Files
EMS-ESP32/src/uart/emsuart_esp32.cpp

321 lines
11 KiB
C++

/*
* EMS-ESP - https://github.com/proddy/EMS-ESP
* Copyright 2019 Paul Derbyshire
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/*
* ESP32 UART port by @ArwedL and improved by @MichaelDvP. See https://github.com/proddy/EMS-ESP/issues/380
*/
#if defined(ESP32)
#include "uart/emsuart_esp32.h"
#include "emsesp.h"
namespace emsesp {
static intr_handle_t uart_handle;
static RingbufHandle_t buf_handle = NULL;
static hw_timer_t * timer = NULL;
bool drop_next_rx = true;
uint8_t tx_mode_ = 0xFF;
uint8_t emsTxBuf[EMS_MAXBUFFERSIZE];
uint8_t emsTxBufIdx;
uint8_t emsTxBufLen;
uint32_t emsTxWait;
/*
* Task to handle the incoming data
*/
void EMSuart::emsuart_recvTask(void * para) {
while (1) {
size_t item_size;
uint8_t * telegram = (uint8_t *)xRingbufferReceive(buf_handle, &item_size, portMAX_DELAY);
uint8_t telegramSize = item_size;
if (telegram) {
EMSESP::incoming_telegram(telegram, telegramSize);
vRingbufferReturnItem(buf_handle, (void *)telegram);
}
}
}
/*
* UART interrupt, on break read the fifo and put the whole telegram to ringbuffer
*/
void IRAM_ATTR EMSuart::emsuart_rx_intr_handler(void * para) {
static uint8_t rxbuf[EMS_MAXBUFFERSIZE];
static uint8_t length;
UART_MUTEX_LOCK();
if (EMS_UART.int_st.rxfifo_full) {
EMS_UART.int_clr.rxfifo_full = 1;
emsTxBufIdx++;
if (emsTxBufIdx < emsTxBufLen) {
EMS_UART.conf1.rxfifo_full_thrhd = emsTxBufIdx + 1;
EMS_UART.fifo.rw_byte = emsTxBuf[emsTxBufIdx];
} else if (emsTxBufIdx == emsTxBufLen) {
EMS_UART.conf0.txd_brk = 1; // <brk> after send
EMS_UART.int_ena.rxfifo_full = 0;
EMS_UART.conf1.rxfifo_full_thrhd = 0x7F;
}
}
if (EMS_UART.int_st.brk_det) {
EMS_UART.int_clr.brk_det = 1; // clear flag
if (emsTxBufIdx < emsTxBufLen) { // timer tx_mode is interrupted by <brk>
emsTxBufIdx = emsTxBufLen; // stop timer mode
drop_next_rx = true; // we have trash in buffer
}
length = 0;
while (EMS_UART.status.rxfifo_cnt) {
uint8_t rx = EMS_UART.fifo.rw_byte; // read all bytes from fifo
if (length < EMS_MAXBUFFERSIZE) {
rxbuf[length++] = rx;
} else {
drop_next_rx = true; // we have a overflow
}
}
if ((!drop_next_rx) && ((length == 2) || (length > 4))) {
int baseType = 0;
xRingbufferSendFromISR(buf_handle, rxbuf, length - 1, &baseType);
}
drop_next_rx = false;
UART_MUTEX_UNLOCK();
}
}
void IRAM_ATTR EMSuart::emsuart_tx_timer_intr_handler() {
if (emsTxBufIdx > EMS_MAXBUFFERSIZE) {
return;
}
UART_MUTEX_LOCK();
emsTxBufIdx++;
if (emsTxBufIdx < emsTxBufLen) {
EMS_UART.fifo.rw_byte = emsTxBuf[emsTxBufIdx];
timerWrite(timer, 0);
timerAlarmWrite(timer, emsTxWait, false);
timerAlarmEnable(timer);
} else if (emsTxBufIdx == emsTxBufLen) {
EMS_UART.conf0.txd_brk = 1; // <brk> after send
}
UART_MUTEX_UNLOCK();
}
/*
* init UART driver
*/
void EMSuart::start(uint8_t tx_mode) {
emsTxWait = EMSUART_TX_BIT_TIME * (tx_mode + 10);
if (tx_mode_ != 0xFF) { // uart already initialized
tx_mode_ = tx_mode;
restart();
return;
}
tx_mode_ = tx_mode;
UART_MUTEX_LOCK();
uart_config_t uart_config = {
.baud_rate = EMSUART_BAUD,
.data_bits = UART_DATA_8_BITS,
.parity = UART_PARITY_DISABLE,
.stop_bits = UART_STOP_BITS_1,
.flow_ctrl = UART_HW_FLOWCTRL_DISABLE,
};
uart_param_config(EMSUART_UART, &uart_config);
uart_set_pin(EMSUART_UART, EMSUART_TXPIN, EMSUART_RXPIN, UART_PIN_NO_CHANGE, UART_PIN_NO_CHANGE);
EMS_UART.int_ena.val = 0; // disable all intr.
EMS_UART.int_clr.val = 0xFFFFFFFF; // clear all intr. flags
EMS_UART.idle_conf.tx_brk_num = 11; // breaklength 11 bit
EMS_UART.idle_conf.rx_idle_thrhd = 256;
drop_next_rx = true;
buf_handle = xRingbufferCreate(128, RINGBUF_TYPE_NOSPLIT);
uart_isr_register(EMSUART_UART, emsuart_rx_intr_handler, NULL, ESP_INTR_FLAG_IRAM, &uart_handle);
xTaskCreate(emsuart_recvTask, "emsuart_recvTask", 2048, NULL, configMAX_PRIORITIES - 1, NULL);
EMS_UART.int_ena.brk_det = 1; // activate only break
emsTxBufIdx = 0;
emsTxBufLen = 0;
timer = timerBegin(1, 80, true); // timer prescale to 1 µs, countup
timerAttachInterrupt(timer, &emsuart_tx_timer_intr_handler, true); // Timer with edge interrupt
UART_MUTEX_UNLOCK();
}
/*
* Stop, disables interrupt
*/
void EMSuart::stop() {
UART_MUTEX_LOCK();
EMS_UART.int_ena.val = 0; // disable all intr.
// timerAlarmDisable(timer);
UART_MUTEX_UNLOCK();
};
/*
* Restart Interrupt
*/
void EMSuart::restart() {
UART_MUTEX_LOCK();
if (EMS_UART.int_raw.brk_det) {
EMS_UART.int_clr.brk_det = 1; // clear flag
drop_next_rx = true; // and drop first frame
}
EMS_UART.int_ena.brk_det = 1; // activate only break
emsTxBufIdx = 0;
emsTxBufLen = 0;
UART_MUTEX_UNLOCK();
}
/*
* Sends a 1-byte poll, ending with a <BRK>
*/
void EMSuart::send_poll(uint8_t data) {
// if (tx_mode_ >= 6 || tx_mode_ < 4) { // modes 1, 2, 3 also here
UART_MUTEX_LOCK();
if (tx_mode_ >= 5) {
EMS_UART.fifo.rw_byte = data;
emsTxBufIdx = 0;
emsTxBufLen = 1;
timerWrite(timer, 0);
timerAlarmWrite(timer, emsTxWait, false);
timerAlarmEnable(timer);
} else if (tx_mode_ == 5) {
EMS_UART.fifo.rw_byte = data;
emsTxBufIdx = 0;
emsTxBufLen = 1;
EMS_UART.conf1.rxfifo_full_thrhd = 1;
EMS_UART.int_ena.rxfifo_full = 1;
} else if (tx_mode_ == EMS_TXMODE_NEW) {
EMS_UART.fifo.rw_byte = data;
EMS_UART.conf0.txd_brk = 1; // <brk> after send
} else if (tx_mode_ == EMS_TXMODE_HT3) {
EMS_UART.fifo.rw_byte = data;
delayMicroseconds(EMSUART_TX_WAIT_HT3);
EMS_UART.conf0.txd_brk = 1; // <brk>
// delayMicroseconds(EMSUART_TX_WAIT_BRK);
// EMS_UART.conf0.txd_brk = 0;
} else if (tx_mode_ == EMS_TXMODE_EMSPLUS) {
EMS_UART.fifo.rw_byte = data;
delayMicroseconds(EMSUART_TX_WAIT_PLUS);
EMS_UART.conf0.txd_brk = 1; // <brk>
// delayMicroseconds(EMSUART_TX_WAIT_BRK);
// EMS_UART.conf0.txd_brk = 0;
} else {
volatile uint8_t _usrxc = EMS_UART.status.rxfifo_cnt;
EMS_UART.fifo.rw_byte = data;
uint16_t timeoutcnt = EMSUART_TX_TIMEOUT;
while ((EMS_UART.status.rxfifo_cnt == _usrxc) && (--timeoutcnt > 0)) {
delayMicroseconds(EMSUART_TX_BUSY_WAIT); // burn CPU cycles...
}
EMS_UART.conf0.txd_brk = 1; // <brk>
}
UART_MUTEX_UNLOCK();
}
/*
* Send data to Tx line, ending with a <BRK>
* buf contains the CRC and len is #bytes including the CRC
* returns code, 1=success
*/
uint16_t EMSuart::transmit(uint8_t * buf, uint8_t len) {
if (len == 0 || len >= EMS_MAXBUFFERSIZE) {
return EMS_TX_STATUS_ERR;
}
UART_MUTEX_LOCK();
// if (tx_mode_ >= 6 || tx_mode_ < 4) { // timer controlled modes, also modes 1, 2, 3 because delays not working
if (tx_mode_ >= 5) { // timer controlled modes
for (uint8_t i = 0; i < len; i++) {
emsTxBuf[i] = buf[i];
}
EMS_UART.fifo.rw_byte = buf[0];
emsTxBufIdx = 0;
emsTxBufLen = len;
timerWrite(timer, 0);
timerAlarmWrite(timer, emsTxWait, false);
timerAlarmEnable(timer);
UART_MUTEX_UNLOCK();
return EMS_TX_STATUS_OK;
}
if (tx_mode_ == 5) {
for (uint8_t i = 0; i < len; i++) {
emsTxBuf[i] = buf[i];
}
EMS_UART.fifo.rw_byte = buf[0];
emsTxBufIdx = 0;
emsTxBufLen = len;
EMS_UART.conf1.rxfifo_full_thrhd = 1;
EMS_UART.int_ena.rxfifo_full = 1;
UART_MUTEX_UNLOCK();
return EMS_TX_STATUS_OK;
}
if (tx_mode_ == EMS_TXMODE_NEW) { // hardware controlled modes
for (uint8_t i = 0; i < len; i++) {
EMS_UART.fifo.rw_byte = buf[i];
}
EMS_UART.conf0.txd_brk = 1; // <brk> after send
UART_MUTEX_UNLOCK();
return EMS_TX_STATUS_OK;
}
if (tx_mode_ == EMS_TXMODE_EMSPLUS) { // EMS+ with long delay
for (uint8_t i = 0; i < len; i++) {
EMS_UART.fifo.rw_byte = buf[i];
delayMicroseconds(EMSUART_TX_WAIT_PLUS);
}
EMS_UART.conf0.txd_brk = 1; // <brk> after send, cleard by hardware after send
// delayMicroseconds(EMSUART_TX_WAIT_BRK);
// EMS_UART.conf0.txd_brk = 0;
UART_MUTEX_UNLOCK();
return EMS_TX_STATUS_OK;
}
if (tx_mode_ == EMS_TXMODE_HT3) { // HT3 with 7 bittimes delay
for (uint8_t i = 0; i < len; i++) {
EMS_UART.fifo.rw_byte = buf[i];
delayMicroseconds(EMSUART_TX_WAIT_HT3);
}
EMS_UART.conf0.txd_brk = 1; // <brk> after send, cleard by hardware after send
// delayMicroseconds(EMSUART_TX_WAIT_BRK);
// EMS_UART.conf0.txd_brk = 0;
UART_MUTEX_UNLOCK();
return EMS_TX_STATUS_OK;
}
// mode 1
// flush fifos -- not supported in ESP32 uart #2!
// EMS_UART.conf0.rxfifo_rst = 1;
// EMS_UART.conf0.txfifo_rst = 1;
for (uint8_t i = 0; i < len; i++) {
volatile uint8_t _usrxc = EMS_UART.status.rxfifo_cnt;
EMS_UART.fifo.rw_byte = buf[i]; // send each Tx byte
uint16_t timeoutcnt = EMSUART_TX_TIMEOUT;
while ((EMS_UART.status.rxfifo_cnt == _usrxc) && (--timeoutcnt > 0)) {
delayMicroseconds(EMSUART_TX_BUSY_WAIT); // burn CPU cycles...
}
}
EMS_UART.conf0.txd_brk = 1; // <brk> after send, cleard by hardware after send
// delayMicroseconds(EMSUART_TX_WAIT_BRK);
// EMS_UART.conf0.txd_brk = 0;
UART_MUTEX_UNLOCK();
return EMS_TX_STATUS_OK;
}
} // namespace emsesp
#endif