttClient.setCleanSession(false);
// last will
if (_hasValue(_mqtt_will_topic)) {
//myDebug_P(PSTR("[MQTT] Setting last will topic %s"), _mqttTopic(_mqtt_will_topic));
mqttClient.setWill(_mqttTopic(_mqtt_will_topic), 1, true,
_mqtt_will_offline_payload); // retain always true
}
if (_hasValue(_mqtt_user)) {
myDebug_P(PSTR("[MQTT] Connecting to MQTT using user %s..."), _mqtt_user);
mqttClient.setCredentials(_mqtt_user, _mqtt_password);
} else {
myDebug_P(PSTR("[MQTT] Connecting to MQTT..."));
}
// Connect to the MQTT broker
mqttClient.connect();
}
// Setup everything we need
void MyESP::setWIFI(wifi_callback_f callback) {
// callback
_wifi_callback_f = callback;
}
// init MQTT settings
void MyESP::setMQTT(mqtt_callback_f callback) {
_mqtt_callback_f = callback; // callback
}
// builds up a topic by prefixing the base and hostname
char * MyESP::_mqttTopic(const char * topic) {
static char buffer[MQTT_MAX_TOPIC_SIZE] = {0};
if (_hasValue(_mqtt_base)) {
strlcpy(buffer, _mqtt_base, sizeof(buffer));
strlcat(buffer, "/", sizeof(buffer));
strlcat(buffer, _general_hostname, sizeof(buffer));
} else {
strlcpy(buffer, _general_hostname, sizeof(buffer));
}
strlcat(buffer, "/", sizeof(buffer));
strlcat(buffer, topic, sizeof(buffer));
return buffer;
}
// validates a file in SPIFFS, loads it into the json buffer and returns true if ok
size_t MyESP::_fs_validateConfigFile(const char * filename, size_t maxsize, JsonDocument & doc) {
// see if we can open it
File file = SPIFFS.open(filename, "r");
if (!file) {
myDebug_P(PSTR("[FS] File %s not found"), filename);
return 0;
}
// check size
size_t size = file.size();
// myDebug_P(PSTR("[FS] Checking file %s (%d bytes)"), filename, size); // remove for debugging
if (size > maxsize) {
file.close();
myDebug_P(PSTR("[FS] Error. File %s size %d is too large (max %d)"), filename, size, maxsize);
return 0;
} else if (size == 0) {
file.close();
myDebug_P(PSTR("[FS] Error. Corrupted file %s"), filename);
return 0;
}
// check integrity by reading file from SPIFFS into the char array
char * buffer = new char[size + 2]; // reserve some memory to read in the file
size_t real_size = file.readBytes(buffer, size);
if (real_size != size) {
file.close();
myDebug_P(PSTR("[FS] Error. File %s sizes don't match (%d/%d), looks corrupted"), filename, real_size, size);
delete[] buffer;
return 0;
}
// now read into the given json
DeserializationError error = deserializeJson(doc, buffer);
if (error) {
myDebug_P(PSTR("[FS] Error. Failed to deserialize json, error %s"), error.c_str());
delete[] buffer;
return 0;
}
// serializeJsonPretty(doc, Serial); // enable for debugging
file.close();
delete[] buffer;
return size;
}
// validates the event log file in SPIFFS
// returns true if all OK
size_t MyESP::_fs_validateLogFile(const char * filename) {
// exit if we have disabled logging
if (!_general_log_events) {
return 0;
}
// see if we can open it
File eventlog = SPIFFS.open(filename, "r");
if (!eventlog) {
myDebug_P(PSTR("[FS] File %s not found"), filename);
return 0;
}
// check sizes
size_t size = eventlog.size();
size_t maxsize = ESP.getFreeHeap() - 2000; // reserve some buffer
// myDebug_P(PSTR("[FS] Checking file %s (%d/%d bytes)"), filename, size, maxsize); // remove for debugging
if (size > maxsize) {
eventlog.close();
myDebug_P(PSTR("[FS] File %s size %d is too large"), filename, size);
return 0;
} else if (size == 0) {
eventlog.close();
myDebug_P(PSTR("[FS] Corrupted file %s"), filename);
return 0;
}
/*
// check integrity by reading file from SPIFFS into the char array
char * buffer = new char[size + 2]; // reserve some memory to read in the file
size_t real_size = file.readBytes(buffer, size);
if (real_size != size) {
file.close();
myDebug_P(PSTR("[FS] Error, file %s sizes don't match (%d/%d), looks corrupted"), filename, real_size, size);
delete[] buffer;
return false;
}
file.close();
delete[] buffer;
*/
/*
File configFile = SPIFFS.open(filename, "r");
myDebug_P(PSTR("[FS] File: "));
while (configFile.available()) {
SerialAndTelnet.print((char)configFile.read());
}
myDebug_P(PSTR("[FS] end")); // newline
configFile.close();
*/
// parse it to check JSON validity
// its slow but the only reliable way to check integrity of the file
uint16_t char_count = 0;
bool abort = false;
char char_buffer[MYESP_JSON_LOG_MAXSIZE];
StaticJsonDocument<MYESP_JSON_LOG_MAXSIZE> doc;
// eventlog.seek(0);
while (eventlog.available() && !abort) {
char c = eventlog.read(); // read a char
// see if we have reached the end of the string
if (c == '\0' || c == '\n') {
char_buffer[char_count] = '\0'; // terminate and add it to the list
// Serial.printf("Got line: %s\n", char_buffer); // for debugging
// validate it by looking at JSON structure
DeserializationError error = deserializeJson(doc, char_buffer);
if (error) {
myDebug_P(PSTR("[FS] Event log has a corrupted entry (error %s)"), error.c_str());
abort = true;
}
char_count = 0; // start new record
} else {
// add the char to the buffer if recording, checking for overrun
if (char_count < MYESP_JSON_LOG_MAXSIZE) {
char_buffer[char_count++] = c;
} else {
abort = true; // reached limit of our line buffer
}
}
}
eventlog.close();
if (abort) {
return 0;
}
return size;
}
// format File System
void MyESP::_fs_eraseConfig() {
myDebug_P(PSTR("[FS] Performing a factory reset..."));
_formatreq = true;
}
// custom callback for web info
void MyESP::setWeb(web_callback_f callback_web) {
_web_callback_f = callback_web;
}
void MyESP::setSettings(fs_loadsave_callback_f loadsave, fs_setlist_callback_f setlist, bool useSerial) {
_fs_loadsave_callback_f = loadsave;
_fs_setlist_callback_f = setlist;
_general_serial = useSerial;
}
// load system config from SPIFFS
// returns false on error or the file needs to be recreated
bool MyESP::_fs_loadConfig() {
// see if old file exists and delete it
if (SPIFFS.exists("/config.json")) {
SPIFFS.remove("/config.json");
myDebug_P(PSTR("[FS] Removed old config version"));
}
StaticJsonDocument<MYESP_SPIFFS_MAXSIZE_CONFIG> doc;
// set to true to print out contents of file
size_t size = _fs_validateConfigFile(MYESP_CONFIG_FILE, MYESP_SPIFFS_MAXSIZE_CONFIG, doc);
if (!size) {
myDebug_P(PSTR("[FS] Error. Failed to open system config"));
return false;
}
JsonObject network = doc["network"];
_network_ssid = strdup(network["ssid"] | "");
_network_password = strdup(network["password"] | "");
_network_wmode = network["wmode"]; // 0 is client, 1 is AP
JsonObject general = doc["general"];
_general_password = strdup(general["password"] | MYESP_HTTP_PASSWORD);
_ws->setAuthentication("admin", _general_password);
_general_hostname = strdup(general["hostname"]);
_general_log_events = general["log_events"];
// serial is only on when booting
#ifdef FORCE_SERIAL
myDebug_P(PSTR("[FS] Serial is forced"));
_general_serial = true;
#else
_general_serial = general["serial"];
#endif
JsonObject mqtt = doc["mqtt"];
_mqtt_enabled = mqtt["enabled"];
_mqtt_heartbeat = mqtt["heartbeat"];
_mqtt_ip = strdup(mqtt["ip"] | "");
_mqtt_user = strdup(mqtt["user"] | "");
_mqtt_port = mqtt["port"] | MQTT_PORT;
_mqtt_keepalive = mqtt["keepalive"] | MQTT_KEEPALIVE;
_mqtt_retain = mqtt["retain"];
_mqtt_qos = mqtt["qos"] | MQTT_QOS;
_mqtt_password = strdup(mqtt["password"] | "");
_mqtt_base = strdup(mqtt["base"] | MQTT_BASE_DEFAULT);
JsonObject ntp = doc["ntp"];
_ntp_server = strdup(ntp["server"] | "");
_ntp_interval = ntp["interval"] | 60;
if (_ntp_interval < 2)
_ntp_interval = 60;
_ntp_enabled = ntp["enabled"];
myDebug_P(PSTR("[FS] System config loaded (%d bytes)"), size);
return true;
}
// saves a string into a config setting, using default value if non set
// returns true if successful
bool MyESP::fs_setSettingValue(char ** setting, const char * value, const char * value_default) {
if (*setting == nullptr) {
free(*setting); // first free any allocated memory
}
if (_hasValue(value)) {
*setting = strdup(value);
} else {
*setting = strdup(value_default); // use the default value
}
return true;
}
// saves a 2-byte short integer into a config setting, using default value if non set
// returns true if successful
bool MyESP::fs_setSettingValue(uint16_t * setting, const char * value, uint16_t value_default) {
if (_hasValue(value)) {
*setting = (uint16_t)atoi(value);
} else {
*setting = value_default; // use the default value
}
return true;
}
// saves an 8-bit integer into a config setting, using default value if non set
// returns true if successful
bool MyESP::fs_setSettingValue(uint8_t * setting, const char * value, uint8_t value_default) {
if (_hasValue(value)) {
*setting = (uint8_t)atoi(value);
} else {
*setting = value_default; // use the default value
}
return true;
}
// saves a bool into a config setting, using default value if non set
// returns true if successful
bool MyESP::fs_setSettingValue(bool * setting, const char * value, bool value_default) {
if (_hasValue(value)) {
if ((strcmp(value, "on") == 0) || (strcmp(value, "yes") == 0) || (strcmp(value, "1") == 0) || (strcmp(value, "true") == 0)) {
*setting = true;
} else if ((strcmp(value, "off") == 0) || (strcmp(value, "no") == 0) || (strcmp(value, "0") == 0) || (strcmp(value, "false") == 0)) {
*setting = false;
} else {
return false; // invalid setting value
}
} else {
*setting = value_default; // use the default value
}
return true;
}
// load custom settings
bool MyESP::_fs_loadCustomConfig() {
StaticJsonDocument<MYESP_SPIFFS_MAXSIZE_CONFIG> doc;
size_t size = _fs_validateConfigFile(MYESP_CUSTOMCONFIG_FILE, MYESP_SPIFFS_MAXSIZE_CONFIG, doc);
if (!size) {
myDebug_P(PSTR("[FS] Error. Failed to open custom config"));
return false;
}
if (_fs_loadsave_callback_f) {
const JsonObject & json = doc["settings"];
if (!(_fs_loadsave_callback_f)(MYESP_FSACTION_LOAD, json)) {
myDebug_P(PSTR("[FS] Error reading custom config"));
return false;
} else {
myDebug_P(PSTR("[FS] Custom config loaded (%d bytes)"), size);
}
}
return true;
}
// save custom config to spiffs
bool MyESP::fs_saveCustomConfig(JsonObject root) {
bool ok = false;
// call any custom functions before handling SPIFFS
if (_ota_pre_callback_f) {
(_ota_pre_callback_f)();
}
// open for writing
File configFile = SPIFFS.open(MYESP_CUSTOMCONFIG_FILE, "w");
if (!configFile) {
myDebug_P(PSTR("[FS] Failed to open custom config for writing"));
ok = false;
} else {
// Serialize JSON to file
size_t n = serializeJson(root, configFile);
configFile.close();
if (n) {
/*
// reload the settings, not sure why?
if (_fs_loadsave_callback_f) {
if (!(_fs_loadsave_callback_f)(MYESP_FSACTION_LOAD, root)) {
myDebug_P(PSTR("[FS] Error parsing custom config json"));
}
}
*/
if (_general_log_events) {
_writeEvent("INFO", "system", "Custom config stored in the SPIFFS", "");
}
// myDebug_P(PSTR("[FS] custom config saved"));
ok = true;
}
}
if (_ota_post_callback_f) {
(_ota_post_callback_f)();
}
return ok;
}
// save system config to spiffs
bool MyESP::fs_saveConfig(JsonObject root) {
bool ok = false;
// call any custom functions before handling SPIFFS
if (_ota_pre_callback_f) {
(_ota_pre_callback_f)();
}
// open for writing
File configFile = SPIFFS.open(MYESP_CONFIG_FILE, "w");
if (!configFile) {
myDebug_P(PSTR("[FS] Failed to open system config for writing"));
ok = false;
} else {
// Serialize JSON to file
size_t n = serializeJson(root, configFile);
configFile.close();
if (n) {
if (_general_log_events) {
_writeEvent("INFO", "system", "System config stored in the SPIFFS", "");
}
// myDebug_P(PSTR("[FS] system config saved"));
ok = true;
}
// serializeJsonPretty(root, Serial); // for debugging
}
if (_ota_post_callback_f) {
(_ota_post_callback_f)();
}
return ok;
}
// create an initial system config file using default settings
bool MyESP::_fs_writeConfig() {
StaticJsonDocument<MYESP_SPIFFS_MAXSIZE_CONFIG> doc;
JsonObject root = doc.to<JsonObject>();
root["command"] = "configfile"; // header, important!
JsonObject network = doc.createNestedObject("network");
network["ssid"] = _network_ssid;
network["password"] = _network_password;
network["wmode"] = _network_wmode;
JsonObject general = doc.createNestedObject("general");
general["password"] = _general_password;
general["serial"] = _general_serial;
general["hostname"] = _general_hostname;
general["log_events"] = _general_log_events;
JsonObject mqtt = doc.createNestedObject("mqtt");
mqtt["enabled"] = _mqtt_enabled;
mqtt["heartbeat"] = _mqtt_heartbeat;
mqtt["ip"] = _mqtt_ip;
mqtt["user"] = _mqtt_user;
mqtt["port"] = _mqtt_port;
mqtt["qos"] = _mqtt_qos;
mqtt["keepalive"] = _mqtt_keepalive;
mqtt["retain"] = _mqtt_retain;
mqtt["password"] = _mqtt_password;
mqtt["base"] = _mqtt_base;
JsonObject ntp = doc.createNestedObject("ntp");
ntp["server"] = _ntp_server;
ntp["interval"] = _ntp_interval;
ntp["enabled"] = _ntp_enabled;
bool ok = fs_saveConfig(root); // save it
return ok;
}
// create an empty json doc for the custom config and call callback to populate it
bool MyESP::_fs_createCustomConfig() {
StaticJsonDocument<MYESP_SPIFFS_MAXSIZE_CONFIG> doc;
JsonObject root = doc.to<JsonObject>();
root["command"] = "custom_configfile"; // header, important!
if (_fs_loadsave_callback_f) {
JsonObject settings = root.createNestedObject("settings");
if (!(_fs_loadsave_callback_f)(MYESP_FSACTION_SAVE, settings)) {
myDebug_P(PSTR("[FS] Error building custom config json"));
}
} else {
myDebug_P(PSTR("[FS] Created custom config"));
}
bool ok = fs_saveCustomConfig(root);
return ok;
}
// init the SPIFF file system and load the config
// if it doesn't exist try and create it
void MyESP::_fs_setup() {
if (_ota_pre_callback_f) {
(_ota_pre_callback_f)(); // call custom function
}
if (!SPIFFS.begin()) {
myDebug_P(PSTR("[FS] Formatting filesystem..."));
if (SPIFFS.format()) {
if (_general_log_events) {
_writeEvent("WARN", "system", "File system formatted", "");
}
} else {
myDebug_P(PSTR("[FS] Failed to format file system"));
}
}
// load the main system config file if we can. Otherwise create it and expect user to configure in web interface
if (!_fs_loadConfig()) {
myDebug_P(PSTR("[FS] Creating a new system config"));
_fs_writeConfig(); // create the initial config file
}
// load system and custom config
if (!_fs_loadCustomConfig()) {
_fs_createCustomConfig(); // create the initial config file
}
/*
// fill event log with tests
SPIFFS.remove(MYESP_EVENTLOG_FILE);
File fs = SPIFFS.open(MYESP_EVENTLOG_FILE, "w");
fs.close();
char logs[100];
for (uint8_t i = 1; i < 143; i++) {
sprintf(logs, "Record #%d", i);
_writeEvent("WARN", "system", "test data", logs);
}
*/
// validate the event log. Sometimes it can can corrupted.
size_t size = _fs_validateLogFile(MYESP_EVENTLOG_FILE);
if (size) {
myDebug_P(PSTR("[FS] Event log loaded (%d bytes)"), size);
} else {
myDebug_P(PSTR("[FS] Resetting event log"));
SPIFFS.remove(MYESP_EVENTLOG_FILE);
if (_general_log_events) {
_writeEvent("WARN", "system", "Event Log", "Log was erased due to probable file corruption");
}
}
if (_ota_post_callback_f) {
(_ota_post_callback_f)(); // call custom function
}
}
// returns load average as a %
uint32_t MyESP::getSystemLoadAverage() {
return _load_average;
}
// calculate load average
void MyESP::_calculateLoad() {
static uint32_t last_loadcheck = 0;
static uint32_t load_counter_temp = 0;
load_counter_temp++;
if (millis() - last_loadcheck > MYESP_LOADAVG_INTERVAL) {
static uint32_t load_counter = 0;
static uint32_t load_counter_max = 1;
load_counter = load_counter_temp;
load_counter_temp = 0;
if (load_counter > load_counter_max) {
load_counter_max = load_counter;
}
_load_average = 100 - (100 * load_counter / load_counter_max);
last_loadcheck = millis();
}
}
// returns true is MQTT is alive
bool MyESP::isMQTTConnected() {
return mqttClient.connected();
}
// return true if wifi is connected (client or AP mode)
bool MyESP::isWifiConnected() {
return (_wifi_connected);
}
/*
Return the quality (Received Signal Strength Indicator)
of the WiFi network.
Returns a number between 0 and 100 if WiFi is connected.
Returns -1 if WiFi is disconnected.
High quality: 90% ~= -55dBm
Medium quality: 50% ~= -75dBm
Low quality: 30% ~= -85dBm
Unusable quality: 8% ~= -96dBm
*/
int MyESP::getWifiQuality() {
if (WiFi.status() != WL_CONNECTED)
return -1;
int dBm = WiFi.RSSI();
if (dBm <= -100)
return 0;
if (dBm >= -50)
return 100;
return 2 * (dBm + 100);
}
#ifdef CRASH
/**
* Save crash information in EEPROM
* This function is called automatically if ESP8266 suffers an exception
* It should be kept quick / consise to be able to execute before hardware wdt may kick in
*/
extern "C" void custom_crash_callback(struct rst_info * rst_info, uint32_t stack_start, uint32_t stack_end) {
// write crash time to EEPROM
uint32_t crash_time = millis();
EEPROMr.put(SAVE_CRASH_EEPROM_OFFSET + SAVE_CRASH_CRASH_TIME, crash_time);
// write reset info to EEPROM
EEPROMr.write(SAVE_CRASH_EEPROM_OFFSET + SAVE_CRASH_RESTART_REASON, rst_info->reason);
EEPROMr.write(SAVE_CRASH_EEPROM_OFFSET + SAVE_CRASH_EXCEPTION_CAUSE, rst_info->exccause);
// write epc1, epc2, epc3, excvaddr and depc to EEPROM
EEPROMr.put(SAVE_CRASH_EEPROM_OFFSET + SAVE_CRASH_EPC1, rst_info->epc1);
EEPROMr.put(SAVE_CRASH_EEPROM_OFFSET + SAVE_CRASH_EPC2, rst_info->epc2);
EEPROMr.put(SAVE_CRASH_EEPROM_OFFSET + SAVE_CRASH_EPC3, rst_info->epc3);
EEPROMr.put(SAVE_CRASH_EEPROM_OFFSET + SAVE_CRASH_EXCVADDR, rst_info->excvaddr);
EEPROMr.put(SAVE_CRASH_EEPROM_OFFSET + SAVE_CRASH_DEPC, rst_info->depc);
// write stack start and end address to EEPROM
EEPROMr.put(SAVE_CRASH_EEPROM_OFFSET + SAVE_CRASH_STACK_START, stack_start);
EEPROMr.put(SAVE_CRASH_EEPROM_OFFSET + SAVE_CRASH_STACK_END, stack_end);
// write stack trace to EEPROM and avoid overwriting settings
int16_t current_address = SAVE_CRASH_EEPROM_OFFSET + SAVE_CRASH_STACK_TRACE;
for (uint32_t i = stack_start; i < stack_end; i++) {
byte * byteValue = (byte *)i;
EEPROMr.write(current_address++, *byteValue);
}
EEPROMr.commit();
}
/**
* Clears crash info
*/
void MyESP::crashClear() {
myDebug_P(PSTR("[CRASH] Clearing crash dump"));
uint32_t crash_time = 0xFFFFFFFF;
EEPROMr.put(SAVE_CRASH_EEPROM_OFFSET + SAVE_CRASH_CRASH_TIME, crash_time);
EEPROMr.commit();
}
/**
* Print out crash information that has been previously saved in EEPROM
* Copied from https://github.com/krzychb/EspSaveCrash
*/
void MyESP::crashDump() {
uint32_t crash_time;
EEPROMr.get(SAVE_CRASH_EEPROM_OFFSET + SAVE_CRASH_CRASH_TIME, crash_time);
if ((crash_time == 0) || (crash_time == 0xFFFFFFFF)) {
myDebug_P(PSTR("[CRASH] No crash data captured."));
return;
}
uint32_t t = crash_time / 1000; // convert to seconds
uint32_t d = t / 86400L;
uint32_t h = (t / 3600L) % 60;
uint32_t rem = t % 3600L;
uint8_t m = rem / 60;
uint8_t s = rem % 60;
myDebug_P(PSTR("[CRASH] Last crash was %d days %d hours %d minutes %d seconds since boot time"), d, h, m, s);
// get reason and exception
// https://www.espressif.com/sites/default/files/documentation/esp8266_reset_causes_and_common_fatal_exception_causes_en.pdf
char buffer[80] = {0};
char ss[16] = {0};
strlcpy(buffer, "[CRASH] Reason of restart: ", sizeof(buffer));
uint8_t reason = EEPROMr.read(SAVE_CRASH_EEPROM_OFFSET + SAVE_CRASH_RESTART_REASON);
switch (reason) {
case REASON_WDT_RST:
strlcat(buffer, "1 - Hardware WDT reset", sizeof(buffer));
break;
case REASON_EXCEPTION_RST:
strlcat(buffer, "2 - Fatal exception", sizeof(buffer));
break;
case REASON_SOFT_WDT_RST:
strlcat(buffer, "3 - Software watchdog reset", sizeof(buffer));
break;
case REASON_EXT_SYS_RST:
strlcat(buffer, "6 - Hardware reset", sizeof(buffer));
break;
case REASON_SOFT_RESTART:
strlcat(buffer, "4 - Software reset", sizeof(buffer));
break;
default:
strlcat(buffer, itoa(reason, ss, 10), sizeof(buffer));
}
myDebug(buffer);
// check for exception
// see https://github.com/esp8266/Arduino/blob/master/doc/exception_causes.rst
if (reason == REASON_EXCEPTION_RST) {
// get exception cause
uint8_t cause = EEPROMr.read(SAVE_CRASH_EEPROM_OFFSET + SAVE_CRASH_EXCEPTION_CAUSE);
strlcpy(buffer, "[CRASH] Exception cause: ", sizeof(buffer));
if (cause == 0) {
strlcat(buffer, "0 - IllegalInstructionCause", sizeof(buffer));
} else if (cause == 3) {
strlcat(buffer, "3 - LoadStoreErrorCause", sizeof(buffer));
} else if (cause == 6) {
strlcat(buffer, "6 - IntegerDivideByZeroCause", sizeof(buffer));
} else if (cause == 9) {
strlcat(buffer, "9 - LoadStoreAlignmentCause", sizeof(buffer));
} else {
strlcat(buffer, itoa(cause, ss, 10), sizeof(buffer));
}
}
myDebug(buffer);
uint32_t epc1, epc2, epc3, excvaddr, depc;
EEPROMr.get(SAVE_CRASH_EEPROM_OFFSET + SAVE_CRASH_EPC1, epc1);
EEPROMr.get(SAVE_CRASH_EEPROM_OFFSET + SAVE_CRASH_EPC2, epc2);
EEPROMr.get(SAVE_CRASH_EEPROM_OFFSET + SAVE_CRASH_EPC3, epc3);
EEPROMr.get(SAVE_CRASH_EEPROM_OFFSET + SAVE_CRASH_EXCVADDR, excvaddr);
EEPROMr.get(SAVE_CRASH_EEPROM_OFFSET + SAVE_CRASH_DEPC, depc);
myDebug_P(PSTR("[CRASH] epc1=0x%08x epc2=0x%08x epc3=0x%08x"), epc1, epc2, epc3);
myDebug_P(PSTR("[CRASH] excvaddr=0x%08x depc=0x%08x"), excvaddr, depc);
uint32_t stack_start, stack_end;
EEPROMr.get(SAVE_CRASH_EEPROM_OFFSET + SAVE_CRASH_STACK_START, stack_start);
EEPROMr.get(SAVE_CRASH_EEPROM_OFFSET + SAVE_CRASH_STACK_END, stack_end);
myDebug_P(PSTR("[CRASH] sp=0x%08x end=0x%08x"), stack_start, stack_end);
int16_t current_address = SAVE_CRASH_EEPROM_OFFSET + SAVE_CRASH_STACK_TRACE;
int16_t stack_len = stack_end - stack_start;
uint32_t stack_trace;
myDebug_P(PSTR(">>>stack>>>"));
for (int16_t i = 0; i < stack_len; i += 0x10) {
SerialAndTelnet.printf("%08x: ", stack_start + i);
for (byte j = 0; j < 4; j++) {
EEPROMr.get(current_address, stack_trace);
SerialAndTelnet.printf("%08x ", stack_trace);
current_address += 4;
}
SerialAndTelnet.println();
}
myDebug_P(PSTR("<<<stack<<<"));
myDebug_P(PSTR("\nTo clean this dump use the command: %scrash clear%s\n"), COLOR_BOLD_ON, COLOR_BOLD_OFF);
}
#else
void MyESP::crashClear() {
}
void MyESP::crashDump() {
}
void MyESP::crashInfo() {
}
#endif
// write a log entry to SPIFFS
// assumes we have "log_events" on
void MyESP::_writeEvent(const char * type, const char * src, const char * desc, const char * data) {
// this will also create the file if its doesn't exist
File eventlog = SPIFFS.open(MYESP_EVENTLOG_FILE, "a");
if (!eventlog) {
//Serial.println("[SYSTEM] Error opening event log for writing"); // for debugging
eventlog.close();
return;
}
StaticJsonDocument<MYESP_JSON_LOG_MAXSIZE> root;
root["type"] = type;
root["src"] = src;
root["desc"] = desc;
root["data"] = data;
root["time"] = now(); // is relative if we're not using NTP
// Serialize JSON to file
size_t n = serializeJson(root, eventlog);
eventlog.print("\n"); // this indicates end of the entry
if (!n) {
//Serial.println("[SYSTEM] Error writing to event log"); // for debugging
}
eventlog.close();
}
// send a paged list (10 items) to the ws
void MyESP::_sendEventLog(uint8_t page) {
if (_ota_pre_callback_f) {
(_ota_pre_callback_f)(); // call custom function
}
File eventlog;
// if its missing create it, it'll be empty though
if (!SPIFFS.exists(MYESP_EVENTLOG_FILE)) {
myDebug_P(PSTR("[FS] Event log is missing. Creating it."));
eventlog = SPIFFS.open(MYESP_EVENTLOG_FILE, "w");
eventlog.close();
}
eventlog = SPIFFS.open(MYESP_EVENTLOG_FILE, "r");
// the size of the json will be quite big so best not to use stack (StaticJsonDocument)
// it only covers 10 log entries
DynamicJsonDocument doc(MYESP_JSON_MAXSIZE);
JsonObject root = doc.to<JsonObject>();
root["command"] = "eventlist";
root["page"] = page;
JsonArray list = doc.createNestedArray("list");
size_t static lastPos;
// if first page, reset the file pointer
if (page == 1) {
lastPos = 0;
}
eventlog.seek(lastPos); // move to position in file
uint8_t char_count = 0;
uint8_t line_count = 0;
bool abort = false;
char char_buffer[MYESP_JSON_LOG_MAXSIZE];
float pages;
// start at top and read until we find the page we want (sets of 10)
while (eventlog.available() && !abort) {
char c = eventlog.read();
// see if we have reached the end of the string
if (c == '\0' || c == '\n') {
char_buffer[char_count] = '\0'; // terminate and add it to the list
// Serial.printf("Got line %d: %s\n", line_count+1, char_buffer); // for debugging
list.add(char_buffer);
// increment line counter and check if we've reached 10 records, if so abort
if (++line_count == 10) {
abort = true;
}
char_count = 0; // start new record
} else {
// add the char to the buffer if recording, checking for overrun
if (char_count < MYESP_JSON_LOG_MAXSIZE) {
char_buffer[char_count++] = c;
} else {
abort = true; // reached limit of our line buffer
}
}
}
lastPos = eventlog.position(); // remember last position for next cycle
// calculate remaining pages, as needed for footable
if (eventlog.available()) {
float totalPagesRoughly = eventlog.size() / (float)(lastPos / page);
pages = totalPagesRoughly < page ? page + 1 : totalPagesRoughly;
} else {
pages = page; // this was the last page
}
eventlog.close(); // close SPIFFS
root["haspages"] = ceil(pages);
char buffer[MYESP_JSON_MAXSIZE];
size_t len = serializeJson(root, buffer);
//Serial.printf("\nEVENTLOG: page %d, length=%d\n", page, len); // turn on for debugging
//serializeJson(root, Serial); // turn on for debugging
_ws->textAll(buffer, len);
_ws->textAll("{\"command\":\"result\",\"resultof\":\"eventlist\",\"result\": true}");
if (_ota_post_callback_f) {
(_ota_post_callback_f)(); // call custom function
}
}
// Handles WebSocket Events
void MyESP::_onWsEvent(AsyncWebSocket * server, AsyncWebSocketClient * client, AwsEventType type, void * arg, uint8_t * data, size_t len) {
if (type == WS_EVT_ERROR) {
myDebug("[WEB] WebSocket[%s][%u] error(%u): %s\r\n", server->url(), client->id(), *((uint16_t *)arg), (char *)data);
} else if (type == WS_EVT_DATA) {
AwsFrameInfo * info = (AwsFrameInfo *)arg;
uint64_t index = info->index;
uint64_t infolen = info->len;
if (info->final && info->index == 0 && infolen == len) {
// the whole message is in a single frame and we got all of it's data
client->_tempObject = malloc(len);
if (client->_tempObject != NULL) {
memcpy((uint8_t *)(client->_tempObject), data, len);
}
_procMsg(client, infolen);
} else {
// message is comprised of multiple frames or the frame is split into multiple packets
if (index == 0) {
if (info->num == 0 && client->_tempObject == NULL) {
client->_tempObject = malloc(infolen);
}
}
if (client->_tempObject != NULL) {
memcpy((uint8_t *)(client->_tempObject) + index, data, len);
}
if ((index + len) == infolen) {
if (info->final) {
_procMsg(client, infolen);
}
}
}
}
}
// handle ws from browser
void MyESP::_procMsg(AsyncWebSocketClient * client, size_t sz) {
// We should always get a JSON object from browser, so parse it
StaticJsonDocument<400> doc;
char json[sz + 1];
memcpy(json, (char *)(client->_tempObject), sz);
json[sz] = '\0';
JsonObject root = doc.to<JsonObject>(); // create empty object
DeserializationError error = deserializeJson(doc, json); // Deserialize the JSON document
if (error) {
myDebug_P(PSTR("[WEB] Couldn't parse WebSocket message, error %s"), error.c_str());
free(client->_tempObject);
client->_tempObject = NULL;
return;
}
const char * command = doc["command"];
// Serial.printf("*** Got command: %s\n", command); // turn on for debugging
// Check whatever the command is and act accordingly
if (strcmp(command, "configfile") == 0) {
(void)fs_saveConfig(root);
} else if (strcmp(command, "custom_configfile") == 0) {
(void)fs_saveCustomConfig(root);
} else if (strcmp(command, "status") == 0) {
_sendStatus();
} else if (strcmp(command, "custom_status") == 0) {
_sendCustomStatus();
} else if (strcmp(command, "restart") == 0) {
_shouldRestart = true;
} else if (strcmp(command, "destroy") == 0) {
_formatreq = true;
} else if (strcmp(command, "forcentp") == 0) {
NTP.getNtpTime();
} else if (strcmp(command, "geteventlog") == 0) {
uint8_t page = doc["page"];
_sendEventLog(page);
} else if (strcmp(command, "clearevent") == 0) {
if (_ota_pre_callback_f) {
(_ota_pre_callback_f)(); // call custom function
}
if (SPIFFS.remove(MYESP_EVENTLOG_FILE)) {
_writeEvent("WARN", "system", "Event log cleared", "");
} else {
myDebug_P(PSTR("[WEB] Could not clear event log"));
}
if (_ota_post_callback_f) {
(_ota_post_callback_f)(); // call custom function
}
} else if (strcmp(command, "scan") == 0) {
WiFi.scanNetworksAsync(std::bind(&MyESP::_printScanResult, this, std::placeholders::_1), true);
} else if (strcmp(command, "gettime") == 0) {
_timerequest = true;
} else if (strcmp(command, "settime") == 0) {
time_t t = doc["epoch"];
setTime(t);
_timerequest = true;
} else if (strcmp(command, "getconf") == 0) {
_fs_sendConfig();
}
free(client->_tempObject);
client->_tempObject = NULL;
}
// read both system config and the custom config and send as json to web socket
bool MyESP::_fs_sendConfig() {
File configFile;
size_t size;
char json[MYESP_SPIFFS_MAXSIZE_CONFIG] = {0};
configFile = SPIFFS.open(MYESP_CONFIG_FILE, "r");
if (!configFile) {
myDebug_P(PSTR("[FS] No system config found to load"));
return false;
}
size = configFile.size();
// read file from SPIFFS into a char array
if (configFile.readBytes(json, size) != size) {
configFile.close();
return false;
}
configFile.close();
//Serial.printf("_fs_sendConfig() sending system (%d): %s\n", size, json); // turn on for debugging
_ws->textAll(json, size);
configFile = SPIFFS.open(MYESP_CUSTOMCONFIG_FILE, "r");
if (!configFile) {
myDebug_P(PSTR("[FS] No custom config found to load"));
return false;
}
size = configFile.size();
// read file from SPIFFS into the same char array
memset(json, 0, MYESP_SPIFFS_MAXSIZE_CONFIG);
if (configFile.readBytes(json, size) != size) {
configFile.close();
return false;
}
configFile.close();
//Serial.printf("_fs_sendConfig() sending custom (%d): %s\n", size, json); // turn on for debugging
_ws->textAll(json, size);
return true;
}
// send custom status via ws
void MyESP::_sendCustomStatus() {
// StaticJsonDocument<300> doc;
DynamicJsonDocument doc(MYESP_JSON_MAXSIZE);
JsonObject root = doc.to<JsonObject>();
root["command"] = "custom_status";
root["version"] = _app_version;
root["customname"] = _app_name;
root["appurl"] = _app_url;
root["updateurl"] = _app_updateurl;
// add specific custom stuff
if (_web_callback_f) {
(_web_callback_f)(root);
}
char buffer[MYESP_JSON_MAXSIZE];
size_t len = serializeJson(root, buffer);
// Serial.printf("_sendCustomStatus() sending: %s\n", buffer); // turn on for debugging
_ws->textAll(buffer, len);
}
// send system status via ws
void MyESP::_sendStatus() {
// capture memory before we stick in a huge json buffer on the heap!
uint32_t total_memory = _getInitialFreeHeap();
uint32_t free_memory = ESP.getFreeHeap();
DynamicJsonDocument doc(MQTT_MAX_PAYLOAD_SIZE_LARGE);
JsonObject root = doc.to<JsonObject>();
root["command"] = "status";
FSInfo fsinfo;
if (!SPIFFS.info(fsinfo)) {
myDebug("[SYSTEM] Error getting info on SPIFFS");
} else {
root["availspiffs"] = (fsinfo.totalBytes - fsinfo.usedBytes) / 1000;
root["spiffssize"] = (fsinfo.totalBytes / 1000);
}
// all sizes in bytes converted to KB
root["initheap"] = total_memory;
root["heap"] = free_memory;
root["sketchsize"] = ESP.getSketchSize() / 1000;
root["availsize"] = ESP.getFreeSketchSpace() / 1000;
if (isAPmode()) {
root["ip"] = WiFi.softAPIP().toString();
root["ssid"] = jw.getAPSSID();
root["mac"] = WiFi.softAPmacAddress();
} else {
root["ip"] = WiFi.localIP().toString();
root["ssid"] = WiFi.SSID();
root["mac"] = WiFi.macAddress();
}
root["signalstr"] = getWifiQuality();
root["systemload"] = getSystemLoadAverage();
root["mqttconnected"] = isMQTTConnected();
root["mqttheartbeat"] = getHeartbeat();
char uptime[200];
uint32_t t = _getUptime(); // seconds
uint8_t d = t / 86400L;
uint8_t h = ((t % 86400L) / 3600L) % 60;
uint32_t rem = t % 3600L;
uint8_t m = rem / 60;
uint8_t sec = rem % 60;
sprintf(uptime, "%d day%s %d hour%s %d minute%s %d second%s", d, (d == 1) ? "" : "s", h, (h == 1) ? "" : "s", m, (m == 1) ? "" : "s", sec, (sec == 1) ? "" : "s");
root["uptime"] = uptime;
char topic_s[MQTT_MAX_TOPIC_SIZE] = {0};
if (_hasValue(_mqtt_base)) {
strlcpy(topic_s, _mqtt_base, sizeof(topic_s));
strlcat(topic_s, "/", sizeof(topic_s));
strlcat(topic_s, _general_hostname, sizeof(topic_s));
} else {
strlcpy(topic_s, _general_hostname, sizeof(topic_s));
}
strlcat(topic_s, "/", sizeof(topic_s));
root["mqttloghdr"] = topic_s;
// create MQTT log
JsonArray list = root.createNestedArray("mqttlog");
// only send Publish
for (uint8_t i = 0; i < MYESP_MQTTLOG_MAX; i++) {
if ((MQTT_log[i].type == 1) && (MQTT_log[i].topic != nullptr)) {
JsonObject item = list.createNestedObject();
item["topic"] = MQTT_log[i].topic;
item["payload"] = MQTT_log[i].payload;
item["time"] = MQTT_log[i].timestamp;
}
}
char buffer[MQTT_MAX_PAYLOAD_SIZE_LARGE];
size_t len = serializeJson(root, buffer);
_ws->textAll(buffer, len);
}
// print top5 wifi
void MyESP::_printScanResult(int networksFound) {
int n = networksFound;
int indices[n];
for (int i = 0; i < networksFound; i++) {
indices[i] = i;
}
// sort by RSSI
int skip[n];
for (int i = 0; i < networksFound; i++) {
for (int j = i + 1; j < networksFound; j++) {
if (WiFi.RSSI(indices[j]) > WiFi.RSSI(indices[i])) {
std::swap(indices[i], indices[j]);
std::swap(skip[i], skip[j]);
}
}
}
StaticJsonDocument<400> doc;
JsonObject root = doc.to<JsonObject>();
root["command"] = "ssidlist";
JsonArray list = doc.createNestedArray("list");
for (int i = 0; i <= 5 && i < networksFound; ++i) {
JsonObject item = list.createNestedObject();
item["ssid"] = WiFi.SSID(indices[i]);
item["bssid"] = WiFi.BSSIDstr(indices[i]);
item["rssi"] = WiFi.RSSI(indices[i]);
}
char buffer[400];
size_t len = serializeJson(root, buffer);
_ws->textAll(buffer, len);
}
// set up web server
void MyESP::_webserver_setup() {
_ws->onEvent(std::bind(&MyESP::_onWsEvent,
this,
std::placeholders::_1,
std::placeholders::_2,
std::placeholders::_3,
std::placeholders::_4,
std::placeholders::_5,
std::placeholders::_6));
_webServer->addHandler(_ws);
_webServer->onNotFound([](AsyncWebServerRequest * request) {
AsyncWebServerResponse * response = request->beginResponse(404, "text/plain", "Not found");
request->send(response);
});
_webServer->on("/update",
HTTP_POST,
[](AsyncWebServerRequest * request) {
AsyncWebServerResponse * response = request->beginResponse(200, "text/plain", _shouldRestart ? "OK" : "FAIL");
response->addHeader("Connection", "close");
request->send(response);
},
[](AsyncWebServerRequest * request, String filename, size_t index, uint8_t * data, size_t len, bool final) {
if (!request->authenticate(MYESP_HTTP_USERNAME, _general_password)) {
return;
}
if (!index) {
ETS_UART_INTR_DISABLE(); // disable all UART interrupts to be safe
_writeEvent("INFO", "system", "Firmware update started", "");
//Serial.printf("[SYSTEM] Firmware update started: %s\n", filename.c_str()); // enable for debugging
Update.runAsync(true);
if (!Update.begin((ESP.getFreeSketchSpace() - 0x1000) & 0xFFFFF000)) {
_writeEvent("ERRO", "system", "Not enough space to update", "");
//Update.printError(Serial); // enable for debugging
}
}
if (!Update.hasError()) {
if (Update.write(data, len) != len) {
_writeEvent("ERRO", "system", "Writing to flash failed", "");
//Update.printError(Serial); // enable for debugging
}
}
if (final) {
if (Update.end(true)) {
_writeEvent("INFO", "system", "Firmware update finished", "");
_shouldRestart = !Update.hasError();
} else {
_writeEvent("ERRO", "system", "Firmware update failed", "");
//Update.printError(Serial); // enable for debugging
}
}
});
_webServer->on("/fonts/glyphicons-halflings-regular.woff", HTTP_GET, [](AsyncWebServerRequest * request) {
AsyncWebServerResponse * response =
request->beginResponse_P(200, "font/woff", glyphicons_halflings_regular_woff_gz, glyphicons_halflings_regular_woff_gz_len);
response->addHeader("Content-Encoding", "gzip");
request->send(response);
});
_webServer->on("/css/required.css", HTTP_GET, [](AsyncWebServerRequest * request) {
AsyncWebServerResponse * response = request->beginResponse_P(200, "text/css", required_css_gz, required_css_gz_len);
response->addHeader("Content-Encoding", "gzip");
request->send(response);
});
_webServer->on("/js/required.js", HTTP_GET, [](AsyncWebServerRequest * request) {
AsyncWebServerResponse * response = request->beginResponse_P(200, "text/javascript", required_js_gz, required_js_gz_len);
response->addHeader("Content-Encoding", "gzip");
request->send(response);
});
_webServer->on("/js/myesp.js", HTTP_GET, [](AsyncWebServerRequest * request) {
AsyncWebServerResponse * response = request->beginResponse_P(200, "text/javascript", myesp_js_gz, myesp_js_gz_len);
response->addHeader("Content-Encoding", "gzip");
request->send(response);
});
_webServer->on("/index.html", HTTP_GET, [](AsyncWebServerRequest * request) {
AsyncWebServerResponse * response = request->beginResponse_P(200, "text/html", index_html_gz, index_html_gz_len);
response->addHeader("Content-Encoding", "gzip");
request->send(response);
});
_webServer->on("/myesp.html", HTTP_GET, [](AsyncWebServerRequest * request) {
AsyncWebServerResponse * response = request->beginResponse_P(200, "text/html", myesp_html_gz, myesp_html_gz_len);
response->addHeader("Content-Encoding", "gzip");
request->send(response);
});
_webServer->on("/login", HTTP_GET, [](AsyncWebServerRequest * request) {
//IPAddress address = request->client()->remoteIP();
//static String remoteIP = (String)address[0] + "." + (String)address[1] + "." + (String)address[2] + "." + (String)address[3];
if (!request->authenticate(MYESP_HTTP_USERNAME, _general_password)) {
return request->requestAuthentication();
}
request->send(200, "text/plain", "Success");
});
_webServer->rewrite("/", "/index.html");
_webServer->begin();
myDebug_P(PSTR("[WEB] Web server started"));
}
// print memory
void MyESP::_printHeap(const char * s) {
uint32_t total_memory = _getInitialFreeHeap();
uint32_t free_memory = ESP.getFreeHeap();
myDebug(" [%s] Free Heap: %d bytes initially | %d bytes used (%2u%%) | %d bytes free (%2u%%)",
s,
total_memory,
total_memory - free_memory,
100 * (total_memory - free_memory) / total_memory,
free_memory,
100 * free_memory / total_memory);
}
// print MQTT log - everything that was published last per topic
void MyESP::_printMQTTLog() {
myDebug_P(PSTR("MQTT publish log:"));
uint8_t i;
for (i = 0; i < MYESP_MQTTLOG_MAX; i++) {
if ((MQTT_log[i].topic != nullptr) && (MQTT_log[i].type == 1)) {
myDebug_P(PSTR(" Topic:%s Payload:%s"), MQTT_log[i].topic, MQTT_log[i].payload);
}
}
myDebug_P(PSTR("")); // newline
myDebug_P(PSTR("MQTT subscriptions:"));
for (i = 0; i < MYESP_MQTTLOG_MAX; i++) {
if ((MQTT_log[i].topic != nullptr) && (MQTT_log[i].type == 2)) {
if (_hasValue(MQTT_log[i].payload)) {
myDebug_P(PSTR(" Topic:%s Last Payload:%s"), MQTT_log[i].topic, MQTT_log[i].payload);
} else {
myDebug_P(PSTR(" Topic:%s"), MQTT_log[i].topic);
}
}
}
myDebug_P(PSTR("")); // newline
}
// add an MQTT log entry to our buffer
// type 0=none, 1=publish, 2=subscribe
void MyESP::_addMQTTLog(const char * topic, const char * payload, const uint8_t type) {
static uint8_t logCount = 0;
uint8_t logPointer = 0;
bool found = false;
// myDebug("_addMQTTLog [#%d] %s (%d) [%s] (%d)", logCount, topic, strlen(topic), payload, strlen(payload)); // for debugging
// find the topic
// topics must be unique for either publish or subscribe
while ((logPointer < MYESP_MQTTLOG_MAX) && (_hasValue(MQTT_log[logPointer].topic))) {
if ((strcmp(MQTT_log[logPointer].topic, topic) == 0) && (MQTT_log[logPointer].type == type)) {
found = true;
break;
}
logPointer++;
}
// if not found add it and increment next free space pointer
if (!found) {
logPointer = logCount;
if (++logCount == MYESP_MQTTLOG_MAX) {
logCount = 0; // rotate
}
}
// delete old record
if (MQTT_log[logPointer].topic) {
free(MQTT_log[logPointer].topic);
}
if (MQTT_log[logPointer].payload) {
free(MQTT_log[logPointer].payload);
}
// and add new record
MQTT_log[logPointer].type = type; // 0=none, 1=publish, 2=subscribe
MQTT_log[logPointer].topic = strdup(topic);
MQTT_log[logPointer].payload = strdup(payload);
MQTT_log[logPointer].timestamp = now();
}
// send UTC time via ws
void MyESP::_sendTime() {
StaticJsonDocument<100> doc;
JsonObject root = doc.to<JsonObject>();
root["command"] = "gettime";
root["epoch"] = now();
char buffer[100];
size_t len = serializeJson(root, buffer);
_ws->textAll(buffer, len);
}
// bootup sequence
// quickly flash LED until we get a Wifi connection, or AP established
void MyESP::_bootupSequence() {
uint8_t boot_status = getSystemBootStatus();
// check if its booted
if (boot_status == MYESP_BOOTSTATUS_BOOTED) {
if ((_ntp_enabled) && (now() > 10000) && !_have_ntp_time) {
_have_ntp_time = true;
if (_general_log_events) {
_writeEvent("INFO", "system", "System booted", "");
}
}
return;
}
// still starting up
if (millis() <= MYESP_BOOTUP_DELAY) {
return;
}
// only kick in after a few seconds
if (boot_status == MYESP_BOOTSTATUS_POWERON) {
_setSystemBootStatus(MYESP_BOOTSTATUS_BOOTING);
}
static uint32_t last_bootupflash = 0;
// flash LED quickly
if ((millis() - last_bootupflash > MYESP_BOOTUP_FLASHDELAY)) {
last_bootupflash = millis();
int state = digitalRead(LED_BUILTIN);
digitalWrite(LED_BUILTIN, !state);
}
if (isWifiConnected()) {
_setSystemBootStatus(MYESP_BOOTSTATUS_BOOTED); // completed, reset flag
digitalWrite(LED_BUILTIN, HIGH); // turn off LED, 1=OFF with LED_BULLETIN
// write a log message if we're not using NTP, otherwise wait for the internet time to arrive
if (!_ntp_enabled) {
if (_general_log_events) {
_writeEvent("INFO", "system", "System booted", "");
}
}
}
}
// setup MyESP
void MyESP::begin(const char * app_hostname, const char * app_name, const char * app_version, const char * app_url, const char * app_updateurl) {
_general_hostname = strdup(app_hostname);
_app_name = strdup(app_name);
_app_version = strdup(app_version);
_app_url = strdup(app_url);
_app_updateurl = strdup(app_updateurl);
_telnet_setup(); // Telnet setup, called first to set Serial
// print a welcome message
myDebug_P(PSTR("\n\n* %s version %s"), _app_name, _app_version);
// set up onboard LED
pinMode(LED_BUILTIN, OUTPUT);
digitalWrite(LED_BUILTIN, HIGH);
_getInitialFreeHeap(); // get initial free mem
_rtcmemSetup(); // rtc internal mem setup
_eeprom_setup(); // set up EEPROM for storing crash data, if compiled with -DCRASH
_fs_setup(); // SPIFFS setup, do this first to get values
_wifi_setup(); // WIFI setup
_ota_setup(); // init OTA
_webserver_setup(); // init web server
_setSystemCheck(false); // reset system check
_heartbeatCheck(true); // force heartbeat
SerialAndTelnet.flush();
}
/*
* Loop. This is called as often as possible and it handles wifi, telnet, mqtt etc
*/
void MyESP::loop() {
_calculateLoad();
_systemCheckLoop();
_heartbeatCheck();
_bootupSequence(); // see if a reset was pressed during bootup
jw.loop(); // WiFi
ArduinoOTA.handle(); // OTA
ESP.wdtFeed(); // feed the watchdog...
_telnetHandle(); // telnet
ESP.wdtFeed(); // feed the watchdog...
_mqttConnect(); // MQTT
if (_timerequest) {
_timerequest = false;
_sendTime();
}
if (_formatreq) {
myDebug("[SYSTEM] Factory reset initiated. Please wait. System will automatically restart when complete...");
SPIFFS.end();
_ws->enable(false);
SPIFFS.format();
_deferredReset(500, CUSTOM_RESET_FACTORY);
ESP.restart();
}
if (_shouldRestart) {
if (_general_log_events) {
_writeEvent("INFO", "system", "System is restarting", "");
}
myDebug("[SYSTEM] Restarting...");
_deferredReset(500, CUSTOM_RESET_TERMINAL);
ESP.restart();
}
yield(); // ... and breath.
}
MyESP myESP;