Files
EMS-ESP32/src/devices/thermostat.cpp

4014 lines
175 KiB
C++

/*
* EMS-ESP - https://github.com/emsesp/EMS-ESP
* Copyright 2020 Paul Derbyshire
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "thermostat.h"
namespace emsesp {
REGISTER_FACTORY(Thermostat, EMSdevice::DeviceType::THERMOSTAT);
uuid::log::Logger Thermostat::logger_{F_(thermostat), uuid::log::Facility::CONSOLE};
Thermostat::Thermostat(uint8_t device_type, uint8_t device_id, uint8_t product_id, const char * version, const std::string & name, uint8_t flags, uint8_t brand)
: EMSdevice(device_type, device_id, product_id, version, name, flags, brand) {
uint8_t actual_master_thermostat = EMSESP::actual_master_thermostat(); // what we're actually using
uint8_t master_thermostat = EMSESP_DEFAULT_MASTER_THERMOSTAT;
EMSESP::webSettingsService.read([&](WebSettings & settings) {
master_thermostat = settings.master_thermostat; // what the user has defined
});
uint8_t model = this->model();
// if we're on auto mode, register this thermostat if it has a device id of 0x10, 0x17 or 0x18
// or if its the master thermostat we defined
// see https://github.com/emsesp/EMS-ESP/issues/362#issuecomment-629628161
if ((master_thermostat == device_id)
|| ((master_thermostat == EMSESP_DEFAULT_MASTER_THERMOSTAT) && (device_id < 0x19)
&& ((actual_master_thermostat == EMSESP_DEFAULT_MASTER_THERMOSTAT) || (device_id < actual_master_thermostat)))) {
EMSESP::actual_master_thermostat(device_id);
actual_master_thermostat = device_id;
// reserve_telegram_functions(20); // reserve some space for the telegram registries, to avoid memory fragmentation
// common telegram handlers
register_telegram_type(EMS_TYPE_RCOutdoorTemp, F("RCOutdoorTemp"), false, MAKE_PF_CB(process_RCOutdoorTemp));
register_telegram_type(EMS_TYPE_RCTime, F("RCTime"), false, MAKE_PF_CB(process_RCTime));
register_telegram_type(0xA2, F("RCError"), false, MAKE_PF_CB(process_RCError));
register_telegram_type(0x12, F("RCErrorMessage"), false, MAKE_PF_CB(process_RCErrorMessage));
}
// RC10
if (model == EMSdevice::EMS_DEVICE_FLAG_RC10) {
monitor_typeids = {0xB1};
set_typeids = {0xB0};
for (uint8_t i = 0; i < monitor_typeids.size(); i++) {
register_telegram_type(monitor_typeids[i], F("RC10Monitor"), false, MAKE_PF_CB(process_RC10Monitor));
register_telegram_type(set_typeids[i], F("RC10Set"), false, MAKE_PF_CB(process_RC10Set));
}
// RC35
} else if ((model == EMSdevice::EMS_DEVICE_FLAG_RC35) || (model == EMSdevice::EMS_DEVICE_FLAG_RC30_N)) {
monitor_typeids = {0x3E, 0x48, 0x52, 0x5C};
set_typeids = {0x3D, 0x47, 0x51, 0x5B};
timer_typeids = {0x3F, 0x49, 0x53, 0x5D};
timer2_typeids = {0x42, 0x4C, 0x56, 0x60};
for (uint8_t i = 0; i < monitor_typeids.size(); i++) {
register_telegram_type(monitor_typeids[i], F("RC35Monitor"), false, MAKE_PF_CB(process_RC35Monitor));
register_telegram_type(set_typeids[i], F("RC35Set"), false, MAKE_PF_CB(process_RC35Set));
register_telegram_type(timer_typeids[i], F("RC35Timer"), false, MAKE_PF_CB(process_RC35Timer));
register_telegram_type(timer2_typeids[i], F("RC35Timer2"), false, MAKE_PF_CB(process_RC35Timer));
}
register_telegram_type(EMS_TYPE_IBASettings, F("IBASettings"), true, MAKE_PF_CB(process_IBASettings));
register_telegram_type(EMS_TYPE_wwSettings, F("WWSettings"), true, MAKE_PF_CB(process_RC35wwSettings));
register_telegram_type(0x38, F("WWTimer"), true, MAKE_PF_CB(process_RC35wwTimer));
register_telegram_type(0x39, F("WWCircTimer"), true, MAKE_PF_CB(process_RC35wwTimer));
// RC20
} else if (model == EMSdevice::EMS_DEVICE_FLAG_RC20) {
monitor_typeids = {0x91};
set_typeids = {0xA8};
curve_typeids = {0x90};
timer_typeids = {0x8F};
if (actual_master_thermostat == device_id) {
for (uint8_t i = 0; i < monitor_typeids.size(); i++) {
register_telegram_type(monitor_typeids[i], F("RC20Monitor"), false, MAKE_PF_CB(process_RC20Monitor));
register_telegram_type(set_typeids[i], F("RC20Set"), false, MAKE_PF_CB(process_RC20Set));
register_telegram_type(curve_typeids[i], F("RC20Temp"), false, MAKE_PF_CB(process_RC20Temp));
register_telegram_type(timer_typeids[i], F("RC20Timer"), false, MAKE_PF_CB(process_RC20Timer));
}
}
// remote thermostat uses only 0xAF, register it also for master (in case of early detect)
register_telegram_type(0xAF, F("RC20Remote"), false, MAKE_PF_CB(process_RC20Remote));
// RC20 newer
} else if ((model == EMSdevice::EMS_DEVICE_FLAG_RC20_N) || (model == EMSdevice::EMS_DEVICE_FLAG_RC25)) {
monitor_typeids = {0xAE};
set_typeids = {0xAD};
if (actual_master_thermostat == device_id) {
for (uint8_t i = 0; i < monitor_typeids.size(); i++) {
register_telegram_type(monitor_typeids[i], F("RC20Monitor"), false, MAKE_PF_CB(process_RC20Monitor_2));
register_telegram_type(set_typeids[i], F("RC20Set"), false, MAKE_PF_CB(process_RC20Set_2));
}
}
register_telegram_type(0xAF, F("RC20Remote"), false, MAKE_PF_CB(process_RC20Remote));
// RC30
} else if (model == EMSdevice::EMS_DEVICE_FLAG_RC30) {
monitor_typeids = {0x41};
set_typeids = {0xA7};
curve_typeids = {0x40};
timer_typeids = {0x3F};
for (uint8_t i = 0; i < monitor_typeids.size(); i++) {
register_telegram_type(monitor_typeids[i], F("RC30Monitor"), false, MAKE_PF_CB(process_RC30Monitor));
register_telegram_type(set_typeids[i], F("RC30Set"), false, MAKE_PF_CB(process_RC30Set));
register_telegram_type(curve_typeids[i], F("RC30Temp"), false, MAKE_PF_CB(process_RC30Temp));
register_telegram_type(timer_typeids[i], F("RC30Timer"), false, MAKE_PF_CB(process_RC30Timer));
}
register_telegram_type(EMS_TYPE_RC30wwSettings, F("RC30WWSettings"), true, MAKE_PF_CB(process_RC30wwSettings));
// EASY
} else if (model == EMSdevice::EMS_DEVICE_FLAG_EASY) {
monitor_typeids = {0x0A};
set_typeids = {};
register_telegram_type(monitor_typeids[0], F("EasyMonitor"), true, MAKE_PF_CB(process_EasyMonitor));
// CRF
} else if (model == EMSdevice::EMS_DEVICE_FLAG_CRF) {
monitor_typeids = {0x02A5, 0x02A6, 0x02A7, 0x02A8};
set_typeids = {};
for (uint8_t i = 0; i < monitor_typeids.size(); i++) {
register_telegram_type(monitor_typeids[i], F("CRFMonitor"), false, MAKE_PF_CB(process_CRFMonitor));
}
// RC300/RC100
} else if ((model == EMSdevice::EMS_DEVICE_FLAG_RC300) || (model == EMSdevice::EMS_DEVICE_FLAG_RC100)) {
monitor_typeids = {0x02A5, 0x02A6, 0x02A7, 0x02A8, 0x02A9, 0x02AA, 0x02AB, 0x02AC};
set_typeids = {0x02B9, 0x02BA, 0x02BB, 0x02BC, 0x02BD, 0x02BE, 0x02BF, 0x02C0};
summer_typeids = {0x02AF, 0x02B0, 0x02B1, 0x02B2, 0x02B3, 0x02B4, 0x02B5, 0x02B6};
curve_typeids = {0x029B, 0x029C, 0x029D, 0x029E, 0x029F, 0x02A0, 0x02A1, 0x02A2};
summer2_typeids = {0x0471, 0x0472, 0x0473, 0x0474, 0x0475, 0x0476, 0x0477, 0x0478};
for (uint8_t i = 0; i < monitor_typeids.size(); i++) {
register_telegram_type(monitor_typeids[i], F("RC300Monitor"), false, MAKE_PF_CB(process_RC300Monitor));
register_telegram_type(set_typeids[i], F("RC300Set"), false, MAKE_PF_CB(process_RC300Set));
register_telegram_type(summer_typeids[i], F("RC300Summer"), false, MAKE_PF_CB(process_RC300Summer));
register_telegram_type(curve_typeids[i], F("RC300Curves"), false, MAKE_PF_CB(process_RC300Curve));
register_telegram_type(summer2_typeids[i], F("RC300Summer2"), false, MAKE_PF_CB(process_RC300Summer2));
}
register_telegram_type(0x2F5, F("RC300WWmode"), true, MAKE_PF_CB(process_RC300WWmode));
register_telegram_type(0x31B, F("RC300WWtemp"), true, MAKE_PF_CB(process_RC300WWtemp));
register_telegram_type(0x31D, F("RC300WWmode2"), false, MAKE_PF_CB(process_RC300WWmode2));
register_telegram_type(0x31E, F("RC300WWmode2"), false, MAKE_PF_CB(process_RC300WWmode2));
register_telegram_type(0x23A, F("RC300OutdoorTemp"), true, MAKE_PF_CB(process_RC300OutdoorTemp));
register_telegram_type(0x267, F("RC300Floordry"), false, MAKE_PF_CB(process_RC300Floordry));
register_telegram_type(0x240, F("RC300Settings"), true, MAKE_PF_CB(process_RC300Settings));
// JUNKERS/HT3
} else if (model == EMSdevice::EMS_DEVICE_FLAG_JUNKERS) {
if (actual_master_thermostat == device_id) {
monitor_typeids = {0x016F, 0x0170, 0x0171, 0x0172};
for (uint8_t i = 0; i < monitor_typeids.size(); i++) {
register_telegram_type(monitor_typeids[i], F("JunkersMonitor"), false, MAKE_PF_CB(process_JunkersMonitor));
}
if (has_flags(EMS_DEVICE_FLAG_JUNKERS_OLD)) {
// FR120, FR100
set_typeids = {0x0179, 0x017A, 0x017B, 0x017C};
for (uint8_t i = 0; i < monitor_typeids.size(); i++) {
register_telegram_type(set_typeids[i], F("JunkersSet"), false, MAKE_PF_CB(process_JunkersSet2));
}
} else {
set_typeids = {0x0165, 0x0166, 0x0167, 0x0168};
for (uint8_t i = 0; i < monitor_typeids.size(); i++) {
register_telegram_type(set_typeids[i], F("JunkersSet"), false, MAKE_PF_CB(process_JunkersSet));
}
}
}
register_telegram_type(0xBB, F("HybridSettings"), true, MAKE_PF_CB(process_JunkersHybridSettings));
register_telegram_type(0x23, F("JunkersSetMixer"), true, MAKE_PF_CB(process_JunkersSetMixer));
register_telegram_type(0x123, F("JunkersRemote"), false, MAKE_PF_CB(process_JunkersRemoteMonitor));
}
if (actual_master_thermostat != device_id) {
return; // don't fetch data if more than 1 thermostat
}
//
// this next section is only for the master thermostat....
//
LOG_DEBUG(F("Setting this thermostat (device ID 0x%02X) to be the master"), device_id);
// register device values for common values (not heating circuit)
register_device_values();
// only for for the master-thermostat, go a query all the heating circuits. This is only done once.
// The automatic fetch will from now on only update the active heating circuits
for (uint8_t i = 0; i < monitor_typeids.size(); i++) {
EMSESP::send_read_request(monitor_typeids[i], device_id);
}
for (uint8_t i = 0; i < set_typeids.size(); i++) {
EMSESP::send_read_request(set_typeids[i], device_id);
}
EMSESP::send_read_request(EMS_TYPE_RCTime, device_id);
EMSESP::send_read_request(0x12, device_id); // read last error (only published on errors)
EMSESP::send_read_request(0xA2, device_id); // read errorCode (only published on errors)
}
// returns the heating circuit object based on the hc number
// of nullptr if it doesn't exist yet
std::shared_ptr<Thermostat::HeatingCircuit> Thermostat::heating_circuit(const uint8_t hc_num) {
// if hc_num is 0 then return the first existing hc in the list
if (hc_num == AUTO_HEATING_CIRCUIT) {
for (const auto & heating_circuit : heating_circuits_) {
if (heating_circuit->is_active()) {
return heating_circuit;
}
}
}
// otherwise find a match
for (const auto & heating_circuit : heating_circuits_) {
if ((heating_circuit->hc_num() == hc_num) && heating_circuit->is_active()) {
return heating_circuit;
}
}
return nullptr; // not found
}
// determine which heating circuit the type ID is referring too
// returns pointer to the HeatingCircuit or nullptr if it can't be found
// if its a new one, the heating circuit object will be created and also the fetch flags set
std::shared_ptr<Thermostat::HeatingCircuit> Thermostat::heating_circuit(std::shared_ptr<const Telegram> telegram) {
// look through the Monitor and Set arrays to see if there is a match
uint8_t hc_num = 0;
bool toggle_ = false;
// search monitor message types
for (uint8_t i = 0; i < monitor_typeids.size(); i++) {
if (monitor_typeids[i] == telegram->type_id) {
hc_num = i + 1;
toggle_ = true;
break;
}
}
// not found, search status message/set types
if (hc_num == 0) {
for (uint8_t i = 0; i < set_typeids.size(); i++) {
if (set_typeids[i] == telegram->type_id) {
hc_num = i + 1;
break;
}
}
}
// not found, search summer message types
if (hc_num == 0) {
for (uint8_t i = 0; i < summer_typeids.size(); i++) {
if (summer_typeids[i] == telegram->type_id) {
hc_num = i + 1;
break;
}
}
}
// not found, search summer message types
if (hc_num == 0) {
for (uint8_t i = 0; i < summer2_typeids.size(); i++) {
if (summer2_typeids[i] == telegram->type_id) {
hc_num = i + 1;
break;
}
}
}
// not found, search heating_curve message types
if (hc_num == 0) {
for (uint8_t i = 0; i < curve_typeids.size(); i++) {
if (curve_typeids[i] == telegram->type_id) {
hc_num = i + 1;
break;
}
}
}
// not found, search timer message types
if (hc_num == 0) {
for (uint8_t i = 0; i < timer_typeids.size(); i++) {
if (timer_typeids[i] == telegram->type_id) {
hc_num = i + 1;
break;
}
}
}
// not found, search timer message types
if (hc_num == 0) {
for (uint8_t i = 0; i < timer2_typeids.size(); i++) {
if (timer2_typeids[i] == telegram->type_id) {
hc_num = i + 1;
break;
}
}
}
// not found, search device-id types for remote thermostats
if (telegram->src >= 0x18 && telegram->src <= 0x1B) {
hc_num = telegram->src - 0x17;
toggle_ = true;
}
// not found, search device-id types for remote thermostats
if (telegram->dest >= 0x20 && telegram->dest <= 0x27) {
hc_num = telegram->dest - 0x20;
}
// still didn't recognize it, ignore it
if (hc_num == 0) {
return nullptr;
}
// if we have the heating circuit already present, returns its object reference
// otherwise create a new object and add it
for (const auto & heating_circuit : heating_circuits_) {
if (heating_circuit->hc_num() == hc_num) {
return heating_circuit;
}
}
// register new heatingcircuits only on active monitor telegrams
if (!toggle_) {
return nullptr;
}
/*
* at this point we have discovered a new heating circuit
*/
// if it's the first set the status flag
if (heating_circuits_.empty()) {
strlcpy(status_, "online", sizeof(status_));
}
// create a new heating circuit object and add to the list
auto new_hc = std::make_shared<Thermostat::HeatingCircuit>(hc_num, model());
heating_circuits_.push_back(new_hc);
// sort based on hc number so there's a nice order when displaying
// NOTE temporarily commented out the HC sorting until I'm 100% sure the return object still references the newly created object
// not sure if new_hc and heating_circuits_.back() will still reference the new HC after its sorted - to check!
// std::sort(heating_circuits_.begin(), heating_circuits_.end());
// register the device values
register_device_values_hc(new_hc);
// don't fetch telegrams if not the master
if (device_id() != EMSESP::actual_master_thermostat()) {
return new_hc;
}
// set the flag saying we want its data during the next auto fetch
// monitor is broadcasted, but not frequently in some thermostats (IVT, #356)
toggle_fetch(monitor_typeids[hc_num - 1], toggle_);
if (set_typeids.size()) {
toggle_fetch(set_typeids[hc_num - 1], toggle_);
}
if (summer_typeids.size()) {
toggle_fetch(summer_typeids[hc_num - 1], toggle_);
}
if (curve_typeids.size()) {
toggle_fetch(curve_typeids[hc_num - 1], toggle_);
}
if (timer_typeids.size()) {
toggle_fetch(timer_typeids[hc_num - 1], toggle_);
}
if (timer2_typeids.size()) {
toggle_fetch(timer2_typeids[hc_num - 1], toggle_);
}
if (summer2_typeids.size()) {
toggle_fetch(summer2_typeids[hc_num - 1], toggle_);
}
return new_hc; // return back point to new HC object
}
// add the HVAC/Climate HA component for the HC
void Thermostat::add_ha_climate(std::shared_ptr<HeatingCircuit> hc) const {
if (!Mqtt::ha_enabled()) {
hc->climate = EMS_VALUE_UINT_NOTSET;
return;
}
if (Helpers::hasValue(hc->selTemp) && is_readable(&hc->selTemp)) {
if (Helpers::hasValue(hc->roomTemp) && is_readable(&hc->roomTemp)) {
hc->climate = 1;
} else {
hc->climate = 0;
}
} else {
hc->climate = EMS_VALUE_UINT_NOTSET;
}
}
// decodes the thermostat mode for the heating circuit based on the thermostat type
// modes are off, manual, auto, day, night and holiday
uint8_t Thermostat::HeatingCircuit::get_mode() const {
uint8_t model = get_model();
if (!Helpers::hasValue(mode)) {
return HeatingCircuit::Mode::UNKNOWN;
}
if (model == EMSdevice::EMS_DEVICE_FLAG_RC10) {
if (mode == 2) {
return HeatingCircuit::Mode::DAY;
} else if (mode == 1) {
return HeatingCircuit::Mode::NIGHT;
} else if (mode == 0) {
return HeatingCircuit::Mode::OFF;
}
} else if (model == EMSdevice::EMS_DEVICE_FLAG_RC20) {
if (mode == 0) {
return HeatingCircuit::Mode::OFF;
} else if (mode == 1) {
return HeatingCircuit::Mode::MANUAL;
} else if (mode == 2) {
return HeatingCircuit::Mode::AUTO;
}
} else if (model == EMSdevice::EMS_DEVICE_FLAG_CRF) {
if (mode == 0) {
return HeatingCircuit::Mode::AUTO;
} else if (mode == 1) {
return HeatingCircuit::Mode::OFF;
}
} else if ((model == EMSdevice::EMS_DEVICE_FLAG_RC300) || (model == EMSdevice::EMS_DEVICE_FLAG_RC100)) {
if (mode == 0) {
return HeatingCircuit::Mode::MANUAL;
} else if (mode == 1) {
return HeatingCircuit::Mode::AUTO;
}
} else if (model == EMSdevice::EMS_DEVICE_FLAG_JUNKERS) {
if (mode == 1) {
return HeatingCircuit::Mode::MANUAL;
} else if (mode == 2) {
return HeatingCircuit::Mode::AUTO;
} else if (mode == 3) {
return HeatingCircuit::Mode::HOLIDAY;
}
} else { // default for all other thermostats
if (mode == 0) {
return HeatingCircuit::Mode::NIGHT;
} else if (mode == 1) {
return HeatingCircuit::Mode::DAY;
} else if (mode == 2) {
return HeatingCircuit::Mode::AUTO;
}
}
return HeatingCircuit::Mode::UNKNOWN;
}
// figures out the thermostat day/night mode depending on the thermostat type
// mode types are day, night, eco, comfort
uint8_t Thermostat::HeatingCircuit::get_mode_type() const {
uint8_t model = get_model();
if (model == EMS_DEVICE_FLAG_JUNKERS) {
if (modetype == 2) {
return HeatingCircuit::Mode::HEAT;
} else if (modetype == 1) {
return HeatingCircuit::Mode::ECO;
} else if (modetype == 0) {
return HeatingCircuit::Mode::NOFROST;
}
} else if ((model == EMS_DEVICE_FLAG_RC35) || (model == EMS_DEVICE_FLAG_RC30_N)) {
if (modetype == 0) {
return HeatingCircuit::Mode::NIGHT;
} else if (modetype == 1) {
return HeatingCircuit::Mode::DAY;
}
} else if (model == EMS_DEVICE_FLAG_CRF) {
if (modetype == 0) {
return HeatingCircuit::Mode::OFF;
} else if (modetype == 1) {
return HeatingCircuit::Mode::ON;
}
} else if (model == EMS_DEVICE_FLAG_RC300) {
if (modetype == 0) {
return HeatingCircuit::Mode::ECO;
} else if (modetype == 1) {
return HeatingCircuit::Mode::COMFORT;
}
} else if (model == EMS_DEVICE_FLAG_RC100) {
return HeatingCircuit::Mode::DAY; // no other modes on these devices
}
return HeatingCircuit::Mode::DAY;
}
// decodes the thermostat mode based on the thermostat type
// works with both modes and mode_types
std::string Thermostat::mode_tostring(uint8_t mode) {
switch (mode) {
case HeatingCircuit::Mode::OFF:
return read_flash_string(F_(off));
case HeatingCircuit::Mode::MANUAL:
return read_flash_string(F_(manual));
case HeatingCircuit::Mode::DAY:
return read_flash_string(F_(day));
case HeatingCircuit::Mode::NIGHT:
return read_flash_string(F_(night));
case HeatingCircuit::Mode::ECO:
return read_flash_string(F_(eco));
case HeatingCircuit::Mode::COMFORT:
return read_flash_string(F_(comfort));
case HeatingCircuit::Mode::HEAT:
return read_flash_string(F_(heat));
case HeatingCircuit::Mode::HOLIDAY:
return read_flash_string(F_(holiday));
case HeatingCircuit::Mode::NOFROST:
return read_flash_string(F_(nofrost));
case HeatingCircuit::Mode::AUTO:
return read_flash_string(F_(auto));
case HeatingCircuit::Mode::SUMMER:
return read_flash_string(F_(summer));
case HeatingCircuit::Mode::OFFSET:
return read_flash_string(F_(offset));
case HeatingCircuit::Mode::DESIGN:
return read_flash_string(F_(design));
case HeatingCircuit::Mode::MINFLOW:
return read_flash_string(F_(minflow));
case HeatingCircuit::Mode::MAXFLOW:
return read_flash_string(F_(maxflow));
case HeatingCircuit::Mode::ROOMINFLUENCE:
return read_flash_string(F_(roominfluence[0]));
case HeatingCircuit::Mode::FLOWOFFSET:
return read_flash_string(F_(flowtempoffset[0]));
case HeatingCircuit::Mode::TEMPAUTO:
return read_flash_string(F_(tempauto));
case HeatingCircuit::Mode::NOREDUCE:
return read_flash_string(F_(noreduce));
default:
return read_flash_string(F_(unknown));
}
}
// type 0xB1 - data from the RC10 thermostat (0x17)
// Data: 04 23 00 BA 00 00 00 BA
void Thermostat::process_RC10Monitor(std::shared_ptr<const Telegram> telegram) {
std::shared_ptr<Thermostat::HeatingCircuit> hc = heating_circuit(telegram);
if (hc == nullptr) {
return;
}
uint8_t mode = 1 << hc->mode;
telegram->read_value(mode, 0); // 1: nofrost, 2: night, 4: day
has_update(hc->mode, mode >> 1); // store as enum 0, 1, 2
has_update(telegram, hc->selTemp, 1, 1); // is * 2, force as single byte
has_update(telegram, hc->roomTemp, 2); // is * 10
has_update(telegram, hc->reduceminutes, 5);
add_ha_climate(hc);
}
// type 0xB0 - for reading the mode from the RC10 thermostat (0x17)
// Data: 00 FF 00 1C 20 08 01
void Thermostat::process_RC10Set(std::shared_ptr<const Telegram> telegram) {
std::shared_ptr<Thermostat::HeatingCircuit> hc = heating_circuit(telegram);
if (hc == nullptr) {
return;
}
has_update(telegram, ibaClockOffset_, 0);
has_update(telegram, backlight_, 1);
has_update(telegram, wwMode_, 2);
has_update(telegram, hc->nighttemp, 3);
has_update(telegram, hc->daytemp, 4);
has_update(telegram, hc->reducehours, 5);
has_update(telegram, heatingpid_, 6);
}
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wunused-parameter"
// type 0xB2, mode setting Data: 04 00
// not used, we read mode from monitor 0xB1
void Thermostat::process_RC10Set_2(std::shared_ptr<const Telegram> telegram) {
std::shared_ptr<Thermostat::HeatingCircuit> hc = heating_circuit(telegram);
if (hc == nullptr) {
return;
}
// uint8_t mode = 1 << hc->mode;
// telegram->read_value(mode, 0); // 1: nofrost, 2: night, 4: day
// has_update(hc->mode, mode >> 1); // store as enum 0, 1, 2
}
#pragma GCC diagnostic pop
// 0xA8 - for reading the mode from the RC20 thermostat (0x17)
// RC20Set(0xA8), data: 01 00 FF F6 01 06 00 01 0D 01 00 FF FF 01 02 02 02 00 00 05 1E 05 1E 02 1C 00 FF 00 00 26 02
void Thermostat::process_RC20Set(std::shared_ptr<const Telegram> telegram) {
std::shared_ptr<Thermostat::HeatingCircuit> hc = heating_circuit(telegram);
if (hc == nullptr) {
return;
}
has_update(telegram, hc->mode, 23); // 0:off, 1:manual, 2:auto
// has_update(telegram, hc->nofrosttemp, 24); // guess, not confirmed yet, maybe nighttemp?
// has_update(telegram, hc->tempautotemp, 28); // no need to read this
has_update(telegram, hc->manualtemp, 29);
}
// 0x90 - for reading curve temperature from the RC20 thermostat (0x17)
//
void Thermostat::process_RC20Temp(std::shared_ptr<const Telegram> telegram) {
std::shared_ptr<Thermostat::HeatingCircuit> hc = heating_circuit(telegram);
if (hc == nullptr) {
return;
}
has_update(telegram, hc->nighttemp, 3); // 0:off, 1:manual, 2:auto
has_update(telegram, hc->daylowtemp, 4);
has_update(telegram, hc->daymidtemp, 5);
has_update(telegram, hc->daytemp, 6);
}
// 0x8F - for reading timer from the RC20 thermostat (0x17)
// data: 04 5D 01 78 24 5D 21 6E 43 5D 41 78 64 5D 61 78 84 5D 81 78 E7 90 E7 90 E7 90 E7
// data: 90 E7 90 E7 90 E7 90 E7 90 E7 90 E7 90 E7 90 E7 90 E7 90 E7 90 E7 90 E7 90 E7 90 (offset 27)
// data: E7 90 E7 90 E7 90 E7 90 E7 90 E7 90 E7 90 E7 90 E7 90 E7 90 E7 90 E7 90 E7 90 E7 (offset 54)
// data: 90 E7 90 01 00 00 01 01 00 01 01 00 01 01 00 01 01 00 00 (offset 81)
void Thermostat::process_RC20Timer(std::shared_ptr<const Telegram> telegram) {
std::shared_ptr<Thermostat::HeatingCircuit> hc = heating_circuit(telegram);
if (hc == nullptr) {
return;
}
if ((telegram->message_length == 2 && telegram->offset < 83 && !(telegram->offset & 1))
|| (!telegram->offset && telegram->message_length > 1 && !strlen(hc->switchtime1))) {
char data[sizeof(hc->switchtime1)];
uint8_t no = telegram->offset / 2;
uint8_t day = telegram->message_data[0] >> 5;
uint8_t temp = telegram->message_data[0] & 7;
uint8_t time = telegram->message_data[1];
std::string sday = read_flash_string(FL_(enum_dayOfWeek)[day]);
if (day == 7) {
snprintf(data, sizeof(data), "%02d not_set", no);
} else {
snprintf(data, sizeof(data), "%02d %s %02d:%02d T%d", no, sday.c_str(), time / 6, 10 * (time % 6), temp);
}
strlcpy(hc->switchtime1, data, sizeof(hc->switchtime1));
has_update(hc->switchtime1); // always publish
}
}
// type 0xAE - data from the RC20 thermostat (0x17) - not for RC20's
// 17 00 AE 00 80 12 2E 00 D0 00 00 64 (#data=8)
// https://github.com/emsesp/EMS-ESP/issues/361
void Thermostat::process_RC20Monitor_2(std::shared_ptr<const Telegram> telegram) {
std::shared_ptr<Thermostat::HeatingCircuit> hc = heating_circuit(telegram);
if (hc == nullptr) {
return;
}
// modes byte 0,1: day: 8002, night: 0000, auto-day:0402, auto-night:0400
has_bitupdate(telegram, hc->modetype, 1, 1); // day/night
has_update(telegram, hc->selTemp, 2, 1); // is * 2, force as single byte
has_update(telegram, hc->roomTemp, 3); // is * 10
has_bitupdate(telegram, hc->summermode, 1, 0);
add_ha_climate(hc);
}
// 0xAD - for reading the mode from the RC20/ES72 thermostat (0x17)
// see https://github.com/emsesp/EMS-ESP/issues/334#issuecomment-611698259
// offset: 01-nighttemp, 02-daytemp, 03-mode, 0B-program(1-9), 0D-setpoint_roomtemp(temporary)
// 17 00 AD 00 01 27 29 01 4B 05 01 FF 28 19 0A 02 00 00
// RC25(0x17) -> All(0x00), ?(0xAD), data: 01 27 2D 00 44 05 01 FF 28 19 0A 07 00 00 F6 12 5A 11 00 28 05 05 00
void Thermostat::process_RC20Set_2(std::shared_ptr<const Telegram> telegram) {
std::shared_ptr<Thermostat::HeatingCircuit> hc = heating_circuit(telegram);
if (hc == nullptr) {
return;
}
has_update(telegram, hc->heatingtype, 0);
has_update(telegram, hc->nighttemp, 1); // is * 2,
has_update(telegram, hc->daytemp, 2); // is * 2,
has_update(telegram, hc->mode, 3);
has_enumupdate(telegram, hc->program, 11, 1); // 1 .. 9 predefined programs
has_update(telegram, hc->tempautotemp, 13);
// RC25 extension:
has_update(telegram, ibaMinExtTemperature_, 14);
has_update(telegram, hc->minflowtemp, 15);
has_update(telegram, hc->maxflowtemp, 16);
has_update(telegram, hc->summertemp, 17);
}
// 0xAF - for reading the roomtemperature from the RC20/ES72 thermostat (0x18, 0x19, ..)
void Thermostat::process_RC20Remote(std::shared_ptr<const Telegram> telegram) {
std::shared_ptr<Thermostat::HeatingCircuit> hc = heating_circuit(telegram);
if (hc == nullptr) {
return;
}
has_update(telegram, hc->remotetemp, 0);
}
// type 0x0165, ff
void Thermostat::process_JunkersSet(std::shared_ptr<const Telegram> telegram) {
std::shared_ptr<Thermostat::HeatingCircuit> hc = heating_circuit(telegram);
if (hc == nullptr) {
return;
}
has_update(telegram, hc->daytemp, 17); // is * 2
has_update(telegram, hc->nighttemp, 16); // is * 2
has_update(telegram, hc->nofrosttemp, 15); // is * 2
has_update(telegram, hc->control, 1); // remote: 0-off, 1-FB10, 2-FB100
has_enumupdate(telegram, hc->program, 13, 1); // 1-6: 1 = A, 2 = B,...
has_enumupdate(telegram, hc->mode, 14, 1); // 0 = nofrost, 1 = eco, 2 = heat, 3 = auto
}
// type 0x0179, ff
void Thermostat::process_JunkersSet2(std::shared_ptr<const Telegram> telegram) {
std::shared_ptr<Thermostat::HeatingCircuit> hc = heating_circuit(telegram);
if (hc == nullptr) {
return;
}
has_update(telegram, hc->daytemp, 7); // is * 2
has_update(telegram, hc->nighttemp, 6); // is * 2
has_update(telegram, hc->nofrosttemp, 5); // is * 2
has_enumupdate(telegram, hc->program, 10, 1); // 1-6: 1 = A, 2 = B,...
has_enumupdate(telegram, hc->mode, 4, 1); // 0 = nofrost, 1 = eco, 2 = heat, 3 = auto
}
// type 0x123 - FR10/FR110 Junkers as remote
void Thermostat::process_JunkersRemoteMonitor(std::shared_ptr<const Telegram> telegram) {
std::shared_ptr<Thermostat::HeatingCircuit> hc = heating_circuit(telegram);
if (hc == nullptr) {
return;
}
has_update(telegram, hc->remotetemp, 0); // roomTemp from remote
}
// type 0xA3 - for external temp settings from the the RC* thermostats (e.g. RC35)
void Thermostat::process_RCOutdoorTemp(std::shared_ptr<const Telegram> telegram) {
has_update(telegram, dampedoutdoortemp_, 0);
has_update(telegram, tempsensor1_, 3); // sensor 1 - is * 10
has_update(telegram, tempsensor2_, 5); // sensor 2 - is * 10
}
// 0x91 - data from the RC20 thermostat (0x17) - 15 bytes long
// RC20Monitor(0x91), data: 90 2A 00 D5 1A 00 00 05 00 5A 04 00 D6 00
// offset 8: setburnpower to boiler, offset 9: setflowtemp to boiler (thermostat: targetflowtemp) send via 0x1A
void Thermostat::process_RC20Monitor(std::shared_ptr<const Telegram> telegram) {
std::shared_ptr<Thermostat::HeatingCircuit> hc = heating_circuit(telegram);
if (hc == nullptr) {
return;
}
has_update(telegram, hc->selTemp, 1, 1); // is * 2, force as single byte
has_update(telegram, hc->roomTemp, 2); // is * 10
add_ha_climate(hc);
}
// type 0x0A - data from the Nefit Easy/TC100 thermostat (0x18) - 31 bytes long
void Thermostat::process_EasyMonitor(std::shared_ptr<const Telegram> telegram) {
std::shared_ptr<Thermostat::HeatingCircuit> hc = heating_circuit(telegram);
if (hc == nullptr) {
return;
}
has_update(telegram, hc->roomTemp, 8); // is * 100
has_update(telegram, hc->selTemp, 10); // is * 100
add_ha_climate(hc);
}
// Settings Parameters - 0xA5 - RC30_1
void Thermostat::process_IBASettings(std::shared_ptr<const Telegram> telegram) {
// 22 - display line on RC35
// display on Thermostat: 0 int. temp, 1 int. setpoint, 2 ext. temp., 3 burner temp., 4 ww temp, 5 functioning mode, 6 time, 7 data, 8 smoke temp
has_update(telegram, ibaMainDisplay_, 0);
has_update(telegram, ibaLanguage_, 1); // language on Thermostat: 0 german, 1 dutch, 2 french, 3 italian
has_update(telegram, ibaCalIntTemperature_, 2); // offset int. temperature sensor, by * 0.1 Kelvin
has_update(telegram, ibaBuildingType_, 6); // building type: 0 = light, 1 = medium, 2 = heavy
has_update(telegram, ibaMinExtTemperature_, 5); // min ext temp for heating curve, in deg., 0xF6=-10, 0x0 = 0, 0xFF=-1
has_update(telegram, ibaClockOffset_, 12); // offset (in sec) to clock, 0xff = -1 s, 0x02 = 2 s
has_update(telegram, ibaDamping_, 21); // damping 0-off, 0xff-on
}
// Settings WW 0x37 - RC35
void Thermostat::process_RC35wwSettings(std::shared_ptr<const Telegram> telegram) {
has_update(telegram, wwProgMode_, 0); // 0-like hc, 0xFF own prog
has_update(telegram, wwCircProg_, 1); // 0-like hc, 0xFF own prog
has_update(telegram, wwMode_, 2); // 0-off, 1-on, 2-auto
has_update(telegram, wwCircMode_, 3); // 0-off, 1-on, 2-auto
has_update(telegram, wwDisinfecting_, 4); // 0-off, 0xFF on
has_update(telegram, wwDisinfectDay_, 5); // 0-6 Day of week, 7 every day
has_update(telegram, wwDisinfectHour_, 6);
has_update(telegram, wwMaxTemp_, 8); // Limiter 60 degrees
has_update(telegram, wwOneTimeKey_, 9); // 0-off, 0xFF on
}
// Settings WW 0x3A - RC30
void Thermostat::process_RC30wwSettings(std::shared_ptr<const Telegram> telegram) {
has_update(telegram, wwMode_, 0); // 0-on, 1-off, 2-auto
has_update(telegram, wwWhenModeOff_, 1); // 0-off, 0xFF on
has_update(telegram, wwDisinfecting_, 2); // 0-off, 0xFF on
has_update(telegram, wwDisinfectDay_, 3); // 0-6 Day of week, 7 every day
has_update(telegram, wwDisinfectHour_, 4);
}
// type 0x38 (ww) and 0x39 (circ)
void Thermostat::process_RC35wwTimer(std::shared_ptr<const Telegram> telegram) {
if ((telegram->message_length == 2 && telegram->offset < 83 && !(telegram->offset & 1))
|| (!telegram->offset && telegram->type_id == 0x38 && !strlen(wwSwitchTime_) && telegram->message_length > 1)
|| (!telegram->offset && telegram->type_id == 0x39 && !strlen(wwCircSwitchTime_) && telegram->message_length > 1)) {
uint8_t no = telegram->offset / 2;
uint8_t day = telegram->message_data[0] >> 5;
uint8_t on = telegram->message_data[0] & 1;
uint8_t time = telegram->message_data[1];
std::string sday = read_flash_string(FL_(enum_dayOfWeek)[day]);
char data[sizeof(wwSwitchTime_)];
if (day == 7) {
snprintf(data, sizeof(data), "%02d not_set", no);
} else {
snprintf(data, sizeof(data), "%02d %s %02d:%02d %s", no, sday.c_str(), time / 6, 10 * (time % 6), on ? "on" : "off");
}
if (telegram->type_id == 0x38) {
strlcpy(wwSwitchTime_, data, sizeof(wwSwitchTime_));
has_update(wwSwitchTime_);
} else {
strlcpy(wwCircSwitchTime_, data, sizeof(wwCircSwitchTime_));
has_update(wwCircSwitchTime_);
}
if (is_fetch(telegram->type_id)) {
toggle_fetch(telegram->type_id, false); // dont fetch again
}
}
}
// type 0x6F - FR10/FR50/FR100/FR110/FR120 Junkers
void Thermostat::process_JunkersMonitor(std::shared_ptr<const Telegram> telegram) {
// ignore single byte telegram messages
if (telegram->message_length <= 1) {
return;
}
std::shared_ptr<Thermostat::HeatingCircuit> hc = heating_circuit(telegram);
if (hc == nullptr) {
return;
}
has_enumupdate(telegram, hc->modetype, 0, 1); // 1 = nofrost, 2 = eco, 3 = heat
has_update(telegram, hc->selTemp, 2); // value is * 10
if ((hc->control == 1) || (hc->control == 2)) {
has_update(telegram, hc->roomTemp, 6); // roomTemp from remote
} else {
has_update(telegram, hc->roomTemp, 4); // value is * 10
}
add_ha_climate(hc);
}
// 0xBB Heatpump optimization
// ?(0xBB), data: 00 00 00 00 00 00 00 00 00 00 00 FF 02 0F 1E 0B 1A 00 14 03
void Thermostat::process_JunkersHybridSettings(std::shared_ptr<const Telegram> telegram) {
has_enumupdate(telegram, hybridStrategy_, 12, 1); // cost = 2, temperature = 3, mix = 4
has_update(telegram, switchOverTemp_, 13); // full degrees
has_update(telegram, energyCostRatio_, 14); // is *10
has_update(telegram, fossileFactor_, 15); // is * 10
has_update(telegram, electricFactor_, 16); // is * 10
has_update(telegram, delayBoiler_, 18); // minutes
has_update(telegram, tempDiffBoiler_, 19); // relative degrees
}
void Thermostat::process_JunkersSetMixer(std::shared_ptr<const Telegram> telegram) {
std::shared_ptr<Thermostat::HeatingCircuit> hc = heating_circuit(telegram);
if (hc == nullptr) {
return;
}
has_update(telegram, hc->targetflowtemp, 0);
}
// type 0x02A5 - data from Worchester CRF200
void Thermostat::process_CRFMonitor(std::shared_ptr<const Telegram> telegram) {
std::shared_ptr<Thermostat::HeatingCircuit> hc = heating_circuit(telegram);
if (hc == nullptr) {
return;
}
has_update(telegram, hc->roomTemp, 0); // is * 10
has_bitupdate(telegram, hc->modetype, 2, 0); // bit 0, modetype (off=0 , on=1)
has_bitupdate(telegram, hc->mode, 2, 4); // bit 4, mode (auto=0, off=1)
has_update(telegram, hc->selTemp, 6, 1); // is * 2, force as single byte
has_update(telegram, hc->targetflowtemp, 4);
add_ha_climate(hc);
}
// type 0x02A5 - data from the Nefit RC1010/3000 thermostat (0x18) and RC300/310s on 0x10
void Thermostat::process_RC300Monitor(std::shared_ptr<const Telegram> telegram) {
std::shared_ptr<Thermostat::HeatingCircuit> hc = heating_circuit(telegram);
if (hc == nullptr) {
return;
}
has_update(telegram, hc->roomTemp, 0); // is * 10
has_bitupdate(telegram, hc->modetype, 10, 1);
has_bitupdate(telegram, hc->mode, 10, 0); // bit 1, mode (auto=1 or manual=0)
// if manual, take the current setpoint temp at pos 6
// if auto, take the next setpoint temp at pos 7
// pos 3 is the current target temp and sometimes can be 0
// see https://github.com/emsesp/EMS-ESP/issues/256#issuecomment-585171426
// pos 3 actual setpoint (optimized), i.e. changes with temporary change, summer/holiday-modes
// pos 6 actual setpoint according to programmed changes eco/comfort
// pos 7 next setpoint in the future, time to next setpoint in pos 8/9
has_update(telegram, hc->selTemp, 3, 1); // is * 2, force as single byte
has_bitupdate(telegram, hc->summermode, 2, 4);
has_update(telegram, hc->targetflowtemp, 4);
has_update(telegram, hc->curroominfl, 27);
add_ha_climate(hc);
}
// type 0x02B9 EMS+ for reading from RC300/RC310 thermostat
void Thermostat::process_RC300Set(std::shared_ptr<const Telegram> telegram) {
std::shared_ptr<Thermostat::HeatingCircuit> hc = heating_circuit(telegram);
if (hc == nullptr) {
return;
}
// NOTE when setting the room temp we pick from two values, hopefully one is correct!
// manual is position 10
// comfort is position 2, there are 3 levels in pos 3, 2, 1
// eco is position 4
// auto is position 8, temporary until next switch
// actual setpoint taken from RC300Monitor (MichaelDvP 12.06.2020)
// has_update(telegram, hc->selTemp, 8, 1); // single byte conversion, value is * 2 - auto?
// has_update(telegram, hc->selTemp, 10, 1); // single byte conversion, value is * 2 - manual
// check why mode is both in the Monitor and Set for the RC300. It'll be read twice!
// has_update(telegram, hc->mode, 0); // Auto = xFF, Manual = x00 eg. 10 00 FF 08 01 B9 FF
has_update(telegram, hc->daytemp, 2); // is * 2
has_update(telegram, hc->nighttemp, 4); // is * 2
// has_update(telegram, hc->tempautotemp, 8); // is * 2
// manipulate tempautotemp to show -1°C (with scale 0.5°C) if value is 0xFF
// see https://github.com/emsesp/EMS-ESP32/issues/321
int8_t tat = hc->tempautotemp;
telegram->read_value(tat, 8);
if ((uint8_t)tat == 0xFF) {
tat = -2;
}
has_update(hc->tempautotemp, tat);
has_update(telegram, hc->manualtemp, 10); // is * 2
has_enumupdate(telegram, hc->program, 11, 1); // timer program 1 or 2
has_enumupdate(telegram, hc->reducemode1, 5, 1); // 1-outdoor temp threshold, 2-room temp threshold, 3-reduced mode
has_update(telegram, hc->reducetemp, 9);
has_update(telegram, hc->noreducetemp, 12);
}
// types 0x2AF ff
void Thermostat::process_RC300Summer(std::shared_ptr<const Telegram> telegram) {
std::shared_ptr<Thermostat::HeatingCircuit> hc = heating_circuit(telegram);
if (hc == nullptr) {
return;
}
has_update(telegram, hc->roominfluence, 0);
has_update(telegram, hc->roominfl_factor, 1); // is * 10
has_update(telegram, hc->offsettemp, 2);
if (!is_fetch(summer2_typeids[hc->hc()])) {
has_update(telegram, hc->summertemp, 6);
has_update(telegram, hc->summersetmode, 7);
}
if (hc->heatingtype < 3) {
has_update(telegram, hc->designtemp, 4);
} else {
has_update(telegram, hc->designtemp, 5);
}
has_update(telegram, hc->minflowtemp, 8);
has_update(telegram, hc->fastHeatup, 10);
}
// types 0x471 ff
// (0x473), data: 00 11 04 01 01 1C 08 04
void Thermostat::process_RC300Summer2(std::shared_ptr<const Telegram> telegram) {
std::shared_ptr<Thermostat::HeatingCircuit> hc = heating_circuit(telegram);
if (hc == nullptr) {
return;
}
has_update(telegram, hc->hpoperatingmode, 0);
has_update(telegram, hc->summertemp, 1);
}
// types 0x29B ff
void Thermostat::process_RC300Curve(std::shared_ptr<const Telegram> telegram) {
std::shared_ptr<Thermostat::HeatingCircuit> hc = heating_circuit(telegram);
if (hc == nullptr) {
return;
}
has_update(telegram, hc->controlmode, 0); // 1-outdoor, 2-simple, 3-MPC, 4-room, 5-power, 6-const
has_update(telegram, hc->heatingtype, 1); // 1=radiator, 2=convector, 3=floor
has_update(telegram, hc->nofrosttemp, 6);
if (hc->heatingtype < 3) {
has_update(telegram, hc->maxflowtemp, 8);
} else {
has_update(telegram, hc->maxflowtemp, 7);
}
}
// types 0x31B (and 0x31C?)
void Thermostat::process_RC300WWtemp(std::shared_ptr<const Telegram> telegram) {
has_update(telegram, wwSetTemp_, 0);
has_update(telegram, wwSetTempLow_, 1);
}
// type 02F5
// RC300WWmode(0x2F5), data: 01 FF 04 00 00 00 08 05 00 08 04 00 00 00 00 00 00 00 00 00 01
void Thermostat::process_RC300WWmode(std::shared_ptr<const Telegram> telegram) {
// circulation pump see: https://github.com/Th3M3/buderus_ems-wiki/blob/master/Einstellungen%20der%20Bedieneinheit%20RC310.md
has_update(telegram, wwCircPump_, 1); // FF=off, 0=on ?
has_update(telegram, wwMode_, 2); // 0=off, 1=low, 2=high, 3=auto, 4=own prog
has_update(telegram, wwCircMode_, 3); // 0=off, 1=on, 2=auto, 4=own?
has_update(telegram, wwChargeDuration_, 10); // value in steps of 15 min
has_update(telegram, wwCharge_, 11); // boolv0xFF on
has_update(telegram, wwDisinfecting_, 5); // 0-off, 0xFF on
has_update(telegram, wwDisinfectHour_, 6); // value in steps of 15 min
has_update(telegram, wwDisinfectDay_, 7); // 0-6 Day of week, 7 every day
has_update(telegram, wwDailyHeating_, 8); // 0-off, 0xFF on
has_update(telegram, wwDailyHeatTime_, 9); // value in steps of 15 min
}
// types 0x31D and 0x31E
// RC300WWmode2(0x31D), data: 00 00 09 07
void Thermostat::process_RC300WWmode2(std::shared_ptr<const Telegram> telegram) {
// 0x31D for WW system 1, 0x31E for WW system 2
// pos 1 = holiday mode
// pos 2 = current status of DHW setpoint
// pos 3 = current status of DHW circulation pump
if (telegram->type_id == 0x031D) {
has_update(telegram, wwExtra1_, 0); // 0=no, 1=yes
} else {
has_update(telegram, wwExtra2_, 0); // 0=no, 1=yes
}
}
// 0x23A damped outdoor temp
void Thermostat::process_RC300OutdoorTemp(std::shared_ptr<const Telegram> telegram) {
has_update(telegram, dampedoutdoortemp2_, 0); // is *10
}
// 0x240 RC300 parameter
void Thermostat::process_RC300Settings(std::shared_ptr<const Telegram> telegram) {
has_enumupdate(telegram, ibaBuildingType_, 9, 1); // 1=light, 2=medium, 3=heavy
has_update(telegram, ibaMinExtTemperature_, 10);
}
// 0x267 RC300 floordrying
void Thermostat::process_RC300Floordry(std::shared_ptr<const Telegram> telegram) {
has_update(telegram, floordrystatus_, 0);
has_update(telegram, floordrytemp_, 1);
}
// type 0x41 - data from the RC30 thermostat(0x10) - 14 bytes long
void Thermostat::process_RC30Monitor(std::shared_ptr<const Telegram> telegram) {
std::shared_ptr<Thermostat::HeatingCircuit> hc = heating_circuit(telegram);
if (hc == nullptr) {
return;
}
has_update(telegram, hc->selTemp, 1, 1); // is * 2, force as single byte
has_update(telegram, hc->roomTemp, 2);
add_ha_climate(hc);
}
// type 0xA7 - for reading the mode from the RC30 thermostat (0x10) and all the installation settings
void Thermostat::process_RC30Set(std::shared_ptr<const Telegram> telegram) {
std::shared_ptr<Thermostat::HeatingCircuit> hc = heating_circuit(telegram);
if (hc == nullptr) {
return;
}
has_update(telegram, ibaLanguage_, 0); // language on Thermostat: 0 german, 1 dutch, 2 french, 3 italian
has_update(telegram, ibaCalIntTemperature_, 1); // offset int. temperature sensor, by * 0.1 Kelvin
has_update(telegram, autodst_, 2); // Automatic change Daylight Saving time: (0x00 = off, 0xFF = on)
has_update(telegram, ibaBuildingType_, 4); // building type: 0 = light, 1 = medium, 2 = heavy
has_update(telegram, ibaClockOffset_, 10); // offset (in sec) to clock, 0xff = -1 s, 0x02 = 2 s
has_update(telegram, backlight_, 12); // Keyboard lighting: (0x00 = off, 0xFF = on)
has_update(telegram, mixingvalves_, 17); // Number of Mixing Valves: (0x00=0, 0x01=1, 0x02=2)
has_update(telegram, brightness_, 18); // Screen brightness 0F=dark F1=light
has_update(telegram, hc->mode, 23);
has_update(telegram, offtemp_, 24); // Set Temperature when mode is Off / 10 (e.g.: 0x0F = 7.5 degrees Celsius)
has_update(telegram, heatingpid_, 25); // PID setting 00=1 01=2 02=3
has_update(telegram, preheating_, 26); // Preheating in the clock program: (0x00 = off, 0xFF = on)
}
// type 0x40 (HC1) - for reading the operating mode from the RC30 thermostat (0x10)
void Thermostat::process_RC30Temp(std::shared_ptr<const Telegram> telegram) {
// check to see we have a valid type. heating: 1 radiator, 2 convectors, 3 floors
if (telegram->offset == 0 && telegram->message_data[0] == 0x00) {
return;
}
std::shared_ptr<Thermostat::HeatingCircuit> hc = heating_circuit(telegram);
if (hc == nullptr) {
return;
}
has_update(telegram, hc->heatingtype, 0); // 0- off, 1-radiator, 2-convector, 3-floor
has_update(telegram, hc->controlmode, 1); // 0-outdoortemp, 1-roomtemp
has_update(telegram, hc->nighttemp, 3); // is * 2 (T1)
has_update(telegram, hc->daylowtemp, 4); // is * 2 (T2)
has_update(telegram, hc->daymidtemp, 5); // is * 2 (T3)
has_update(telegram, hc->daytemp, 6); // is * 2 (T4)
has_update(telegram, hc->holidaytemp, 7); // is * 2
}
// type 0x3F (HC1) - timer setting for RC30
void Thermostat::process_RC30Timer(std::shared_ptr<const Telegram> telegram) {
std::shared_ptr<Thermostat::HeatingCircuit> hc = heating_circuit(telegram);
if (hc == nullptr) {
return;
}
if ((telegram->message_length == 2 && telegram->offset < 83 && !(telegram->offset & 1))
|| (!telegram->offset && telegram->message_length > 1 && !strlen(hc->switchtime1))) {
char data[sizeof(hc->switchtime1)];
uint8_t no = telegram->offset / 2;
uint8_t day = telegram->message_data[0] >> 5;
uint8_t temp = telegram->message_data[0] & 7;
uint8_t time = telegram->message_data[1];
std::string sday = read_flash_string(FL_(enum_dayOfWeek)[day]);
if (day == 7) {
snprintf(data, sizeof(data), "%02d not_set", no);
} else {
snprintf(data, sizeof(data), "%02d %s %02d:%02d T%d", no, sday.c_str(), time / 6, 10 * (time % 6), temp);
}
strlcpy(hc->switchtime1, data, sizeof(hc->switchtime1));
has_update(hc->switchtime1); // always publish
}
has_update(telegram, hc->program, 84); // 0 .. 10, 0-userprogram 1, 10-userprogram 2
has_update(telegram, hc->pause, 85); // time in hours
has_update(telegram, hc->party, 86); // time in hours
if (telegram->message_length + telegram->offset >= 92 && telegram->offset <= 87) {
char data[sizeof(hc->vacation)];
snprintf(data,
sizeof(data),
"%02d.%02d.%04d-%02d.%02d.%04d",
telegram->message_data[87 - telegram->offset],
telegram->message_data[88 - telegram->offset],
telegram->message_data[89 - telegram->offset] + 2000,
telegram->message_data[90 - telegram->offset],
telegram->message_data[91 - telegram->offset],
telegram->message_data[92 - telegram->offset] + 2000);
has_update(hc->vacation, data, sizeof(hc->vacation));
}
if (telegram->message_length + telegram->offset >= 98 && telegram->offset <= 93) {
char data[sizeof(hc->holiday)];
snprintf(data,
sizeof(data),
"%02d.%02d.%04d-%02d.%02d.%04d",
telegram->message_data[93 - telegram->offset],
telegram->message_data[94 - telegram->offset],
telegram->message_data[95 - telegram->offset] + 2000,
telegram->message_data[96 - telegram->offset],
telegram->message_data[97 - telegram->offset],
telegram->message_data[98 - telegram->offset] + 2000);
has_update(hc->holiday, data, sizeof(hc->holiday));
}
}
// type 0x3E (HC1), 0x48 (HC2), 0x52 (HC3), 0x5C (HC4) - data from the RC35 thermostat (0x10) - 16 bytes
void Thermostat::process_RC35Monitor(std::shared_ptr<const Telegram> telegram) {
// exit if the 15th byte (second from last) is 0x00, which I think is calculated flow setpoint temperature
// with weather controlled RC35s this value is >=5, otherwise can be zero and our setpoint temps will be incorrect
// see https://github.com/emsesp/EMS-ESP/issues/373#issuecomment-627907301
if (telegram->offset > 0 || telegram->message_length < 15) {
return;
}
if (telegram->message_data[14] == 0x00) {
return;
}
std::shared_ptr<Thermostat::HeatingCircuit> hc = heating_circuit(telegram);
if (hc == nullptr) {
return;
}
has_update(telegram, hc->selTemp, 2, 1); // is * 2, force to single byte, is 0 in summermode
has_update(telegram, hc->roomTemp, 3); // is * 10 - or 0x7D00 if thermostat is mounted on boiler
has_bitupdate(telegram, hc->modetype, 1, 1);
has_bitupdate(telegram, hc->summermode, 1, 0);
has_bitupdate(telegram, hc->holidaymode, 0, 5);
has_update(telegram, hc->targetflowtemp, 14);
add_ha_climate(hc);
}
// type 0x3D (HC1), 0x47 (HC2), 0x51 (HC3), 0x5B (HC4) - Working Mode Heating - for reading the mode from the RC35 thermostat (0x10)
void Thermostat::process_RC35Set(std::shared_ptr<const Telegram> telegram) {
// check to see we have a valid type. heating: 1 radiator, 2 convectors, 3 floors, 4 room supply
if (telegram->offset == 0 && telegram->message_data[0] == 0x00) {
return;
}
std::shared_ptr<Thermostat::HeatingCircuit> hc = heating_circuit(telegram);
if (hc == nullptr) {
return;
}
has_update(telegram, hc->heatingtype, 0); // 0- off, 1-radiator, 2-convector, 3-floor
has_update(telegram, hc->nighttemp, 1); // is * 2
has_update(telegram, hc->daytemp, 2); // is * 2
has_update(telegram, hc->holidaytemp, 3); // is * 2
has_update(telegram, hc->roominfluence, 4); // is * 1
has_update(telegram, hc->offsettemp, 6); // is * 2
has_update(telegram, hc->mode, 7); // night, day, auto
has_update(telegram, hc->wwprio, 21); // 0xFF for on
has_update(telegram, hc->summertemp, 22); // is * 1
has_update(telegram, hc->nofrosttemp, 23); // is * 1
has_update(telegram, hc->nofrostmode, 28); // 0-off, 1-outdoor, 2-roomtemp 5°C
has_update(telegram, hc->flowtempoffset, 24); // is * 1, only in mixed circuits
has_update(telegram, hc->reducemode, 25); // 0-nofrost, 1-reduce, 2-roomhold, 3-outdoorhold
has_update(telegram, hc->control, 26); // 0-off, 1-RC20 (remote), 2-RC35
has_update(telegram, hc->controlmode, 33); // 0-outdoortemp, 1-roomtemp
has_update(telegram, hc->tempautotemp, 37);
has_update(telegram, hc->noreducetemp, 38); // outdoor temperature for no reduce
has_update(telegram, hc->reducetemp, 39); // temperature for off/reduce
has_update(telegram, hc->vacreducetemp, 40); // temperature for off/reduce in vacations
has_update(telegram, hc->vacreducemode, 41); // vacations reduce mode
has_update(telegram, hc->minflowtemp, 16);
// RC35 stores values for floorheating in different position
if (hc->heatingtype == 3 && model() == EMS_DEVICE_FLAG_RC35) {
has_update(telegram, hc->designtemp, 36); // is * 1
has_update(telegram, hc->maxflowtemp, 35); // is * 1
} else { // radiator/convector
has_update(telegram, hc->designtemp, 17); // is * 1
has_update(telegram, hc->maxflowtemp, 15); // is * 1
}
}
// type 0x3F (HC1), 0x49 (HC2), 0x53 (HC3), 0x5D (HC4) - timer setting
void Thermostat::process_RC35Timer(std::shared_ptr<const Telegram> telegram) {
std::shared_ptr<Thermostat::HeatingCircuit> hc = heating_circuit(telegram);
if (hc == nullptr) {
return;
}
uint8_t prog = telegram->type_id == timer_typeids[hc->hc()] ? 0 : 1;
if ((telegram->message_length == 2 && telegram->offset < 83 && !(telegram->offset & 1))
|| (!telegram->offset && telegram->message_length > 1 && !prog && !strlen(hc->switchtime1))
|| (!telegram->offset && telegram->message_length > 1 && prog && !strlen(hc->switchtime2))) {
char data[sizeof(hc->switchtime1)];
uint8_t no = telegram->offset / 2;
uint8_t day = telegram->message_data[0] >> 5;
uint8_t on = telegram->message_data[0] & 1;
uint8_t time = telegram->message_data[1];
std::string sday = read_flash_string(FL_(enum_dayOfWeek)[day]);
if (day == 7) {
snprintf(data, sizeof(data), "%02d not_set", no);
} else {
snprintf(data, sizeof(data), "%02d %s %02d:%02d %s", no, sday.c_str(), time / 6, 10 * (time % 6), on ? "on" : "off");
}
if (!prog) {
strlcpy(hc->switchtime1, data, sizeof(hc->switchtime1));
has_update(hc->switchtime1); // always publish
} else {
strlcpy(hc->switchtime2, data, sizeof(hc->switchtime2));
has_update(hc->switchtime2);
if (is_fetch(telegram->type_id)) {
toggle_fetch(telegram->type_id, false);
}
}
}
has_update(telegram, hc->program, 84); // 0 .. 10, 0-userprogram 1, 10-userprogram 2
has_update(telegram, hc->pause, 85); // time in hours
has_update(telegram, hc->party, 86); // time in hours
if (telegram->message_length + telegram->offset >= 92 && telegram->offset <= 87) {
char data[sizeof(hc->vacation)];
snprintf(data,
sizeof(data),
"%02d.%02d.%04d-%02d.%02d.%04d",
telegram->message_data[87 - telegram->offset],
telegram->message_data[88 - telegram->offset],
telegram->message_data[89 - telegram->offset] + 2000,
telegram->message_data[90 - telegram->offset],
telegram->message_data[91 - telegram->offset],
telegram->message_data[92 - telegram->offset] + 2000);
has_update(hc->vacation, data, sizeof(hc->vacation));
}
if (telegram->message_length + telegram->offset >= 98 && telegram->offset <= 93) {
char data[sizeof(hc->holiday)];
snprintf(data,
sizeof(data),
"%02d.%02d.%04d-%02d.%02d.%04d",
telegram->message_data[93 - telegram->offset],
telegram->message_data[94 - telegram->offset],
telegram->message_data[95 - telegram->offset] + 2000,
telegram->message_data[96 - telegram->offset],
telegram->message_data[97 - telegram->offset],
telegram->message_data[98 - telegram->offset] + 2000);
has_update(hc->holiday, data, sizeof(hc->holiday));
}
}
// process_RCTime - type 0x06 - date and time from a thermostat - 14 bytes long
void Thermostat::process_RCTime(std::shared_ptr<const Telegram> telegram) {
if (telegram->offset > 0 || telegram->message_length < 5) {
return;
}
if (flags() == EMS_DEVICE_FLAG_EASY) {
return; // not supported
}
if (telegram->message_length < 7) {
return;
}
if ((telegram->message_data[7] & 0x0C) && has_command(&dateTime_)) { // date and time not valid
set_datetime("ntp", -1); // set from NTP
return;
}
// check clock
time_t now = time(nullptr);
tm * tm_ = localtime(&now);
bool tset_ = tm_->tm_year > 110; // year 2010 and up, time is valid
tm_->tm_year = (telegram->message_data[0] & 0x7F) + 100; // IVT
tm_->tm_mon = telegram->message_data[1] - 1;
tm_->tm_mday = telegram->message_data[3];
tm_->tm_hour = telegram->message_data[2];
tm_->tm_min = telegram->message_data[4];
tm_->tm_sec = telegram->message_data[5];
tm_->tm_isdst = telegram->message_data[7] & 0x01;
// render date to DD.MM.YYYY HH:MM and publish
char newdatetime[sizeof(dateTime_)];
strftime(newdatetime, sizeof(dateTime_), "%d.%m.%G %H:%M", tm_);
has_update(dateTime_, newdatetime, sizeof(dateTime_));
bool ivtclock = (telegram->message_data[0] & 0x80) == 0x80; // dont sync ivt-clock, #439
time_t ttime = mktime(tm_); // thermostat time
// correct thermostat clock if we have valid ntp time, and could write the command
if (!ivtclock && tset_ && EMSESP::system_.ntp_connected() && !EMSESP::system_.readonly_mode() && has_command(&dateTime_)) {
double difference = difftime(now, ttime);
if (difference > 15 || difference < -15) {
set_datetime("ntp", -1); // set from NTP
LOG_INFO(F("thermostat time correction from ntp"));
}
}
#ifndef EMSESP_STANDALONE
if (!tset_ && tm_->tm_year > 110) { // emsesp clock not set, but thermostat clock
if (ivtclock) {
tm_->tm_isdst = -1; // determine dst
ttime = mktime(tm_); // thermostat time
}
struct timeval newnow = {.tv_sec = ttime};
settimeofday(&newnow, nullptr);
LOG_INFO(F("ems-esp time set from thermostat"));
}
#endif
}
// process_RCError - type 0xA2 - error message - 14 bytes long
// 10 00 A2 00 41 32 32 03 30 00 02 00 00 00 00 00 00 02 CRC
// A 2 2 816
void Thermostat::process_RCError(std::shared_ptr<const Telegram> telegram) {
if (telegram->offset > 0 || telegram->message_length < 5) {
return;
}
telegram->read_value(errorNumber_, 3);
char code[sizeof(errorCode_)];
code[0] = telegram->message_data[0];
code[1] = telegram->message_data[1];
code[2] = telegram->message_data[2];
snprintf(&code[3], sizeof(code) - 3, "(%d)", errorNumber_);
has_update(errorCode_, code, sizeof(errorCode_));
}
// 0x12 error log
// RCErrorMessage(0x12), data: 32 32 03 30 95 0A 0A 15 18 00 01 19 32 32 03 30 95 0A 09 05 18 00 01 19 31 38 03
// RCErrorMessage(0x12), data: 39 95 08 09 0F 19 00 01 17 64 31 03 34 95 07 10 08 00 00 01 70 (offset 27)
void Thermostat::process_RCErrorMessage(std::shared_ptr<const Telegram> telegram) {
if (telegram->offset > 0 || telegram->message_length < 11) {
return;
}
// data: displaycode(2), errornumber(2), year, month, hour, day, minute, duration(2), src-addr
if (telegram->message_data[4] & 0x80) { // valid date
char code[sizeof(lastCode_)] = {0};
uint16_t codeNo = EMS_VALUE_USHORT_NOTSET;
code[0] = telegram->message_data[0];
code[1] = telegram->message_data[1];
code[2] = 0;
telegram->read_value(codeNo, 2);
uint16_t year = (telegram->message_data[4] & 0x7F) + 2000;
uint8_t month = telegram->message_data[5];
uint8_t day = telegram->message_data[7];
uint8_t hour = telegram->message_data[6];
uint8_t min = telegram->message_data[8];
uint16_t duration = EMS_VALUE_SHORT_NOTSET;
telegram->read_value(duration, 9);
snprintf(&code[2], sizeof(code) - 2, "(%d) %02d.%02d.%d %02d:%02d (%d min)", codeNo, day, month, year, hour, min, duration);
has_update(lastCode_, code, sizeof(lastCode_));
}
}
/*
*
* *** settings ***
*
*/
// 0xBB Hybrid pump
bool Thermostat::set_hybridStrategy(const char * value, const int8_t id) {
uint8_t v;
if (!Helpers::value2enum(value, v, FL_(enum_hybridStrategy))) {
return false;
}
write_command(0xBB, 12, v + 1, 0xBB);
return true;
}
bool Thermostat::set_switchOverTemp(const char * value, const int8_t id) {
int v;
if (!Helpers::value2temperature(value, v)) {
return false;
}
write_command(0xBB, 13, v, 0xBB);
return true;
}
bool Thermostat::set_energyCostRatio(const char * value, const int8_t id) {
float v;
if (!Helpers::value2float(value, v)) {
return false;
}
write_command(0xBB, 14, (uint8_t)(v * 10), 0xBB);
return true;
}
bool Thermostat::set_fossileFactor(const char * value, const int8_t id) {
float v;
if (!Helpers::value2float(value, v)) {
return false;
}
write_command(0xBB, 15, (uint8_t)(v * 10), 0xBB);
return true;
}
bool Thermostat::set_electricFactor(const char * value, const int8_t id) {
float v;
if (!Helpers::value2float(value, v)) {
return false;
}
write_command(0xBB, 16, (uint8_t)(v * 10), 0xBB);
return true;
}
bool Thermostat::set_delayBoiler(const char * value, const int8_t id) {
int v;
if (!Helpers::value2number(value, v)) {
return false;
}
write_command(0xBB, 18, v, 0xBB);
return true;
}
bool Thermostat::set_tempDiffBoiler(const char * value, const int8_t id) {
int v;
if (!Helpers::value2temperature(value, v, true)) {
return false;
}
write_command(0xBB, 19, v, 0xBB);
return true;
}
// 0xA5 - Set minimum external temperature
bool Thermostat::set_minexttemp(const char * value, const int8_t id) {
int mt = 0;
if (!Helpers::value2temperature(value, mt)) {
return false;
}
if ((model() == EMS_DEVICE_FLAG_RC20_N) || (model() == EMS_DEVICE_FLAG_RC25)) {
write_command(0xAD, 14, mt, 0xAD);
} else if ((model() == EMS_DEVICE_FLAG_RC300) || (model() == EMS_DEVICE_FLAG_RC100)) {
write_command(0x240, 10, mt, 0x240);
} else {
write_command(EMS_TYPE_IBASettings, 5, mt, EMS_TYPE_IBASettings);
}
return true;
}
// 0xA5/0xA7 - Clock offset
bool Thermostat::set_clockoffset(const char * value, const int8_t id) {
int co = 0;
if (!Helpers::value2number(value, co)) {
return false;
}
if (model() == EMS_DEVICE_FLAG_RC30) {
write_command(EMS_TYPE_RC30Settings, 10, co, EMS_TYPE_RC30Settings);
} else {
write_command(EMS_TYPE_IBASettings, 12, co, EMS_TYPE_IBASettings);
}
return true;
}
// 0xA5/0xA7 - Calibrate internal temperature
bool Thermostat::set_calinttemp(const char * value, const int8_t id) {
float ct = 0;
if (!Helpers::value2temperature(value, ct, true)) {
return false;
}
auto t = (int8_t)(ct * 10);
LOG_DEBUG(F("Calibrating internal temperature to %d.%d C"), t / 10, t < 0 ? -t % 10 : t % 10);
if (model() == EMS_DEVICE_FLAG_RC10) {
write_command(0xB0, 0, t, 0xB0);
} else if (model() == EMS_DEVICE_FLAG_RC30) {
write_command(EMS_TYPE_RC30Settings, 1, t, EMS_TYPE_RC30Settings);
} else {
write_command(EMS_TYPE_IBASettings, 2, t, EMS_TYPE_IBASettings);
}
return true;
}
// 0xA5 - Set the display settings
bool Thermostat::set_display(const char * value, const int8_t id) {
int ds = 0;
if (!Helpers::value2number(value, ds)) {
return false;
}
write_command(EMS_TYPE_IBASettings, 0, ds, EMS_TYPE_IBASettings);
return true;
}
// 0xA7 - Set Screen brightness
bool Thermostat::set_brightness(const char * value, const int8_t id) {
int bo = 0;
if (!Helpers::value2number(value, bo, -15, 15)) {
return false;
}
write_command(EMS_TYPE_RC30Settings, 18, bo, EMS_TYPE_RC30Settings);
return true;
}
bool Thermostat::set_remotetemp(const char * value, const int8_t id) {
float f = 0;
if (!Helpers::value2temperature(value, f)) {
return false;
}
uint8_t hc_num = (id == -1) ? AUTO_HEATING_CIRCUIT : id;
std::shared_ptr<Thermostat::HeatingCircuit> hc = heating_circuit(hc_num);
if (hc == nullptr) {
return false;
}
if (f > 100 || f < 0) {
hc->remotetemp = EMS_VALUE_SHORT_NOTSET;
} else {
hc->remotetemp = (int16_t)(f * 10);
}
Roomctrl::set_remotetemp(hc->hc(), hc->remotetemp);
has_update(hc->remotetemp);
return true;
}
// 0xA5/0xA7 - Set the building settings
bool Thermostat::set_building(const char * value, const int8_t id) {
uint8_t bd = 0;
if (!Helpers::value2enum(value, bd, FL_(enum_ibaBuildingType))) {
return false;
}
if ((model() == EMS_DEVICE_FLAG_RC300) || (model() == EMS_DEVICE_FLAG_RC100)) {
write_command(0x240, 9, bd + 1, 0x240);
} else if (model() == EMS_DEVICE_FLAG_RC30) {
write_command(EMS_TYPE_RC30Settings, 4, bd, EMS_TYPE_RC30Settings);
} else {
write_command(EMS_TYPE_IBASettings, 6, bd, EMS_TYPE_IBASettings);
}
return true;
}
// 0xB0/0xA7 - Set RC10 heating pid
bool Thermostat::set_heatingpid(const char * value, const int8_t id) {
uint8_t pid = 0;
if (!Helpers::value2enum(value, pid, FL_(enum_PID))) {
return false;
}
if (model() == EMS_DEVICE_FLAG_RC10) {
write_command(0xB0, 6, pid, 0xB0);
} else if (model() == EMS_DEVICE_FLAG_RC30) {
write_command(EMS_TYPE_RC30Settings, 25, pid, EMS_TYPE_RC30Settings);
}
return true;
}
// 0xA5 - Set the damping settings
bool Thermostat::set_damping(const char * value, const int8_t id) {
bool dmp;
if (Helpers::value2bool(value, dmp)) {
write_command(EMS_TYPE_IBASettings, 21, dmp ? 0xFF : 0, EMS_TYPE_IBASettings);
return true;
}
return false;
}
// 0xA5/0xA7 Set the language settings
bool Thermostat::set_language(const char * value, const int8_t id) {
uint8_t lg = 0;
if (model() == EMS_DEVICE_FLAG_RC30) {
if (!Helpers::value2enum(value, lg, FL_(enum_ibaLanguage_RC30))) {
return false;
}
write_command(EMS_TYPE_RC30Settings, 0, lg, EMS_TYPE_RC30Settings);
} else {
if (!Helpers::value2enum(value, lg, FL_(enum_ibaLanguage))) {
return false;
}
write_command(EMS_TYPE_IBASettings, 1, lg, EMS_TYPE_IBASettings);
}
return true;
}
// Set the control-mode for hc 0-off, 1-RC20, 2-RC3x
bool Thermostat::set_control(const char * value, const int8_t id) {
uint8_t hc_num = (id == -1) ? AUTO_HEATING_CIRCUIT : id;
std::shared_ptr<Thermostat::HeatingCircuit> hc = heating_circuit(hc_num);
if (hc == nullptr) {
return false;
}
uint8_t ctrl = 0;
if (model() == EMS_DEVICE_FLAG_JUNKERS && !has_flags(EMS_DEVICE_FLAG_JUNKERS_OLD)) {
if (Helpers::value2enum(value, ctrl, FL_(enum_j_control))) {
write_command(set_typeids[hc->hc()], 1, ctrl);
return true;
}
} else if (Helpers::value2enum(value, ctrl, FL_(enum_control))) {
write_command(set_typeids[hc->hc()], EMS_OFFSET_RC35Set_control, ctrl);
return true;
}
return false;
}
// sets the thermostat ww working mode, where mode is a string, ems and ems+
bool Thermostat::set_wwmode(const char * value, const int8_t id) {
uint8_t set = 0xFF;
if (model() == EMS_DEVICE_FLAG_RC10) {
if (!Helpers::value2enum(value, set, FL_(enum_wwMode3))) {
return false;
}
write_command(0xB0, 2, set, 0xB0);
} else if ((model() == EMS_DEVICE_FLAG_RC300) || (model() == EMS_DEVICE_FLAG_RC100)) {
if (!Helpers::value2enum(value, set, FL_(enum_wwMode))) {
return false;
}
write_command(0x02F5, 2, set, 0x02F5);
} else if (model() == EMS_DEVICE_FLAG_RC30) {
if (!Helpers::value2enum(value, set, FL_(enum_wwMode3))) {
return false;
}
write_command(EMS_TYPE_RC30wwSettings, 0, set, EMS_TYPE_RC30wwSettings);
} else {
if (!Helpers::value2enum(value, set, FL_(enum_wwMode2))) {
return false;
}
write_command(EMS_TYPE_wwSettings, 2, set, EMS_TYPE_wwSettings);
}
return true;
}
//Set ww when thermostat mode is off (RC30)
bool Thermostat::set_wwwhenmodeoff(const char * value, const int8_t id) {
bool b = false;
if (!Helpers::value2bool(value, b)) {
return false;
}
write_command(EMS_TYPE_RC30wwSettings, 1, b ? 0xFF : 0x00, EMS_TYPE_RC30wwSettings);
return true;
}
// Set ww temperature, ems+
bool Thermostat::set_wwtemp(const char * value, const int8_t id) {
int t = 0;
if (!Helpers::value2temperature(value, t, false, 0, 90)) {
return false;
}
write_command(0x031B, 0, t, 0x031B);
return true;
}
// Set ww low temperature, ems+
bool Thermostat::set_wwtemplow(const char * value, const int8_t id) {
int t = 0;
if (!Helpers::value2temperature(value, t)) {
return false;
}
write_command(0x031B, 1, t, 0x031B);
return true;
}
// Set ww charge RC300, ems+
bool Thermostat::set_wwcharge(const char * value, const int8_t id) {
bool b = false;
if (!Helpers::value2bool(value, b)) {
return false;
}
write_command(0x02F5, 11, b ? 0xFF : 0x00, 0x02F5);
return true;
}
// Set ww charge duration in steps of 15 min, ems+
bool Thermostat::set_wwchargeduration(const char * value, const int8_t id) {
int t = 0xFF;
if (!Helpers::value2number(value, t)) {
return false;
}
t = (t + 8) / 15;
write_command(0x2F5, 10, t, 0x02F5);
return true;
}
// set ww prio
bool Thermostat::set_wwprio(const char * value, const int8_t id) {
uint8_t hc_num = (id == -1) ? AUTO_HEATING_CIRCUIT : id;
std::shared_ptr<Thermostat::HeatingCircuit> hc = heating_circuit(hc_num);
if (hc == nullptr) {
return false;
}
bool b;
if (!Helpers::value2bool(value, b)) {
return false;
}
write_command(set_typeids[hc->hc()], 21, b ? 0xFF : 0x00, set_typeids[hc->hc()]);
return true;
}
// sets the thermostat ww circulation working mode, where mode is a string
bool Thermostat::set_wwcircmode(const char * value, const int8_t id) {
uint8_t set = 0xFF;
if ((model() == EMS_DEVICE_FLAG_RC300) || (model() == EMS_DEVICE_FLAG_RC100)) {
if (!Helpers::value2enum(value, set, FL_(enum_wwCircMode))) {
return false;
}
write_command(0x02F5, 3, set, 0x02F5);
return true;
}
if (!Helpers::value2enum(value, set, FL_(enum_wwMode2))) {
return false;
}
write_command(EMS_TYPE_wwSettings, 3, set, EMS_TYPE_wwSettings);
return true;
}
bool Thermostat::set_wwDailyHeating(const char * value, const int8_t id) {
bool b = false;
if (!Helpers::value2bool(value, b)) {
return false;
}
write_command(0x2F5, 8, b ? 0xFF : 0x00, 0x2F5);
return true;
}
bool Thermostat::set_wwDailyHeatTime(const char * value, const int8_t id) {
int set;
if (!Helpers::value2number(value, set)) {
return false;
}
if ((model() == EMS_DEVICE_FLAG_RC300) || (model() == EMS_DEVICE_FLAG_RC100)) {
uint8_t t = (set + 8) / 15;
if (t > 95) {
return false;
}
write_command(0x2F5, 9, t, 0x2F5);
}
return true;
}
bool Thermostat::set_wwDisinfect(const char * value, const int8_t id) {
bool b = false;
if (!Helpers::value2bool(value, b)) {
return false;
}
if ((model() == EMS_DEVICE_FLAG_RC300) || (model() == EMS_DEVICE_FLAG_RC100)) {
write_command(0x2F5, 5, b ? 0xFF : 0x00, 0x2F5);
} else if (model() == EMS_DEVICE_FLAG_RC30) {
write_command(EMS_TYPE_RC30wwSettings, 2, b ? 0xFF : 0x00, EMS_TYPE_RC30wwSettings);
} else {
write_command(0x37, 4, b ? 0xFF : 0x00, 0x37);
}
return true;
}
bool Thermostat::set_wwDisinfectDay(const char * value, const int8_t id) {
uint8_t set = 0xFF;
if (!Helpers::value2enum(value, set, FL_(enum_dayOfWeek))) {
return false;
}
if ((model() == EMS_DEVICE_FLAG_RC300) || (model() == EMS_DEVICE_FLAG_RC100)) {
write_command(0x2F5, 7, set, 0x2F5);
} else if (model() == EMS_DEVICE_FLAG_RC30) {
write_command(EMS_TYPE_RC30wwSettings, 3, set, EMS_TYPE_RC30wwSettings);
} else {
write_command(0x37, 5, set, 0x37);
}
return true;
}
bool Thermostat::set_wwDisinfectHour(const char * value, const int8_t id) {
int set;
if ((model() == EMS_DEVICE_FLAG_RC300) || (model() == EMS_DEVICE_FLAG_RC100)) {
if (!Helpers::value2number(value, set, 0, 1431)) {
return false;
}
write_command(0x2F5, 6, (set + 8) / 15, 0x2F5);
} else if (model() == EMS_DEVICE_FLAG_RC30) {
if (!Helpers::value2number(value, set, 0, 23)) {
return false;
}
write_command(EMS_TYPE_RC30wwSettings, 4, set, EMS_TYPE_RC30wwSettings);
} else {
if (!Helpers::value2number(value, set, 0, 23)) {
return false;
}
write_command(0x37, 6, set, 0x37);
}
return true;
}
bool Thermostat::set_wwMaxTemp(const char * value, const int8_t id) {
int t = 0;
if (!Helpers::value2temperature(value, t, false, 0, 90)) {
return false;
}
write_command(0x37, 8, t, 0x37);
return true;
}
bool Thermostat::set_wwOneTimeKey(const char * value, const int8_t id) {
bool b = false;
if (!Helpers::value2bool(value, b)) {
return false;
}
write_command(0x37, 9, b ? 0xFF : 0x00, 0x37);
return true;
}
// for RC10, 0xB0 or RC30, 0xA7
bool Thermostat::set_backlight(const char * value, const int8_t id) {
bool b = false;
if (!Helpers::value2bool(value, b)) {
return false;
}
if (model() == EMS_DEVICE_FLAG_RC30) {
write_command(EMS_TYPE_RC30Settings, 12, b ? 0xFF : 0x00, EMS_TYPE_RC30Settings);
} else {
write_command(0xB0, 1, b ? 0xFF : 0x00, 0xB0);
}
return true;
}
bool Thermostat::set_autodst(const char * value, const int8_t id) {
bool b = false;
if (!Helpers::value2bool(value, b)) {
return false;
}
write_command(EMS_TYPE_RC30Settings, 2, b ? 0xFF : 0x00, EMS_TYPE_RC30Settings);
return true;
}
bool Thermostat::set_preheating(const char * value, const int8_t id) {
bool b = false;
if (!Helpers::value2bool(value, b)) {
return false;
}
write_command(EMS_TYPE_RC30Settings, 26, b ? 0xFF : 0x00, EMS_TYPE_RC30Settings);
return true;
}
bool Thermostat::set_offtemp(const char * value, const int8_t id) {
int ot = 0;
if (!Helpers::value2temperature(value, ot, true)) {
return false;
}
auto t = (int8_t)(ot * 2);
write_command(EMS_TYPE_RC30Settings, 24, t, EMS_TYPE_RC30Settings);
return true;
}
bool Thermostat::set_mixingvalves(const char * value, const int8_t id) {
int m = 0;
if (!Helpers::value2number(value, m, 0, 2)) {
return false;
}
write_command(EMS_TYPE_RC30Settings, 17, m, EMS_TYPE_RC30Settings);
return true;
}
bool Thermostat::set_wwProgMode(const char * value, const int8_t id) {
uint8_t set = 0xFF;
if (!Helpers::value2enum(value, set, FL_(enum_wwProgMode))) {
return false;
}
write_command(0x37, 0, set ? 0xFF : 0x00, 0x37);
return true;
}
bool Thermostat::set_wwCircProg(const char * value, const int8_t id) {
uint8_t set = 0xFF;
if (!Helpers::value2enum(value, set, FL_(enum_wwProgMode))) {
return false;
}
write_command(0x37, 1, set ? 0xFF : 0x00, 0x37);
return true;
}
// set the holiday as string dd.mm.yyyy-dd.mm.yyyy
bool Thermostat::set_holiday(const char * value, const int8_t id, const bool vacation) {
uint8_t hc_num = (id == -1) ? AUTO_HEATING_CIRCUIT : id;
std::shared_ptr<Thermostat::HeatingCircuit> hc = heating_circuit(hc_num);
if ((hc == nullptr) || (value == nullptr)) {
return false;
}
if (strlen(value) != 21) {
return false;
}
uint8_t data[6];
data[0] = (value[0] - '0') * 10 + (value[1] - '0');
data[1] = (value[3] - '0') * 10 + (value[4] - '0');
data[2] = (value[7] - '0') * 100 + (value[8] - '0') * 10 + (value[9] - '0');
data[3] = (value[11] - '0') * 10 + (value[12] - '0');
data[4] = (value[14] - '0') * 10 + (value[15] - '0');
data[5] = (value[18] - '0') * 100 + (value[19] - '0') * 10 + (value[20] - '0');
if (data[0] > 31 || data[1] > 12 || data[3] > 31 || data[4] > 12) {
return false;
}
if (!vacation || value[10] == '+') { // + for compatibility
write_command(timer_typeids[hc->hc()], 93, data, 6, 0);
} else {
write_command(timer_typeids[hc->hc()], 87, data, 6, 0);
}
return true;
}
// set pause in hours
bool Thermostat::set_pause(const char * value, const int8_t id) {
uint8_t hc_num = (id == -1) ? AUTO_HEATING_CIRCUIT : id;
std::shared_ptr<Thermostat::HeatingCircuit> hc = heating_circuit(hc_num);
if (hc == nullptr) {
return false;
}
if (value == nullptr) {
read_command(timer_typeids[hc->hc()], 85, 1);
return true;
}
int hrs = 0;
if (!Helpers::value2number(value, hrs)) {
return false;
}
write_command(timer_typeids[hc->hc()], 85, hrs);
return true;
}
// set partymode in hours
bool Thermostat::set_party(const char * value, const int8_t id) {
uint8_t hc_num = (id == -1) ? AUTO_HEATING_CIRCUIT : id;
std::shared_ptr<Thermostat::HeatingCircuit> hc = heating_circuit(hc_num);
if (hc == nullptr) {
return false;
}
if (value == nullptr) {
read_command(timer_typeids[hc->hc()], 86, 1);
return true;
}
int hrs = 0;
if (!Helpers::value2number(value, hrs)) {
return false;
}
write_command(timer_typeids[hc->hc()], 86, hrs);
return true;
}
// set date&time as string dd.mm.yyyy-hh:mm:ss-dw-dst or "NTP" for setting to internet-time
// dw - day of week (0..6), dst- summertime (0/1)
// id is ignored
bool Thermostat::set_datetime(const char * value, const int8_t id) {
std::string dt;
if (!Helpers::value2string(value, dt)) {
return false;
}
uint8_t data[9];
if (dt == "ntp") {
time_t now = time(nullptr);
tm * tm_ = localtime(&now);
if (tm_->tm_year < 110) { // no valid time
return false;
}
if (!EMSESP::system_.ntp_connected()) {
LOG_WARNING(F("Set date: no valid NTP data, setting from ESP Clock"));
}
data[0] = tm_->tm_year - 100; // Bosch counts from 2000
data[1] = tm_->tm_mon + 1;
data[2] = tm_->tm_hour;
data[3] = tm_->tm_mday;
data[4] = tm_->tm_min;
data[5] = tm_->tm_sec;
data[6] = (tm_->tm_wday + 6) % 7; // Bosch counts from Mo, time from Su
data[7] = tm_->tm_isdst + 2; // set DST and flag for ext. clock
} else if (dt.length() == 23) {
data[0] = (dt[7] - '0') * 100 + (dt[8] - '0') * 10 + (dt[9] - '0'); // year
data[1] = (dt[3] - '0') * 10 + (dt[4] - '0'); // month
data[2] = (dt[11] - '0') * 10 + (dt[12] - '0'); // hour
data[3] = (dt[0] - '0') * 10 + (dt[1] - '0'); // day
data[4] = (dt[14] - '0') * 10 + (dt[15] - '0'); // min
data[5] = (dt[17] - '0') * 10 + (dt[18] - '0'); // sec
data[6] = (dt[20] - '0'); // day of week, Mo:0
data[7] = (dt[22] - '0') + 2; // DST and flag
} else {
LOG_WARNING(F("Set date: invalid data, wrong length"));
return false;
}
if (data[1] == 0 || data[1] > 12 || data[2] > 23 || data[3] == 0 || data[3] > 31 || data[4] > 59 || data[5] > 59 || data[6] > 6 || data[7] > 3) {
LOG_WARNING(F("Invalid date/time: %02d.%02d.2%03d-%02d:%02d:%02d-%d-%d"), data[3], data[1], data[0], data[2], data[4], data[5], data[6], data[7]);
return false;
}
// LOG_INFO(F("Setting date and time: %02d.%02d.2%03d-%02d:%02d:%02d-%d-%d"), data[3], data[1], data[0], data[2], data[4], data[5], data[6], data[7]);
write_command(EMS_TYPE_time, 0, data, 8, EMS_TYPE_time);
return true;
}
// set RC300 roominfluence factor
bool Thermostat::set_roominfl_factor(const char * value, const int8_t id) {
uint8_t hc_num = (id == -1) ? AUTO_HEATING_CIRCUIT : id;
std::shared_ptr<Thermostat::HeatingCircuit> hc = heating_circuit(hc_num);
if (hc == nullptr) {
return false;
}
float val = 0;
if (!Helpers::value2float(value, val)) {
return false;
}
write_command(summer_typeids[hc->hc()], 1, (uint8_t)(val * 10));
return true;
}
// sets the thermostat working mode, where mode is a string
// converts string mode to HeatingCircuit::Mode
bool Thermostat::set_mode(const char * value, const int8_t id) {
if ((value == nullptr) || (strlen(value) >= 20)) {
return false;
}
std::string mode;
if (value[0] >= '0' && value[0] <= '9') {
uint8_t num = value[0] - '0';
switch (model()) {
case EMSdevice::EMS_DEVICE_FLAG_RC10:
mode = read_flash_string(FL_(enum_mode6)[num]);
break;
case EMSdevice::EMS_DEVICE_FLAG_RC20:
case EMSdevice::EMS_DEVICE_FLAG_RC20_N:
mode = read_flash_string(FL_(enum_mode2)[num]);
break;
case EMSdevice::EMS_DEVICE_FLAG_RC25:
case EMSdevice::EMS_DEVICE_FLAG_RC30:
case EMSdevice::EMS_DEVICE_FLAG_RC35:
case EMSdevice::EMS_DEVICE_FLAG_RC30_N:
mode = read_flash_string(FL_(enum_mode3)[num]);
break;
case EMSdevice::EMS_DEVICE_FLAG_RC300:
case EMSdevice::EMS_DEVICE_FLAG_RC100:
mode = read_flash_string(FL_(enum_mode)[num]);
break;
case EMSdevice::EMS_DEVICE_FLAG_JUNKERS:
mode = read_flash_string(FL_(enum_mode4)[num]);
break;
case EMSdevice::EMS_DEVICE_FLAG_CRF:
mode = read_flash_string(FL_(enum_mode5)[num]);
break;
default:
return false;
}
} else if (!Helpers::value2string(value, mode)) {
return false;
}
uint8_t hc_num = (id == -1) ? AUTO_HEATING_CIRCUIT : id;
if (mode_tostring(HeatingCircuit::Mode::OFF) == mode) {
return set_mode_n(HeatingCircuit::Mode::OFF, hc_num);
}
if (mode_tostring(HeatingCircuit::Mode::MANUAL) == mode) {
return set_mode_n(HeatingCircuit::Mode::MANUAL, hc_num);
}
if (mode_tostring(HeatingCircuit::Mode::AUTO) == mode) {
return set_mode_n(HeatingCircuit::Mode::AUTO, hc_num);
}
if (mode_tostring(HeatingCircuit::Mode::DAY) == mode) {
return set_mode_n(HeatingCircuit::Mode::DAY, hc_num);
}
if (mode_tostring(HeatingCircuit::Mode::NIGHT) == mode) {
return set_mode_n(HeatingCircuit::Mode::NIGHT, hc_num);
}
if (mode_tostring(HeatingCircuit::Mode::HEAT) == mode) {
return set_mode_n(HeatingCircuit::Mode::HEAT, hc_num);
}
if (mode_tostring(HeatingCircuit::Mode::NOFROST) == mode) {
return set_mode_n(HeatingCircuit::Mode::NOFROST, hc_num);
}
if (mode_tostring(HeatingCircuit::Mode::ECO) == mode) {
return set_mode_n(HeatingCircuit::Mode::ECO, hc_num);
}
if (mode_tostring(HeatingCircuit::Mode::HOLIDAY) == mode) {
return set_mode_n(HeatingCircuit::Mode::HOLIDAY, hc_num);
}
if (mode_tostring(HeatingCircuit::Mode::COMFORT) == mode) {
return set_mode_n(HeatingCircuit::Mode::COMFORT, hc_num);
}
return false;
}
// Set the thermostat working mode
// mode is HeatingCircuit::Mode
bool Thermostat::set_mode_n(const uint8_t mode, const uint8_t hc_num) {
// get hc based on number
std::shared_ptr<Thermostat::HeatingCircuit> hc = heating_circuit(hc_num);
if (hc == nullptr) {
return false;
}
uint8_t set_mode_value, offset;
uint8_t hc_p = hc->hc();
uint16_t set_typeid = set_typeids[hc_p];
uint16_t validate_typeid = set_typeid;
// set the value to send via EMS depending on the mode type
switch (mode) {
case HeatingCircuit::Mode::NIGHT:
case HeatingCircuit::Mode::OFF:
set_mode_value = 0;
break;
case HeatingCircuit::Mode::DAY:
case HeatingCircuit::Mode::HEAT:
case HeatingCircuit::Mode::MANUAL:
case HeatingCircuit::Mode::NOFROST:
set_mode_value = 1;
break;
default: // AUTO & ECO
set_mode_value = 2;
break;
}
uint8_t model_ = model();
switch (model_) {
case EMSdevice::EMS_DEVICE_FLAG_RC10:
offset = 0;
validate_typeid = 0xB1;
set_typeid = 0xB2;
if (mode == HeatingCircuit::Mode::NOFROST || mode == HeatingCircuit::Mode::OFF) {
set_mode_value = 1;
} else if (mode == HeatingCircuit::Mode::NIGHT) {
set_mode_value = 2;
} else { // DAY
set_mode_value = 4;
}
break;
case EMSdevice::EMS_DEVICE_FLAG_RC20:
offset = EMS_OFFSET_RC20Set_mode;
break;
case EMSdevice::EMS_DEVICE_FLAG_RC20_N: // ES72
case EMSdevice::EMS_DEVICE_FLAG_RC25:
offset = EMS_OFFSET_RC20_2_Set_mode;
break;
case EMSdevice::EMS_DEVICE_FLAG_RC30:
offset = EMS_OFFSET_RC30Set_mode;
break;
case EMSdevice::EMS_DEVICE_FLAG_RC35:
case EMSdevice::EMS_DEVICE_FLAG_RC30_N:
offset = EMS_OFFSET_RC35Set_mode;
break;
case EMSdevice::EMS_DEVICE_FLAG_RC300:
case EMSdevice::EMS_DEVICE_FLAG_RC100:
offset = EMS_OFFSET_RCPLUSSet_mode;
validate_typeid = monitor_typeids[hc_p];
if (mode == HeatingCircuit::Mode::AUTO) {
set_mode_value = 0xFF; // special value for auto
} else {
set_mode_value = 0; // everything else, like manual/day etc..
}
break;
case EMSdevice::EMS_DEVICE_FLAG_JUNKERS:
if (has_flags(EMS_DEVICE_FLAG_JUNKERS_OLD)) {
offset = EMS_OFFSET_JunkersSetMessage2_set_mode;
} else {
offset = EMS_OFFSET_JunkersSetMessage_set_mode;
}
// validate_typeid = monitor_typeids[hc_p];
if (mode == HeatingCircuit::Mode::NOFROST) {
set_mode_value = 0x01;
} else if (mode == HeatingCircuit::Mode::ECO || (mode == HeatingCircuit::Mode::NIGHT)) {
set_mode_value = 0x02;
} else if ((mode == HeatingCircuit::Mode::HEAT) || (mode == HeatingCircuit::Mode::DAY)) {
set_mode_value = 0x03; // comfort
} else if (mode == HeatingCircuit::Mode::AUTO) {
set_mode_value = 0x04;
}
break;
default:
offset = 0;
break;
}
// add the write command to the Tx queue
// post validate is the corresponding monitor or set type IDs as they can differ per model
write_command(set_typeid, offset, set_mode_value, validate_typeid);
// set hc->mode temporary until validate is received
if (model_ == EMSdevice::EMS_DEVICE_FLAG_RC10) {
hc->mode = set_mode_value >> 1;
} else if (model_ == EMSdevice::EMS_DEVICE_FLAG_RC300 || model_ == EMSdevice::EMS_DEVICE_FLAG_RC100) {
hc->mode = set_mode_value ? 1 : 0;
} else if (model_ == EMSdevice::EMS_DEVICE_FLAG_JUNKERS) {
hc->mode = set_mode_value - 1;
} else {
hc->mode = set_mode_value;
}
has_update(&hc->mode);
return true;
}
// sets the thermostat summermode for RC300
bool Thermostat::set_summermode(const char * value, const int8_t id) {
uint8_t hc_num = (id == -1) ? AUTO_HEATING_CIRCUIT : id;
std::shared_ptr<Thermostat::HeatingCircuit> hc = heating_circuit(hc_num);
if (hc == nullptr) {
return false;
}
uint8_t set = 0xFF;
if (is_fetch(summer2_typeids[hc->hc()])) {
if (!Helpers::value2enum(value, set, FL_(enum_hpoperatingmode))) {
return false;
}
write_command(summer2_typeids[hc->hc()], 0, set, summer2_typeids[hc->hc()]);
} else {
if (!Helpers::value2enum(value, set, FL_(enum_summermode))) {
return false;
}
write_command(summer_typeids[hc->hc()], 7, set, summer_typeids[hc->hc()]);
}
return true;
}
// Set fastheatupfactor, ems+
bool Thermostat::set_fastheatup(const char * value, const int8_t id) {
uint8_t hc_num = (id == -1) ? AUTO_HEATING_CIRCUIT : id;
std::shared_ptr<Thermostat::HeatingCircuit> hc = heating_circuit(hc_num);
if (hc == nullptr) {
return false;
}
int set = 0;
if (!Helpers::value2number(value, set)) {
return false;
}
write_command(summer_typeids[hc->hc()], 10, set, summer_typeids[hc->hc()]);
return true;
}
// sets the thermostat reducemode for RC35
bool Thermostat::set_reducemode(const char * value, const int8_t id) {
uint8_t hc_num = (id == -1) ? AUTO_HEATING_CIRCUIT : id;
std::shared_ptr<Thermostat::HeatingCircuit> hc = heating_circuit(hc_num);
if (hc == nullptr) {
return false;
}
uint8_t set = 0xFF;
if (!Helpers::value2enum(value, set, FL_(enum_reducemode))) {
return false;
}
write_command(set_typeids[hc->hc()], EMS_OFFSET_RC35Set_reducemode, set, set_typeids[hc->hc()]);
return true;
}
// sets the thermostat reducemode1 for RC310
bool Thermostat::set_reducemode1(const char * value, const int8_t id) {
uint8_t hc_num = (id == -1) ? AUTO_HEATING_CIRCUIT : id;
std::shared_ptr<Thermostat::HeatingCircuit> hc = heating_circuit(hc_num);
if (hc == nullptr) {
return false;
}
uint8_t set = 0xFF;
if (model() == EMS_DEVICE_FLAG_RC300 || model() == EMS_DEVICE_FLAG_RC100) {
if (Helpers::value2enum(value, set, FL_(enum_reducemode1))) {
write_command(set_typeids[hc->hc()], 5, set + 1, set_typeids[hc->hc()]);
}
}
if (set == 0xFF) {
return false;
}
return true;
}
// sets the thermostat reducemode for RC35 vacations
bool Thermostat::set_vacreducemode(const char * value, const int8_t id) {
uint8_t hc_num = (id == -1) ? AUTO_HEATING_CIRCUIT : id;
std::shared_ptr<Thermostat::HeatingCircuit> hc = heating_circuit(hc_num);
if (hc == nullptr) {
return false;
}
uint8_t set = 0xFF;
if (!Helpers::value2enum(value, set, FL_(enum_reducemode))) {
return false;
}
write_command(set_typeids[hc->hc()], EMS_OFFSET_RC35Set_vacreducemode, set, set_typeids[hc->hc()]);
return true;
}
// sets the thermostat nofrost mode for RC35
bool Thermostat::set_nofrostmode(const char * value, const int8_t id) {
uint8_t hc_num = (id == -1) ? AUTO_HEATING_CIRCUIT : id;
std::shared_ptr<Thermostat::HeatingCircuit> hc = heating_circuit(hc_num);
if (hc == nullptr) {
return false;
}
uint8_t set = 0xFF;
if (!Helpers::value2enum(value, set, FL_(enum_nofrostmode))) {
return false;
}
write_command(set_typeids[hc->hc()], EMS_OFFSET_RC35Set_nofrostmode, set, set_typeids[hc->hc()]);
return true;
}
// sets the thermostat heatingtype for RC35, RC300
bool Thermostat::set_heatingtype(const char * value, const int8_t id) {
uint8_t hc_num = (id == -1) ? AUTO_HEATING_CIRCUIT : id;
std::shared_ptr<Thermostat::HeatingCircuit> hc = heating_circuit(hc_num);
if (hc == nullptr) {
return false;
}
uint8_t set = 0xFF;
if (Helpers::value2enum(value, set, FL_(enum_heatingtype))) {
if ((model() == EMS_DEVICE_FLAG_RC20_N) || (model() == EMS_DEVICE_FLAG_RC25)) {
write_command(set_typeids[hc->hc()], 0, set, set_typeids[hc->hc()]);
} else if (model() == EMS_DEVICE_FLAG_RC35 || model() == EMS_DEVICE_FLAG_RC30_N) {
write_command(set_typeids[hc->hc()], 0, set, set_typeids[hc->hc()]);
} else if (model() == EMS_DEVICE_FLAG_RC30) {
write_command(curve_typeids[hc->hc()], 0, set, curve_typeids[hc->hc()]);
} else {
write_command(curve_typeids[hc->hc()], 1, set, curve_typeids[hc->hc()]);
return true;
}
}
return false;
}
// sets the thermostat controlmode for RC35, RC300
bool Thermostat::set_controlmode(const char * value, const int8_t id) {
uint8_t hc_num = (id == -1) ? AUTO_HEATING_CIRCUIT : id;
std::shared_ptr<Thermostat::HeatingCircuit> hc = heating_circuit(hc_num);
if (hc == nullptr) {
return false;
}
uint8_t set = 0xFF;
if (model() == EMS_DEVICE_FLAG_RC300 || model() == EMS_DEVICE_FLAG_RC100) {
if (Helpers::value2enum(value, set, FL_(enum_controlmode))) {
write_command(curve_typeids[hc->hc()], 0, set, curve_typeids[hc->hc()]);
return true;
}
} else if (model() == EMS_DEVICE_FLAG_RC30) {
if (Helpers::value2enum(value, set, FL_(enum_controlmode2))) {
write_command(curve_typeids[hc->hc()], 1, set, curve_typeids[hc->hc()]);
return true;
}
} else if (model() == EMS_DEVICE_FLAG_RC35 || model() == EMS_DEVICE_FLAG_RC30_N) {
if (Helpers::value2enum(value, set, FL_(enum_controlmode2))) {
write_command(set_typeids[hc->hc()], 33, set, set_typeids[hc->hc()]);
return true;
}
}
return false;
}
// sets the thermostat time for nightmode for RC10, telegrm 0xB0
bool Thermostat::set_reducehours(const char * value, const int8_t id) {
uint8_t hc_num = (id == -1) ? AUTO_HEATING_CIRCUIT : id;
std::shared_ptr<Thermostat::HeatingCircuit> hc = heating_circuit(hc_num);
if (hc == nullptr) {
return false;
}
int v;
if (Helpers::value2number(value, v)) {
write_command(set_typeids[hc->hc()], 5, v, set_typeids[hc->hc()]);
return true;
}
return false;
}
// sets a single switchtime in the thermostat program for RC35, ww, circ, hc..
bool Thermostat::set_switchtime(const char * value, const uint16_t type_id, char * out, size_t len) {
if (value == nullptr) {
return false;
}
uint8_t no = 44; // invalid value
uint8_t day = 8; // invalid
uint8_t on = 8; // invalid
uint8_t time = 0x91; // invalid
if (value[0] == '{') {
StaticJsonDocument<EMSESP_JSON_SIZE_SMALL> doc;
DeserializationError error = deserializeJson(doc, value);
if (error) {
return false;
}
if (!doc.containsKey("no")) {
return false;
}
no = doc["no"].as<int>();
if (!doc.containsKey("day") || !doc.containsKey("mode") || !doc.containsKey("time")) {
EMSESP::wait_validate(type_id);
read_command(type_id, 2 * no, 2);
return true;
}
const char * s_day = doc["day"];
if (!Helpers::value2enum(s_day, day, FL_(enum_dayOfWeek))) {
return false;
}
const char * s_mode = doc["mode"];
const char * s_time = doc["time"];
if (model() == EMS_DEVICE_FLAG_RC35 || model() == EMS_DEVICE_FLAG_RC30_N) {
bool b;
if (Helpers::value2bool(s_mode, b)) {
on = b ? 1 : 0;
}
if (strlen(s_time) == 5 && s_time[2] == ':') {
time = 6 * ((s_time[0] - '0') * 10 + (s_time[1] - '0')) + (s_time[3] - '0');
}
} else {
Helpers::value2enum(s_mode, on, FL_(enum_switchmode));
if (strlen(s_time) == 5 && s_time[2] == ':') {
time = 4 * ((s_time[0] - '0') * 10 + (s_time[1] - '0')) + ((s_time[3] - '0') * 10 + (s_time[4] - '0')) / 15;
}
}
if (strncmp(s_mode, "not_set", 7) == 0) {
day = 7;
on = 7;
time = 0x90;
// LOG_INFO(F("switchtime %02d cleared"), no);
}
} else {
if (strlen(value) > 1) {
no = (value[0] - '0') * 10 + (value[1] - '0');
}
if (strlen(value) == 2) {
if (no < 42) {
EMSESP::wait_validate(type_id);
read_command(type_id, 2 * no, 2);
return true;
}
return false;
}
if (strlen(value) > 4) {
for (uint8_t i = 0; i < 7; i++) {
if (!strncmp(&value[3], read_flash_string(FL_(enum_dayOfWeek)[i]).c_str(), 2)) {
day = i;
}
}
}
if (strlen(value) > 10) {
time = 6 * ((value[6] - '0') * 10 + (value[7] - '0')) + (value[9] - '0');
}
if (strlen(value) > 13 && value[12] == 'o') {
on = value[13] == 'n' ? 1 : 0;
} else if (strlen(value) == 14 && value[12] == 'T') {
on = value[13] - '0';
} else if (strlen(value) == 13) {
on = value[12] - '0';
}
if (strlen(value) >= 10 && strncmp(&value[3], "not_set", 7) == 0) {
day = 7;
on = 7;
time = 0x90;
// LOG_INFO(F("switchtime %02d cleared"), no);
}
}
uint8_t data[2] = {0xE7, 0x90}; // unset switchtime
if (day != 7 && on != 7) {
data[0] = (day << 5) + on;
data[1] = time;
}
uint8_t min_on = 1;
uint8_t max_on = 4;
if ((model() == EMS_DEVICE_FLAG_RC35) || (model() == EMS_DEVICE_FLAG_RC30_N)) {
min_on = 0;
max_on = 1;
}
if (no > 41 || time > 0x90 || ((on < min_on || on > max_on) && on != 7)) {
// LOG_WARNING(F("Setting switchtime: Invalid data: %s"), value);
// LOG_WARNING(F("Setting switchtime: Invalid data: %02d.%1d.0x%02X.%1d"), no, day, time, on);
return false;
}
if (data[0] != 0xE7) {
std::string sday = read_flash_string(FL_(enum_dayOfWeek)[day]);
if (model() == EMS_DEVICE_FLAG_RC35 || model() == EMS_DEVICE_FLAG_RC30_N) {
snprintf(out, len, "%02d %s %02d:%02d %s", no, sday.c_str(), time / 6, 10 * (time % 6), on ? "on" : "off");
} else if ((model() == EMS_DEVICE_FLAG_RC20) || (model() == EMS_DEVICE_FLAG_RC30)) {
snprintf(out, len, "%02d %s %02d:%02d T%d", no, sday.c_str(), time / 6, 10 * (time % 6), on);
} else {
std::string son = read_flash_string(FL_(enum_switchmode)[on]);
snprintf(out, len, "%02d %s %02d:%02d %s", no, sday.c_str(), time / 6, 10 * (time % 6), son.c_str());
}
} else {
snprintf(out, len, "%02d not_set", no);
}
write_command(type_id, no * 2, &data[0], 2, 0);
return true;
}
// set switchtime for own1 program
bool Thermostat::set_switchtime1(const char * value, const int8_t id) {
uint8_t hc_num = (id == -1) ? AUTO_HEATING_CIRCUIT : id;
std::shared_ptr<Thermostat::HeatingCircuit> hc = heating_circuit(hc_num);
if (hc == nullptr) {
return false;
}
char out[sizeof(hc->switchtime1)] = {'\0'};
if (set_switchtime(value, timer_typeids[hc->hc()], out, sizeof(out))) {
if (strlen(out)) {
has_update(hc->switchtime1, out, sizeof(hc->switchtime1));
}
return true;
}
return false;
}
// set switchtime for own2 program
bool Thermostat::set_switchtime2(const char * value, const int8_t id) {
uint8_t hc_num = (id == -1) ? AUTO_HEATING_CIRCUIT : id;
std::shared_ptr<Thermostat::HeatingCircuit> hc = heating_circuit(hc_num);
if (hc == nullptr) {
return false;
}
char out[sizeof(hc->switchtime2)] = {'\0'};
if (set_switchtime(value, timer_typeids[hc->hc()] + 3, out, sizeof(out))) {
if (strlen(out)) {
has_update(hc->switchtime2, out, sizeof(hc->switchtime2));
}
return true;
}
return false;
}
// sets a single switchtime in the thermostat dhw program for RC35
bool Thermostat::set_wwCircSwitchTime(const char * value, const int8_t id) {
char out[sizeof(wwCircSwitchTime_)] = {'\0'};
if (set_switchtime(value, 0x39, out, sizeof(out))) {
if (strlen(out)) {
has_update(wwCircSwitchTime_, out, sizeof(wwCircSwitchTime_));
}
return true;
}
return false;
}
// sets a single switchtime in the thermostat circulation program for RC35
bool Thermostat::set_wwSwitchTime(const char * value, const int8_t id) {
char out[sizeof(wwSwitchTime_)] = {'\0'};
if (set_switchtime(value, 0x38, out, sizeof(out))) {
if (strlen(out)) {
has_update(wwSwitchTime_, out, sizeof(wwSwitchTime_));
}
return true;
}
return false;
}
// sets the thermostat program for RC35 and RC20
bool Thermostat::set_program(const char * value, const int8_t id) {
uint8_t hc_num = (id == -1) ? AUTO_HEATING_CIRCUIT : id;
std::shared_ptr<Thermostat::HeatingCircuit> hc = heating_circuit(hc_num);
if (hc == nullptr) {
return false;
}
uint8_t set = 0xFF;
if ((model() == EMS_DEVICE_FLAG_RC20_N) || (model() == EMS_DEVICE_FLAG_RC25)) {
if (Helpers::value2enum(value, set, FL_(enum_progMode3))) {
write_command(set_typeids[hc->hc()], 11, set + 1, set_typeids[hc->hc()]);
}
} else if (model() == EMS_DEVICE_FLAG_RC35 || model() == EMS_DEVICE_FLAG_RC30_N || model() == EMS_DEVICE_FLAG_RC30) {
if (Helpers::value2enum(value, set, FL_(enum_progMode2))) {
write_command(timer_typeids[hc->hc()], 84, set, timer_typeids[hc->hc()]);
}
} else if (model() == EMS_DEVICE_FLAG_RC300 || model() == EMS_DEVICE_FLAG_RC100) {
if (Helpers::value2enum(value, set, FL_(enum_progMode))) {
write_command(set_typeids[hc->hc()], 11, set + 1, set_typeids[hc->hc()]);
}
} else if (model() == EMS_DEVICE_FLAG_JUNKERS) {
if (Helpers::value2enum(value, set, FL_(enum_progMode4))) {
if (has_flags(EMS_DEVICE_FLAG_JUNKERS_OLD)) {
write_command(set_typeids[hc->hc()], 10, set + 1, set_typeids[hc->hc()]);
} else {
write_command(set_typeids[hc->hc()], 13, set + 1, set_typeids[hc->hc()]);
}
}
}
if (set == 0xFF) {
return false;
}
return true;
}
// Set the temperature of the thermostat
// the id passed into this function is the heating circuit number
bool Thermostat::set_temperature(const float temperature, const uint8_t mode, const uint8_t hc_num) {
// get hc based on number
std::shared_ptr<Thermostat::HeatingCircuit> hc = heating_circuit(hc_num);
if (hc == nullptr) {
return false;
}
uint8_t model = this->model();
int8_t offset = -1; // we use -1 to check if there is a value
uint8_t factor = 2; // some temperatures only use 1
uint16_t validate_typeid = monitor_typeids[hc->hc()];
uint16_t set_typeid = set_typeids[hc->hc()];
if (model == EMS_DEVICE_FLAG_RC10) {
switch (mode) {
case HeatingCircuit::Mode::NIGHT:
offset = 3;
break;
case HeatingCircuit::Mode::DAY:
offset = 4;
break;
case HeatingCircuit::Mode::AUTO:
if (hc->get_mode() == HeatingCircuit::Mode::NIGHT) {
offset = 3;
} else {
offset = 4;
}
break;
default:
break;
}
} else if (model == EMS_DEVICE_FLAG_RC20) {
switch (mode) {
case HeatingCircuit::Mode::NIGHT:
offset = 3;
set_typeid = curve_typeids[hc->hc()];
validate_typeid = set_typeid;
break;
case HeatingCircuit::Mode::DAYLOW:
offset = 4;
set_typeid = curve_typeids[hc->hc()];
validate_typeid = set_typeid;
break;
case HeatingCircuit::Mode::DAYMID:
offset = 5;
set_typeid = curve_typeids[hc->hc()];
validate_typeid = set_typeid;
break;
case HeatingCircuit::Mode::DAY:
offset = 6;
set_typeid = curve_typeids[hc->hc()];
validate_typeid = set_typeid;
break;
case HeatingCircuit::Mode::MANUAL:
offset = EMS_OFFSET_RC20Set_temp_manual;
break;
case HeatingCircuit::Mode::AUTO:
if (hc->get_mode() == HeatingCircuit::Mode::MANUAL) {
offset = EMS_OFFSET_RC20Set_temp_manual;
} else {
offset = EMS_OFFSET_RC20Set_temp_auto;
}
break;
default:
break;
}
} else if (model == EMS_DEVICE_FLAG_RC30) {
switch (mode) {
case HeatingCircuit::Mode::NIGHT: // change the night temp
set_typeid = curve_typeids[hc->hc()];
offset = EMS_OFFSET_RC30Temp_temp_night;
break;
case HeatingCircuit::Mode::DAYLOW: // change the offset temp
set_typeid = curve_typeids[hc->hc()];
offset = EMS_OFFSET_RC30Temp_temp_daylow;
break;
case HeatingCircuit::Mode::DAYMID: // change the offset of flowtemp
set_typeid = curve_typeids[hc->hc()];
offset = EMS_OFFSET_RC30Temp_temp_daymid;
break;
case HeatingCircuit::Mode::DAY: // change the day temp
set_typeid = curve_typeids[hc->hc()];
offset = EMS_OFFSET_RC30Temp_temp_day;
break;
case HeatingCircuit::Mode::HOLIDAY: // change the holiday temp
set_typeid = curve_typeids[hc->hc()];
offset = EMS_OFFSET_RC30Temp_temp_holiday;
break;
default:
offset = EMS_OFFSET_RC30Set_temp;
break;
}
} else if ((model == EMS_DEVICE_FLAG_RC300) || (model == EMS_DEVICE_FLAG_RC100)) {
validate_typeid = set_typeids[hc->hc()];
switch (mode) {
case HeatingCircuit::Mode::SUMMER:
if (is_fetch(summer2_typeids[hc->hc()])) {
offset = 0x01;
set_typeid = summer2_typeids[hc->hc()];
} else {
offset = 0x06;
set_typeid = summer_typeids[hc->hc()];
}
validate_typeid = set_typeid;
factor = 1;
break;
case HeatingCircuit::Mode::MANUAL:
offset = 0x0A; // manual offset
break;
case HeatingCircuit::Mode::TEMPAUTO:
offset = 0x08; // auto offset
if (temperature == -1) {
factor = 1; // to write 0xFF
}
break;
case HeatingCircuit::Mode::COMFORT:
offset = 0x02; // comfort offset level 2
break;
case HeatingCircuit::Mode::ECO:
offset = 0x04; // eco offset
break;
case HeatingCircuit::Mode::OFFSET:
offset = 2;
set_typeid = summer_typeids[hc->hc()];
validate_typeid = set_typeid;
factor = 1;
break;
case HeatingCircuit::Mode::DESIGN:
set_typeid = summer_typeids[hc->hc()];
validate_typeid = set_typeid;
if (hc->heatingtype == 3) {
offset = 5;
} else {
offset = 4;
}
factor = 1;
break;
case HeatingCircuit::Mode::MINFLOW:
set_typeid = summer_typeids[hc->hc()];
validate_typeid = set_typeid;
offset = 8;
factor = 1;
break;
case HeatingCircuit::Mode::MAXFLOW:
set_typeid = curve_typeids[hc->hc()];
validate_typeid = set_typeid;
if (hc->heatingtype == 3) {
offset = 7;
} else {
offset = 8;
}
factor = 1;
break;
case HeatingCircuit::Mode::NOFROST:
set_typeid = curve_typeids[hc->hc()];
validate_typeid = set_typeid;
offset = 6;
factor = 1;
break;
case HeatingCircuit::Mode::ROOMINFLUENCE:
set_typeid = summer_typeids[hc->hc()];
validate_typeid = set_typeid;
offset = 0;
factor = 1;
break;
case HeatingCircuit::Mode::NOREDUCE:
offset = 12;
factor = 1;
break;
case HeatingCircuit::Mode::REDUCE:
offset = 9;
factor = 1;
break;
default:
// HeatingCircuit::Mode::AUTO:
uint8_t mode_ = hc->get_mode();
if (mode_ == HeatingCircuit::Mode::MANUAL) {
offset = 0x0A; // manual offset
} else {
offset = 0x08; // auto offset
// special case to reactivate auto temperature, see #737, #746
if (temperature == -1) {
factor = 1;
}
}
validate_typeid = monitor_typeids[hc->hc()]; // get setpoint roomtemp back
break;
}
} else if ((model == EMS_DEVICE_FLAG_RC20_N) || (model == EMS_DEVICE_FLAG_RC25)) {
switch (mode) {
case HeatingCircuit::Mode::MINFLOW:
offset = 15;
factor = 1;
break;
case HeatingCircuit::Mode::MAXFLOW:
offset = 16;
factor = 1;
break;
case HeatingCircuit::Mode::SUMMER:
offset = 17;
factor = 1;
break;
case HeatingCircuit::Mode::TEMPAUTO:
offset = 13;
break;
case HeatingCircuit::Mode::NIGHT: // change the night temp
offset = EMS_OFFSET_RC20_2_Set_temp_night;
break;
case HeatingCircuit::Mode::DAY: // change the day temp
offset = EMS_OFFSET_RC20_2_Set_temp_day;
break;
default:
// automatic selection, if no type is defined, we use the standard code
uint8_t mode_ = hc->get_mode();
if (mode_ == HeatingCircuit::Mode::NIGHT) {
offset = EMS_OFFSET_RC20_2_Set_temp_night;
} else if (mode_ == HeatingCircuit::Mode::DAY) {
offset = EMS_OFFSET_RC20_2_Set_temp_day;
} else {
offset = 13; // tempautotemp
}
break;
}
} else if ((model == EMS_DEVICE_FLAG_RC35) || (model == EMS_DEVICE_FLAG_RC30_N)) {
validate_typeid = set_typeids[hc->hc()];
switch (mode) {
case HeatingCircuit::Mode::NIGHT: // change the night temp
offset = EMS_OFFSET_RC35Set_temp_night;
break;
case HeatingCircuit::Mode::DAY: // change the day temp
offset = EMS_OFFSET_RC35Set_temp_day;
break;
case HeatingCircuit::Mode::HOLIDAY: // change the holiday temp
offset = EMS_OFFSET_RC35Set_temp_holiday;
break;
case HeatingCircuit::Mode::OFFSET: // change the offset temp
offset = EMS_OFFSET_RC35Set_temp_offset;
break;
case HeatingCircuit::Mode::FLOWOFFSET: // change the offset of flowtemp
offset = EMS_OFFSET_RC35Set_temp_flowoffset;
factor = 1;
break;
case HeatingCircuit::Mode::DESIGN:
if (hc->heatingtype == 3 && model == EMS_DEVICE_FLAG_RC35) {
offset = EMS_OFFSET_RC35Set_temp_design_floor;
} else {
offset = EMS_OFFSET_RC35Set_temp_design;
}
factor = 1;
break;
case HeatingCircuit::Mode::SUMMER:
offset = EMS_OFFSET_RC35Set_temp_summer;
factor = 1;
break;
case HeatingCircuit::Mode::NOFROST:
offset = EMS_OFFSET_RC35Set_temp_nofrost;
factor = 1;
break;
case HeatingCircuit::Mode::ROOMINFLUENCE:
offset = 4;
factor = 1;
break;
case HeatingCircuit::Mode::NOREDUCE:
offset = EMS_OFFSET_RC35Set_noreducetemp;
factor = 1;
break;
case HeatingCircuit::Mode::REDUCE:
offset = EMS_OFFSET_RC35Set_reducetemp;
factor = 1;
break;
case HeatingCircuit::Mode::VACREDUCE:
offset = EMS_OFFSET_RC35Set_vacreducetemp;
factor = 1;
break;
case HeatingCircuit::Mode::TEMPAUTO:
offset = EMS_OFFSET_RC35Set_seltemp;
break;
case HeatingCircuit::Mode::MINFLOW:
offset = 16;
factor = 1;
break;
case HeatingCircuit::Mode::MAXFLOW:
if (hc->heatingtype == 3 && model == EMS_DEVICE_FLAG_RC35) {
offset = 35;
} else {
offset = 15;
}
factor = 1;
break;
default:
// automatic selection, if no type is defined, we use the standard code
validate_typeid = monitor_typeids[hc->hc()]; //get setpoint roomtemp back
uint8_t mode_ = hc->get_mode();
if (mode_ == HeatingCircuit::Mode::NIGHT) {
offset = EMS_OFFSET_RC35Set_temp_night;
} else if (mode_ == HeatingCircuit::Mode::DAY) {
offset = EMS_OFFSET_RC35Set_temp_day;
} else if (model == EMS_DEVICE_FLAG_RC35) {
offset = EMS_OFFSET_RC35Set_seltemp; // https://github.com/emsesp/EMS-ESP/issues/310
} else {
// RC30_N missing temporary auto temperature https://github.com/emsesp/EMS-ESP32/issues/395
uint8_t modetype = hc->get_mode_type();
offset = (modetype == HeatingCircuit::Mode::NIGHT) ? EMS_OFFSET_RC35Set_temp_night : EMS_OFFSET_RC35Set_temp_day;
}
break;
}
} else if (model == EMS_DEVICE_FLAG_JUNKERS) {
// figure out if we have older or new thermostats, Heating Circuits on 0x65 or 0x79
// see https://github.com/emsesp/EMS-ESP/issues/335#issuecomment-593324716)
bool old_junkers = (has_flags(EMS_DEVICE_FLAG_JUNKERS_OLD));
if (!old_junkers) {
switch (mode) {
case HeatingCircuit::Mode::NOFROST:
offset = EMS_OFFSET_JunkersSetMessage_no_frost_temp;
break;
case HeatingCircuit::Mode::NIGHT:
case HeatingCircuit::Mode::ECO:
offset = EMS_OFFSET_JunkersSetMessage_night_temp;
break;
case HeatingCircuit::Mode::HEAT:
case HeatingCircuit::Mode::DAY:
offset = EMS_OFFSET_JunkersSetMessage_day_temp;
break;
default:
// automatic selection, if no type is defined, we check mode and modetype
uint8_t mode_ = hc->get_mode();
if (mode_ == HeatingCircuit::Mode::NIGHT || mode_ == HeatingCircuit::Mode::ECO) {
offset = EMS_OFFSET_JunkersSetMessage_night_temp;
} else if (mode_ == HeatingCircuit::Mode::DAY || mode_ == HeatingCircuit::Mode::HEAT) {
offset = EMS_OFFSET_JunkersSetMessage_day_temp;
} else if (mode_ == HeatingCircuit::Mode::NOFROST) {
offset = EMS_OFFSET_JunkersSetMessage_no_frost_temp;
} else {
// auto mode, missing temporary parameter, use modetype https://github.com/emsesp/EMS-ESP32/issues/400
uint8_t modetype = hc->get_mode_type();
if (modetype == HeatingCircuit::Mode::NIGHT || modetype == HeatingCircuit::Mode::ECO) {
offset = EMS_OFFSET_JunkersSetMessage_night_temp;
} else if (modetype == HeatingCircuit::Mode::DAY || modetype == HeatingCircuit::Mode::HEAT) {
offset = EMS_OFFSET_JunkersSetMessage_day_temp;
} else {
offset = EMS_OFFSET_JunkersSetMessage_no_frost_temp;
}
}
break;
}
} else {
// older, like the FR100
switch (mode) {
case HeatingCircuit::Mode::NOFROST:
offset = EMS_OFFSET_JunkersSetMessage2_no_frost_temp;
break;
case HeatingCircuit::Mode::ECO:
case HeatingCircuit::Mode::NIGHT:
offset = EMS_OFFSET_JunkersSetMessage2_eco_temp;
break;
case HeatingCircuit::Mode::HEAT:
case HeatingCircuit::Mode::DAY:
offset = EMS_OFFSET_JunkersSetMessage2_heat_temp;
break;
default:
// automatic selection, if no type is defined, we check mode and modetype
uint8_t mode_ = hc->get_mode();
if (mode_ == HeatingCircuit::Mode::NIGHT || mode_ == HeatingCircuit::Mode::ECO) {
offset = EMS_OFFSET_JunkersSetMessage2_eco_temp;
} else if (mode_ == HeatingCircuit::Mode::DAY || mode_ == HeatingCircuit::Mode::HEAT) {
offset = EMS_OFFSET_JunkersSetMessage2_heat_temp;
} else if (mode_ == HeatingCircuit::Mode::NOFROST) {
offset = EMS_OFFSET_JunkersSetMessage2_no_frost_temp;
} else {
// auto mode, missing temporary parameter, use modetype https://github.com/emsesp/EMS-ESP32/issues/400
uint8_t modetype = hc->get_mode_type();
if (modetype == HeatingCircuit::Mode::NIGHT || modetype == HeatingCircuit::Mode::ECO) {
offset = EMS_OFFSET_JunkersSetMessage2_eco_temp;
} else if (modetype == HeatingCircuit::Mode::DAY || modetype == HeatingCircuit::Mode::HEAT) {
offset = EMS_OFFSET_JunkersSetMessage2_heat_temp;
} else {
offset = EMS_OFFSET_JunkersSetMessage2_no_frost_temp;
}
}
break;
}
}
}
// if we know what to send and to where, go and do it
if (offset != -1) {
// add the write command to the Tx queue. value is *2
// post validate is the corresponding monitor or set type IDs as they can differ per model
write_command(set_typeid, offset, (uint8_t)(temperature * (float)factor), validate_typeid);
return true;
}
return false;
}
bool Thermostat::set_temperature_value(const char * value, const int8_t id, const uint8_t mode, bool relative) {
float f = 0;
uint8_t hc_num = (id == -1) ? AUTO_HEATING_CIRCUIT : id;
if (Helpers::value2temperature(value, f, relative)) {
return set_temperature(f, mode, hc_num);
} else {
return false;
}
}
bool Thermostat::set_temp(const char * value, const int8_t id) {
return set_temperature_value(value, id, HeatingCircuit::Mode::AUTO);
}
bool Thermostat::set_nighttemp(const char * value, const int8_t id) {
return set_temperature_value(value, id, HeatingCircuit::Mode::NIGHT);
}
bool Thermostat::set_daytemp(const char * value, const int8_t id) {
return set_temperature_value(value, id, HeatingCircuit::Mode::DAY);
}
bool Thermostat::set_daylowtemp(const char * value, const int8_t id) {
return set_temperature_value(value, id, HeatingCircuit::Mode::DAYLOW);
}
bool Thermostat::set_daymidtemp(const char * value, const int8_t id) {
return set_temperature_value(value, id, HeatingCircuit::Mode::DAYMID);
}
bool Thermostat::set_comforttemp(const char * value, const int8_t id) {
return set_temperature_value(value, id, HeatingCircuit::Mode::COMFORT);
}
bool Thermostat::set_nofrosttemp(const char * value, const int8_t id) {
return set_temperature_value(value, id, HeatingCircuit::Mode::NOFROST);
}
bool Thermostat::set_ecotemp(const char * value, const int8_t id) {
return set_temperature_value(value, id, HeatingCircuit::Mode::ECO);
}
bool Thermostat::set_heattemp(const char * value, const int8_t id) {
return set_temperature_value(value, id, HeatingCircuit::Mode::HEAT);
}
bool Thermostat::set_summertemp(const char * value, const int8_t id) {
return set_temperature_value(value, id, HeatingCircuit::Mode::SUMMER);
}
bool Thermostat::set_designtemp(const char * value, const int8_t id) {
return set_temperature_value(value, id, HeatingCircuit::Mode::DESIGN);
}
bool Thermostat::set_offsettemp(const char * value, const int8_t id) {
return set_temperature_value(value, id, HeatingCircuit::Mode::OFFSET);
}
bool Thermostat::set_holidaytemp(const char * value, const int8_t id) {
return set_temperature_value(value, id, HeatingCircuit::Mode::HOLIDAY);
}
bool Thermostat::set_manualtemp(const char * value, const int8_t id) {
return set_temperature_value(value, id, HeatingCircuit::Mode::MANUAL);
}
bool Thermostat::set_tempautotemp(const char * value, const int8_t id) {
return set_temperature_value(value, id, HeatingCircuit::Mode::TEMPAUTO);
}
bool Thermostat::set_noreducetemp(const char * value, const int8_t id) {
return set_temperature_value(value, id, HeatingCircuit::Mode::NOREDUCE);
}
bool Thermostat::set_reducetemp(const char * value, const int8_t id) {
return set_temperature_value(value, id, HeatingCircuit::Mode::REDUCE);
}
bool Thermostat::set_vacreducetemp(const char * value, const int8_t id) {
return set_temperature_value(value, id, HeatingCircuit::Mode::VACREDUCE);
}
bool Thermostat::set_flowtempoffset(const char * value, const int8_t id) {
return set_temperature_value(value, id, HeatingCircuit::Mode::FLOWOFFSET, true);
}
bool Thermostat::set_maxflowtemp(const char * value, const int8_t id) {
return set_temperature_value(value, id, HeatingCircuit::Mode::MAXFLOW);
}
bool Thermostat::set_minflowtemp(const char * value, const int8_t id) {
return set_temperature_value(value, id, HeatingCircuit::Mode::MINFLOW);
}
bool Thermostat::set_roominfluence(const char * value, const int8_t id) {
return set_temperature_value(value, id, HeatingCircuit::Mode::ROOMINFLUENCE, true);
}
// register main device values, top level for all thermostats (excluding heating circuits)
// as these are done in void Thermostat::register_device_values_hc()
void Thermostat::register_device_values() {
// Common for all thermostats
register_device_value(DeviceValueTAG::TAG_THERMOSTAT_DATA, &errorCode_, DeviceValueType::STRING, nullptr, FL_(errorCode), DeviceValueUOM::NONE);
register_device_value(DeviceValueTAG::TAG_THERMOSTAT_DATA, &lastCode_, DeviceValueType::STRING, nullptr, FL_(lastCode), DeviceValueUOM::NONE);
switch (this->model()) {
case EMS_DEVICE_FLAG_RC100:
case EMS_DEVICE_FLAG_RC300:
register_device_value(DeviceValueTAG::TAG_THERMOSTAT_DATA,
&dateTime_,
DeviceValueType::STRING,
FL_(tpl_datetime),
FL_(dateTime),
DeviceValueUOM::NONE,
MAKE_CF_CB(set_datetime));
register_device_value(DeviceValueTAG::TAG_THERMOSTAT_DATA,
&floordrystatus_,
DeviceValueType::ENUM,
FL_(enum_floordrystatus),
FL_(floordrystatus),
DeviceValueUOM::NONE);
register_device_value(DeviceValueTAG::TAG_THERMOSTAT_DATA,
&dampedoutdoortemp2_,
DeviceValueType::SHORT,
FL_(div10),
FL_(dampedoutdoortemp),
DeviceValueUOM::DEGREES);
register_device_value(DeviceValueTAG::TAG_THERMOSTAT_DATA, &floordrytemp_, DeviceValueType::UINT, nullptr, FL_(floordrytemp), DeviceValueUOM::DEGREES);
register_device_value(DeviceValueTAG::TAG_THERMOSTAT_DATA,
&ibaBuildingType_,
DeviceValueType::ENUM,
FL_(enum_ibaBuildingType),
FL_(ibaBuildingType),
DeviceValueUOM::NONE,
MAKE_CF_CB(set_building));
register_device_value(DeviceValueTAG::TAG_THERMOSTAT_DATA,
&ibaMinExtTemperature_,
DeviceValueType::INT,
nullptr,
FL_(ibaMinExtTemperature),
DeviceValueUOM::DEGREES,
MAKE_CF_CB(set_minexttemp));
register_device_value(
DeviceValueTAG::TAG_DEVICE_DATA_WW, &wwSetTemp_, DeviceValueType::UINT, nullptr, FL_(wwSetTemp), DeviceValueUOM::DEGREES, MAKE_CF_CB(set_wwtemp));
register_device_value(
DeviceValueTAG::TAG_DEVICE_DATA_WW, &wwMode_, DeviceValueType::ENUM, FL_(enum_wwMode), FL_(wwMode), DeviceValueUOM::NONE, MAKE_CF_CB(set_wwmode));
register_device_value(DeviceValueTAG::TAG_DEVICE_DATA_WW,
&wwSetTempLow_,
DeviceValueType::UINT,
nullptr,
FL_(wwSetTempLow),
DeviceValueUOM::DEGREES,
MAKE_CF_CB(set_wwtemplow));
register_device_value(DeviceValueTAG::TAG_DEVICE_DATA_WW,
&wwCircMode_,
DeviceValueType::ENUM,
FL_(enum_wwCircMode),
FL_(wwCircMode),
DeviceValueUOM::NONE,
MAKE_CF_CB(set_wwcircmode));
register_device_value(DeviceValueTAG::TAG_DEVICE_DATA_WW,
&wwChargeDuration_,
DeviceValueType::UINT,
FL_(mul15),
FL_(wwChargeDuration),
DeviceValueUOM::MINUTES,
MAKE_CF_CB(set_wwchargeduration));
register_device_value(
DeviceValueTAG::TAG_DEVICE_DATA_WW, &wwCharge_, DeviceValueType::BOOL, nullptr, FL_(wwCharge), DeviceValueUOM::NONE, MAKE_CF_CB(set_wwcharge));
register_device_value(DeviceValueTAG::TAG_DEVICE_DATA_WW, &wwExtra1_, DeviceValueType::UINT, nullptr, FL_(wwExtra1), DeviceValueUOM::DEGREES);
register_device_value(DeviceValueTAG::TAG_DEVICE_DATA_WW, &wwExtra2_, DeviceValueType::UINT, nullptr, FL_(wwExtra2), DeviceValueUOM::DEGREES);
register_device_value(DeviceValueTAG::TAG_DEVICE_DATA_WW,
&wwDisinfecting_,
DeviceValueType::BOOL,
nullptr,
FL_(wwDisinfecting),
DeviceValueUOM::NONE,
MAKE_CF_CB(set_wwDisinfect));
register_device_value(DeviceValueTAG::TAG_DEVICE_DATA_WW,
&wwDisinfectDay_,
DeviceValueType::ENUM,
FL_(enum_dayOfWeek),
FL_(wwDisinfectDay),
DeviceValueUOM::NONE,
MAKE_CF_CB(set_wwDisinfectDay));
register_device_value(DeviceValueTAG::TAG_DEVICE_DATA_WW,
&wwDisinfectHour_,
DeviceValueType::UINT,
FL_(mul15),
FL_(wwDisinfectTime),
DeviceValueUOM::MINUTES,
MAKE_CF_CB(set_wwDisinfectHour),
0,
1431);
break;
case EMS_DEVICE_FLAG_RC10:
register_device_value(DeviceValueTAG::TAG_THERMOSTAT_DATA,
&ibaCalIntTemperature_,
DeviceValueType::INT,
FL_(div10),
FL_(ibaCalIntTemperature),
DeviceValueUOM::DEGREES_R,
MAKE_CF_CB(set_calinttemp));
register_device_value(DeviceValueTAG::TAG_THERMOSTAT_DATA,
&heatingpid_,
DeviceValueType::ENUM,
FL_(enum_PID),
FL_(heatingPID),
DeviceValueUOM::NONE,
MAKE_CF_CB(set_heatingpid));
register_device_value(
DeviceValueTAG::TAG_THERMOSTAT_DATA, &backlight_, DeviceValueType::BOOL, nullptr, FL_(backlight), DeviceValueUOM::NONE, MAKE_CF_CB(set_backlight));
register_device_value(
DeviceValueTAG::TAG_DEVICE_DATA_WW, &wwMode_, DeviceValueType::ENUM, FL_(enum_wwMode3), FL_(wwMode), DeviceValueUOM::NONE, MAKE_CF_CB(set_wwmode));
break;
case EMS_DEVICE_FLAG_RC20_N:
case EMS_DEVICE_FLAG_RC25:
register_device_value(DeviceValueTAG::TAG_THERMOSTAT_DATA, &dateTime_, DeviceValueType::STRING, nullptr, FL_(dateTime), DeviceValueUOM::NONE); // can't set datetime
register_device_value(DeviceValueTAG::TAG_THERMOSTAT_DATA,
&ibaMinExtTemperature_,
DeviceValueType::INT,
nullptr,
FL_(ibaMinExtTemperature),
DeviceValueUOM::DEGREES,
MAKE_CF_CB(set_minexttemp));
break;
case EMS_DEVICE_FLAG_RC20:
register_device_value(DeviceValueTAG::TAG_THERMOSTAT_DATA, &dateTime_, DeviceValueType::STRING, nullptr, FL_(dateTime), DeviceValueUOM::NONE); // can't set datetime
break;
case EMS_DEVICE_FLAG_RC30:
register_device_value(DeviceValueTAG::TAG_THERMOSTAT_DATA, &dateTime_, DeviceValueType::STRING, nullptr, FL_(dateTime), DeviceValueUOM::NONE); // can't set datetime
register_device_value(DeviceValueTAG::TAG_THERMOSTAT_DATA,
&ibaClockOffset_,
DeviceValueType::INT,
nullptr,
FL_(ibaClockOffset),
DeviceValueUOM::SECONDS,
MAKE_CF_CB(set_clockoffset)); // offset (in sec) to clock, 0xff=-1s, 0x02=2s
register_device_value(
DeviceValueTAG::TAG_THERMOSTAT_DATA, &autodst_, DeviceValueType::BOOL, nullptr, FL_(autodst), DeviceValueUOM::NONE, MAKE_CF_CB(set_autodst));
register_device_value(DeviceValueTAG::TAG_THERMOSTAT_DATA,
&ibaLanguage_,
DeviceValueType::ENUM,
FL_(enum_ibaLanguage_RC30),
FL_(ibaLanguage),
DeviceValueUOM::NONE,
MAKE_CF_CB(set_language));
register_device_value(DeviceValueTAG::TAG_THERMOSTAT_DATA,
&ibaMainDisplay_,
DeviceValueType::ENUM,
FL_(enum_ibaMainDisplay),
FL_(ibaMainDisplay),
DeviceValueUOM::NONE);
register_device_value(
DeviceValueTAG::TAG_THERMOSTAT_DATA, &backlight_, DeviceValueType::BOOL, nullptr, FL_(backlight), DeviceValueUOM::NONE, MAKE_CF_CB(set_backlight));
register_device_value(DeviceValueTAG::TAG_THERMOSTAT_DATA,
&brightness_,
DeviceValueType::INT,
nullptr,
FL_(brightness),
DeviceValueUOM::NONE,
MAKE_CF_CB(set_brightness),
-15,
15);
register_device_value(DeviceValueTAG::TAG_THERMOSTAT_DATA,
&mixingvalves_,
DeviceValueType::UINT,
nullptr,
FL_(mixingvalves),
DeviceValueUOM::NONE,
MAKE_CF_CB(set_mixingvalves),
0,
2);
register_device_value(DeviceValueTAG::TAG_THERMOSTAT_DATA,
&ibaBuildingType_,
DeviceValueType::ENUM,
FL_(enum_ibaBuildingType),
FL_(ibaBuildingType),
DeviceValueUOM::NONE,
MAKE_CF_CB(set_building));
register_device_value(DeviceValueTAG::TAG_THERMOSTAT_DATA,
&heatingpid_,
DeviceValueType::ENUM,
FL_(enum_PID),
FL_(heatingPID),
DeviceValueUOM::NONE,
MAKE_CF_CB(set_heatingpid));
register_device_value(DeviceValueTAG::TAG_THERMOSTAT_DATA,
&preheating_,
DeviceValueType::BOOL,
nullptr,
FL_(preheating),
DeviceValueUOM::NONE,
MAKE_CF_CB(set_preheating));
register_device_value(DeviceValueTAG::TAG_THERMOSTAT_DATA,
&ibaCalIntTemperature_,
DeviceValueType::INT,
FL_(div10),
FL_(ibaCalIntTemperature),
DeviceValueUOM::DEGREES_R,
MAKE_CF_CB(set_calinttemp));
register_device_value(DeviceValueTAG::TAG_THERMOSTAT_DATA,
&offtemp_,
DeviceValueType::UINT,
FL_(div2),
FL_(offtemp),
DeviceValueUOM::DEGREES,
MAKE_CF_CB(set_offtemp),
5,
30);
register_device_value(
DeviceValueTAG::TAG_DEVICE_DATA_WW, &wwMode_, DeviceValueType::ENUM, FL_(enum_wwMode3), FL_(wwMode), DeviceValueUOM::NONE, MAKE_CF_CB(set_wwmode));
register_device_value(DeviceValueTAG::TAG_DEVICE_DATA_WW,
&wwWhenModeOff_,
DeviceValueType::BOOL,
nullptr,
FL_(wwWhenModeOff),
DeviceValueUOM::NONE,
MAKE_CF_CB(set_wwwhenmodeoff));
register_device_value(DeviceValueTAG::TAG_DEVICE_DATA_WW,
&wwDisinfecting_,
DeviceValueType::BOOL,
nullptr,
FL_(wwDisinfecting),
DeviceValueUOM::NONE,
MAKE_CF_CB(set_wwDisinfect));
register_device_value(DeviceValueTAG::TAG_DEVICE_DATA_WW,
&wwDisinfectDay_,
DeviceValueType::ENUM,
FL_(enum_dayOfWeek),
FL_(wwDisinfectDay),
DeviceValueUOM::NONE,
MAKE_CF_CB(set_wwDisinfectDay));
register_device_value(DeviceValueTAG::TAG_DEVICE_DATA_WW,
&wwDisinfectHour_,
DeviceValueType::UINT,
nullptr,
FL_(wwDisinfectHour),
DeviceValueUOM::NONE,
MAKE_CF_CB(set_wwDisinfectHour),
0,
23);
break;
case EMS_DEVICE_FLAG_RC30_N:
register_device_value(DeviceValueTAG::TAG_THERMOSTAT_DATA, &dateTime_, DeviceValueType::STRING, nullptr, FL_(dateTime), DeviceValueUOM::NONE); // can't set datetime
register_device_value(DeviceValueTAG::TAG_THERMOSTAT_DATA,
&ibaMainDisplay_,
DeviceValueType::ENUM,
FL_(enum_ibaMainDisplay),
FL_(ibaMainDisplay),
DeviceValueUOM::NONE);
register_device_value(DeviceValueTAG::TAG_THERMOSTAT_DATA,
&ibaLanguage_,
DeviceValueType::ENUM,
FL_(enum_ibaLanguage),
FL_(ibaLanguage),
DeviceValueUOM::NONE);
register_device_value(DeviceValueTAG::TAG_THERMOSTAT_DATA,
&ibaClockOffset_,
DeviceValueType::INT,
nullptr,
FL_(ibaClockOffset),
DeviceValueUOM::SECONDS); // offset (in sec) to clock, 0xff=-1s, 0x02=2s
register_device_value(DeviceValueTAG::TAG_THERMOSTAT_DATA,
&ibaCalIntTemperature_,
DeviceValueType::INT,
FL_(div10),
FL_(ibaCalIntTemperature),
DeviceValueUOM::DEGREES_R,
MAKE_CF_CB(set_calinttemp));
register_device_value(DeviceValueTAG::TAG_THERMOSTAT_DATA,
&ibaMinExtTemperature_,
DeviceValueType::INT,
nullptr,
FL_(ibaMinExtTemperature),
DeviceValueUOM::DEGREES,
MAKE_CF_CB(set_minexttemp));
register_device_value(DeviceValueTAG::TAG_THERMOSTAT_DATA, &dampedoutdoortemp_, DeviceValueType::INT, nullptr, FL_(dampedoutdoortemp), DeviceValueUOM::DEGREES);
register_device_value(DeviceValueTAG::TAG_THERMOSTAT_DATA,
&ibaBuildingType_,
DeviceValueType::ENUM,
FL_(enum_ibaBuildingType),
FL_(ibaBuildingType),
DeviceValueUOM::NONE,
MAKE_CF_CB(set_building));
register_device_value(
DeviceValueTAG::TAG_DEVICE_DATA_WW, &wwMode_, DeviceValueType::ENUM, FL_(enum_wwMode2), FL_(wwMode), DeviceValueUOM::NONE, MAKE_CF_CB(set_wwmode));
register_device_value(DeviceValueTAG::TAG_DEVICE_DATA_WW,
&wwCircMode_,
DeviceValueType::ENUM,
FL_(enum_wwMode2),
FL_(wwCircMode),
DeviceValueUOM::NONE,
MAKE_CF_CB(set_wwcircmode));
register_device_value(DeviceValueTAG::TAG_DEVICE_DATA_WW,
&wwProgMode_,
DeviceValueType::ENUM,
FL_(enum_wwProgMode),
FL_(wwProgMode),
DeviceValueUOM::NONE,
MAKE_CF_CB(set_wwProgMode));
register_device_value(DeviceValueTAG::TAG_DEVICE_DATA_WW,
&wwCircProg_,
DeviceValueType::ENUM,
FL_(enum_wwProgMode),
FL_(wwCircProg),
DeviceValueUOM::NONE,
MAKE_CF_CB(set_wwCircProg));
register_device_value(DeviceValueTAG::TAG_DEVICE_DATA_WW,
&wwDisinfecting_,
DeviceValueType::BOOL,
nullptr,
FL_(wwDisinfecting),
DeviceValueUOM::NONE,
MAKE_CF_CB(set_wwDisinfect));
register_device_value(DeviceValueTAG::TAG_DEVICE_DATA_WW,
&wwDisinfectDay_,
DeviceValueType::ENUM,
FL_(enum_dayOfWeek),
FL_(wwDisinfectDay),
DeviceValueUOM::NONE,
MAKE_CF_CB(set_wwDisinfectDay));
register_device_value(DeviceValueTAG::TAG_DEVICE_DATA_WW,
&wwDisinfectHour_,
DeviceValueType::UINT,
nullptr,
FL_(wwDisinfectHour),
DeviceValueUOM::NONE,
MAKE_CF_CB(set_wwDisinfectHour),
0,
23);
register_device_value(DeviceValueTAG::TAG_DEVICE_DATA_WW,
&wwMaxTemp_,
DeviceValueType::UINT,
nullptr,
FL_(wwMaxTemp),
DeviceValueUOM::DEGREES,
MAKE_CF_CB(set_wwMaxTemp));
register_device_value(DeviceValueTAG::TAG_DEVICE_DATA_WW,
&wwOneTimeKey_,
DeviceValueType::BOOL,
nullptr,
FL_(wwOneTimeKey),
DeviceValueUOM::NONE,
MAKE_CF_CB(set_wwOneTimeKey));
register_device_value(DeviceValueTAG::TAG_DEVICE_DATA_WW,
&wwSwitchTime_,
DeviceValueType::STRING,
FL_(tpl_switchtime),
FL_(wwswitchtime),
DeviceValueUOM::NONE,
MAKE_CF_CB(set_wwSwitchTime));
register_device_value(DeviceValueTAG::TAG_DEVICE_DATA_WW,
&wwCircSwitchTime_,
DeviceValueType::STRING,
FL_(tpl_switchtime),
FL_(wwcircswitchtime),
DeviceValueUOM::NONE,
MAKE_CF_CB(set_wwCircSwitchTime));
break;
case EMS_DEVICE_FLAG_RC35:
register_device_value(DeviceValueTAG::TAG_THERMOSTAT_DATA,
&dateTime_,
DeviceValueType::STRING,
FL_(tpl_datetime),
FL_(dateTime),
DeviceValueUOM::NONE,
MAKE_CF_CB(set_datetime));
register_device_value(DeviceValueTAG::TAG_THERMOSTAT_DATA,
&ibaCalIntTemperature_,
DeviceValueType::INT,
FL_(div10),
FL_(ibaCalIntTemperature),
DeviceValueUOM::DEGREES_R,
MAKE_CF_CB(set_calinttemp),
-5,
5);
register_device_value(DeviceValueTAG::TAG_THERMOSTAT_DATA,
&ibaMinExtTemperature_,
DeviceValueType::INT,
nullptr,
FL_(ibaMinExtTemperature),
DeviceValueUOM::DEGREES,
MAKE_CF_CB(set_minexttemp));
register_device_value(DeviceValueTAG::TAG_THERMOSTAT_DATA, &tempsensor1_, DeviceValueType::USHORT, FL_(div10), FL_(tempsensor1), DeviceValueUOM::DEGREES);
register_device_value(DeviceValueTAG::TAG_THERMOSTAT_DATA, &tempsensor2_, DeviceValueType::USHORT, FL_(div10), FL_(tempsensor2), DeviceValueUOM::DEGREES);
register_device_value(
DeviceValueTAG::TAG_THERMOSTAT_DATA, &ibaDamping_, DeviceValueType::BOOL, nullptr, FL_(damping), DeviceValueUOM::NONE, MAKE_CF_CB(set_damping));
register_device_value(DeviceValueTAG::TAG_THERMOSTAT_DATA, &dampedoutdoortemp_, DeviceValueType::INT, nullptr, FL_(dampedoutdoortemp), DeviceValueUOM::DEGREES);
register_device_value(DeviceValueTAG::TAG_THERMOSTAT_DATA,
&ibaBuildingType_,
DeviceValueType::ENUM,
FL_(enum_ibaBuildingType),
FL_(ibaBuildingType),
DeviceValueUOM::NONE,
MAKE_CF_CB(set_building));
register_device_value(
DeviceValueTAG::TAG_DEVICE_DATA_WW, &wwMode_, DeviceValueType::ENUM, FL_(enum_wwMode2), FL_(wwMode), DeviceValueUOM::NONE, MAKE_CF_CB(set_wwmode));
register_device_value(DeviceValueTAG::TAG_DEVICE_DATA_WW,
&wwCircMode_,
DeviceValueType::ENUM,
FL_(enum_wwMode2),
FL_(wwCircMode),
DeviceValueUOM::NONE,
MAKE_CF_CB(set_wwcircmode));
register_device_value(DeviceValueTAG::TAG_DEVICE_DATA_WW,
&wwProgMode_,
DeviceValueType::ENUM,
FL_(enum_wwProgMode),
FL_(wwProgMode),
DeviceValueUOM::NONE,
MAKE_CF_CB(set_wwProgMode));
register_device_value(DeviceValueTAG::TAG_DEVICE_DATA_WW,
&wwCircProg_,
DeviceValueType::ENUM,
FL_(enum_wwProgMode),
FL_(wwCircProg),
DeviceValueUOM::NONE,
MAKE_CF_CB(set_wwCircProg));
register_device_value(DeviceValueTAG::TAG_DEVICE_DATA_WW,
&wwDisinfecting_,
DeviceValueType::BOOL,
nullptr,
FL_(wwDisinfecting),
DeviceValueUOM::NONE,
MAKE_CF_CB(set_wwDisinfect));
register_device_value(DeviceValueTAG::TAG_DEVICE_DATA_WW,
&wwDisinfectDay_,
DeviceValueType::ENUM,
FL_(enum_dayOfWeek),
FL_(wwDisinfectDay),
DeviceValueUOM::NONE,
MAKE_CF_CB(set_wwDisinfectDay));
register_device_value(DeviceValueTAG::TAG_DEVICE_DATA_WW,
&wwDisinfectHour_,
DeviceValueType::UINT,
nullptr,
FL_(wwDisinfectHour),
DeviceValueUOM::NONE,
MAKE_CF_CB(set_wwDisinfectHour),
0,
23);
register_device_value(DeviceValueTAG::TAG_DEVICE_DATA_WW,
&wwMaxTemp_,
DeviceValueType::UINT,
nullptr,
FL_(wwMaxTemp),
DeviceValueUOM::DEGREES,
MAKE_CF_CB(set_wwMaxTemp));
register_device_value(DeviceValueTAG::TAG_DEVICE_DATA_WW,
&wwOneTimeKey_,
DeviceValueType::BOOL,
nullptr,
FL_(wwOneTimeKey),
DeviceValueUOM::NONE,
MAKE_CF_CB(set_wwOneTimeKey));
register_device_value(DeviceValueTAG::TAG_DEVICE_DATA_WW,
&wwSwitchTime_,
DeviceValueType::STRING,
FL_(tpl_switchtime),
FL_(wwswitchtime),
DeviceValueUOM::NONE,
MAKE_CF_CB(set_wwSwitchTime));
register_device_value(DeviceValueTAG::TAG_DEVICE_DATA_WW,
&wwCircSwitchTime_,
DeviceValueType::STRING,
FL_(tpl_switchtime),
FL_(wwcircswitchtime),
DeviceValueUOM::NONE,
MAKE_CF_CB(set_wwCircSwitchTime));
break;
case EMS_DEVICE_FLAG_JUNKERS:
register_device_value(DeviceValueTAG::TAG_THERMOSTAT_DATA,
&dateTime_,
DeviceValueType::STRING,
FL_(tpl_datetime),
FL_(dateTime),
DeviceValueUOM::NONE,
MAKE_CF_CB(set_datetime));
register_device_value(DeviceValueTAG::TAG_THERMOSTAT_DATA,
&hybridStrategy_,
DeviceValueType::ENUM,
FL_(enum_hybridStrategy),
FL_(hybridStrategy),
DeviceValueUOM::NONE,
MAKE_CF_CB(set_hybridStrategy));
register_device_value(DeviceValueTAG::TAG_THERMOSTAT_DATA,
&switchOverTemp_,
DeviceValueType::INT,
nullptr,
FL_(switchOverTemp),
DeviceValueUOM::DEGREES,
MAKE_CF_CB(set_switchOverTemp),
-20,
20);
register_device_value(DeviceValueTAG::TAG_THERMOSTAT_DATA,
&energyCostRatio_,
DeviceValueType::UINT,
FL_(div10),
FL_(energyCostRatio),
DeviceValueUOM::NONE,
MAKE_CF_CB(set_energyCostRatio),
0,
20);
register_device_value(DeviceValueTAG::TAG_THERMOSTAT_DATA,
&fossileFactor_,
DeviceValueType::UINT,
FL_(div10),
FL_(fossileFactor),
DeviceValueUOM::NONE,
MAKE_CF_CB(set_fossileFactor),
0,
5);
register_device_value(DeviceValueTAG::TAG_THERMOSTAT_DATA,
&electricFactor_,
DeviceValueType::UINT,
FL_(div10),
FL_(electricFactor),
DeviceValueUOM::NONE,
MAKE_CF_CB(set_electricFactor),
0,
5);
register_device_value(DeviceValueTAG::TAG_THERMOSTAT_DATA,
&delayBoiler_,
DeviceValueType::UINT,
nullptr,
FL_(delayBoiler),
DeviceValueUOM::MINUTES,
MAKE_CF_CB(set_delayBoiler),
5,
120);
register_device_value(DeviceValueTAG::TAG_THERMOSTAT_DATA,
&tempDiffBoiler_,
DeviceValueType::UINT,
nullptr,
FL_(tempDiffBoiler),
DeviceValueUOM::DEGREES_R,
MAKE_CF_CB(set_tempDiffBoiler),
1,
99);
break;
case EMS_DEVICE_FLAG_EASY:
// Easy TC100 have no date/time, see issue #100, not sure about CT200, so leave it.
register_device_value(DeviceValueTAG::TAG_THERMOSTAT_DATA, &dateTime_, DeviceValueType::STRING, nullptr, FL_(dateTime), DeviceValueUOM::NONE); // can't set datetime
break;
case EMS_DEVICE_FLAG_CRF:
default:
register_device_value(DeviceValueTAG::TAG_THERMOSTAT_DATA, &dateTime_, DeviceValueType::STRING, nullptr, FL_(dateTime), DeviceValueUOM::NONE); // can't set datetime
break;
}
}
// registers the values for a heating circuit
void Thermostat::register_device_values_hc(std::shared_ptr<Thermostat::HeatingCircuit> hc) {
uint8_t model = hc->get_model();
// heating circuit
uint8_t tag = DeviceValueTAG::TAG_HC1 + hc->hc();
// different logic on how temperature values are stored, depending on model
const __FlashStringHelper * const * seltemp_divider;
const __FlashStringHelper * const * roomtemp_divider;
if (model == EMS_DEVICE_FLAG_EASY) {
seltemp_divider = FL_(div100);
roomtemp_divider = FL_(div100);
} else if (model == EMS_DEVICE_FLAG_JUNKERS) {
seltemp_divider = FL_(div10);
roomtemp_divider = FL_(div10);
} else {
seltemp_divider = FL_(div2);
roomtemp_divider = FL_(div10);
}
if (has_flags(EMS_DEVICE_FLAG_NO_WRITE) || device_id() != EMSESP::actual_master_thermostat()) {
register_device_value(tag, &hc->selTemp, DeviceValueType::SHORT, seltemp_divider, FL_(selRoomTemp), DeviceValueUOM::DEGREES);
} else {
register_device_value(tag, &hc->selTemp, DeviceValueType::SHORT, seltemp_divider, FL_(selRoomTemp), DeviceValueUOM::DEGREES, MAKE_CF_CB(set_temp), 0, 29);
}
register_device_value(tag, &hc->roomTemp, DeviceValueType::SHORT, roomtemp_divider, FL_(roomTemp), DeviceValueUOM::DEGREES);
if (device_id() != EMSESP::actual_master_thermostat()) {
return;
}
register_device_value(tag, &hc->climate, DeviceValueType::ENUM, FL_(enum_climate), FL_(climate), DeviceValueUOM::NONE);
switch (model) {
case EMS_DEVICE_FLAG_RC10:
register_device_value(tag, &hc->mode, DeviceValueType::ENUM, FL_(enum_mode6), FL_(mode), DeviceValueUOM::NONE, MAKE_CF_CB(set_mode));
register_device_value(tag, &hc->daytemp, DeviceValueType::UINT, FL_(div2), FL_(daytemp), DeviceValueUOM::DEGREES, MAKE_CF_CB(set_daytemp));
register_device_value(tag, &hc->nighttemp, DeviceValueType::UINT, FL_(div2), FL_(nighttemp), DeviceValueUOM::DEGREES, MAKE_CF_CB(set_nighttemp));
register_device_value(tag, &hc->reducehours, DeviceValueType::UINT, nullptr, FL_(reducehours), DeviceValueUOM::HOURS, MAKE_CF_CB(set_reducehours));
register_device_value(tag, &hc->reduceminutes, DeviceValueType::USHORT, nullptr, FL_(reduceminutes), DeviceValueUOM::MINUTES);
break;
case EMS_DEVICE_FLAG_RC100:
case EMS_DEVICE_FLAG_RC300:
register_device_value(tag, &hc->mode, DeviceValueType::ENUM, FL_(enum_mode), FL_(mode), DeviceValueUOM::NONE, MAKE_CF_CB(set_mode));
register_device_value(tag, &hc->modetype, DeviceValueType::ENUM, FL_(enum_modetype), FL_(modetype), DeviceValueUOM::NONE);
register_device_value(tag, &hc->nighttemp, DeviceValueType::UINT, FL_(div2), FL_(ecotemp), DeviceValueUOM::DEGREES, MAKE_CF_CB(set_ecotemp));
register_device_value(tag, &hc->manualtemp, DeviceValueType::UINT, FL_(div2), FL_(manualtemp), DeviceValueUOM::DEGREES, MAKE_CF_CB(set_manualtemp));
register_device_value(tag, &hc->daytemp, DeviceValueType::UINT, FL_(div2), FL_(comforttemp), DeviceValueUOM::DEGREES, MAKE_CF_CB(set_comforttemp));
register_device_value(tag, &hc->summertemp, DeviceValueType::UINT, nullptr, FL_(summertemp), DeviceValueUOM::DEGREES, MAKE_CF_CB(set_summertemp));
register_device_value(tag, &hc->designtemp, DeviceValueType::UINT, nullptr, FL_(designtemp), DeviceValueUOM::DEGREES, MAKE_CF_CB(set_designtemp));
register_device_value(tag, &hc->offsettemp, DeviceValueType::INT, nullptr, FL_(offsettemp), DeviceValueUOM::DEGREES_R, MAKE_CF_CB(set_offsettemp));
register_device_value(tag, &hc->minflowtemp, DeviceValueType::UINT, nullptr, FL_(minflowtemp), DeviceValueUOM::DEGREES, MAKE_CF_CB(set_minflowtemp));
register_device_value(tag, &hc->maxflowtemp, DeviceValueType::UINT, nullptr, FL_(maxflowtemp), DeviceValueUOM::DEGREES, MAKE_CF_CB(set_maxflowtemp));
register_device_value(tag, &hc->roominfluence, DeviceValueType::UINT, nullptr, FL_(roominfluence), DeviceValueUOM::DEGREES_R, MAKE_CF_CB(set_roominfluence));
register_device_value(
tag, &hc->roominfl_factor, DeviceValueType::UINT, FL_(div10), FL_(roominfl_factor), DeviceValueUOM::NONE, MAKE_CF_CB(set_roominfl_factor));
register_device_value(tag, &hc->curroominfl, DeviceValueType::SHORT, FL_(div10), FL_(curroominfl), DeviceValueUOM::DEGREES_R);
register_device_value(tag, &hc->nofrosttemp, DeviceValueType::INT, nullptr, FL_(nofrosttemp), DeviceValueUOM::DEGREES, MAKE_CF_CB(set_nofrosttemp));
register_device_value(tag, &hc->targetflowtemp, DeviceValueType::UINT, nullptr, FL_(targetflowtemp), DeviceValueUOM::DEGREES);
register_device_value(
tag, &hc->heatingtype, DeviceValueType::ENUM, FL_(enum_heatingtype), FL_(heatingtype), DeviceValueUOM::NONE, MAKE_CF_CB(set_heatingtype));
register_device_value(
tag, &hc->summersetmode, DeviceValueType::ENUM, FL_(enum_summermode), FL_(summersetmode), DeviceValueUOM::NONE, MAKE_CF_CB(set_summermode));
register_device_value(tag,
&hc->hpoperatingmode,
DeviceValueType::ENUM,
FL_(enum_hpoperatingmode),
FL_(hpoperatingmode),
DeviceValueUOM::NONE,
MAKE_CF_CB(set_summermode));
register_device_value(tag, &hc->summermode, DeviceValueType::ENUM, FL_(enum_summer), FL_(summermode), DeviceValueUOM::NONE);
register_device_value(
tag, &hc->controlmode, DeviceValueType::ENUM, FL_(enum_controlmode), FL_(controlmode), DeviceValueUOM::NONE, MAKE_CF_CB(set_controlmode));
register_device_value(tag, &hc->program, DeviceValueType::ENUM, FL_(enum_progMode), FL_(program), DeviceValueUOM::NONE, MAKE_CF_CB(set_program));
register_device_value(
tag, &hc->tempautotemp, DeviceValueType::INT, FL_(div2), FL_(tempautotemp), DeviceValueUOM::DEGREES, MAKE_CF_CB(set_tempautotemp), -1, 30);
register_device_value(tag, &hc->fastHeatup, DeviceValueType::UINT, nullptr, FL_(fastheatup), DeviceValueUOM::PERCENT, MAKE_CF_CB(set_fastheatup));
register_device_value(tag, &hc->reducemode1, DeviceValueType::ENUM, FL_(enum_reducemode1), FL_(reducemode1), DeviceValueUOM::NONE, MAKE_CF_CB(set_reducemode1));
register_device_value(tag, &hc->noreducetemp, DeviceValueType::INT, nullptr, FL_(noreducetemp), DeviceValueUOM::DEGREES, MAKE_CF_CB(set_noreducetemp));
register_device_value(tag, &hc->reducetemp, DeviceValueType::INT, nullptr, FL_(reducetemp), DeviceValueUOM::DEGREES, MAKE_CF_CB(set_reducetemp));
break;
case EMS_DEVICE_FLAG_CRF:
register_device_value(tag, &hc->mode, DeviceValueType::ENUM, FL_(enum_mode5), FL_(mode), DeviceValueUOM::NONE);
register_device_value(tag, &hc->modetype, DeviceValueType::ENUM, FL_(enum_modetype5), FL_(modetype), DeviceValueUOM::NONE);
register_device_value(tag, &hc->targetflowtemp, DeviceValueType::UINT, nullptr, FL_(targetflowtemp), DeviceValueUOM::DEGREES);
break;
case EMS_DEVICE_FLAG_RC20:
register_device_value(tag, &hc->mode, DeviceValueType::ENUM, FL_(enum_mode2), FL_(mode), DeviceValueUOM::NONE, MAKE_CF_CB(set_mode));
register_device_value(tag, &hc->manualtemp, DeviceValueType::UINT, FL_(div2), FL_(manualtemp), DeviceValueUOM::DEGREES, MAKE_CF_CB(set_manualtemp));
register_device_value(tag, &hc->daylowtemp, DeviceValueType::UINT, FL_(div2), FL_(daylowtemp), DeviceValueUOM::DEGREES, MAKE_CF_CB(set_daylowtemp));
register_device_value(tag, &hc->daymidtemp, DeviceValueType::UINT, FL_(div2), FL_(daymidtemp), DeviceValueUOM::DEGREES, MAKE_CF_CB(set_daymidtemp));
register_device_value(tag, &hc->daytemp, DeviceValueType::UINT, FL_(div2), FL_(dayhightemp), DeviceValueUOM::DEGREES, MAKE_CF_CB(set_daytemp));
register_device_value(tag, &hc->nighttemp, DeviceValueType::UINT, FL_(div2), FL_(nighttemp2), DeviceValueUOM::DEGREES, MAKE_CF_CB(set_nighttemp));
register_device_value(
tag, &hc->switchtime1, DeviceValueType::STRING, FL_(tpl_switchtime1), FL_(switchtime), DeviceValueUOM::NONE, MAKE_CF_CB(set_switchtime1));
break;
case EMS_DEVICE_FLAG_RC20_N:
register_device_value(tag, &hc->mode, DeviceValueType::ENUM, FL_(enum_mode2), FL_(mode), DeviceValueUOM::NONE, MAKE_CF_CB(set_mode));
register_device_value(tag, &hc->modetype, DeviceValueType::ENUM, FL_(enum_modetype3), FL_(modetype), DeviceValueUOM::NONE);
register_device_value(tag, &hc->daytemp, DeviceValueType::UINT, FL_(div2), FL_(daytemp), DeviceValueUOM::DEGREES, MAKE_CF_CB(set_daytemp));
register_device_value(tag, &hc->nighttemp, DeviceValueType::UINT, FL_(div2), FL_(nighttemp), DeviceValueUOM::DEGREES, MAKE_CF_CB(set_nighttemp));
register_device_value(tag, &hc->program, DeviceValueType::ENUM, FL_(enum_progMode3), FL_(program), DeviceValueUOM::NONE, MAKE_CF_CB(set_program));
register_device_value(tag, &hc->minflowtemp, DeviceValueType::UINT, nullptr, FL_(minflowtemp), DeviceValueUOM::DEGREES, MAKE_CF_CB(set_minflowtemp));
register_device_value(tag, &hc->maxflowtemp, DeviceValueType::UINT, nullptr, FL_(maxflowtemp), DeviceValueUOM::DEGREES, MAKE_CF_CB(set_maxflowtemp));
register_device_value(tag, &hc->tempautotemp, DeviceValueType::UINT, FL_(div2), FL_(tempautotemp), DeviceValueUOM::DEGREES, MAKE_CF_CB(set_tempautotemp));
register_device_value(
tag, &hc->heatingtype, DeviceValueType::ENUM, FL_(enum_heatingtype), FL_(heatingtype), DeviceValueUOM::NONE, MAKE_CF_CB(set_heatingtype));
register_device_value(tag, &hc->summertemp, DeviceValueType::UINT, nullptr, FL_(summertemp), DeviceValueUOM::DEGREES, MAKE_CF_CB(set_summertemp));
register_device_value(tag, &hc->summermode, DeviceValueType::ENUM, FL_(enum_summer), FL_(summermode), DeviceValueUOM::NONE);
register_device_value(tag, &hc->remotetemp, DeviceValueType::SHORT, FL_(div10), FL_(remotetemp), DeviceValueUOM::DEGREES);
break;
case EMS_DEVICE_FLAG_RC25:
register_device_value(tag, &hc->mode, DeviceValueType::ENUM, FL_(enum_mode3), FL_(mode), DeviceValueUOM::NONE, MAKE_CF_CB(set_mode));
register_device_value(tag, &hc->modetype, DeviceValueType::ENUM, FL_(enum_modetype3), FL_(modetype), DeviceValueUOM::NONE);
register_device_value(tag, &hc->daytemp, DeviceValueType::UINT, FL_(div2), FL_(daytemp), DeviceValueUOM::DEGREES, MAKE_CF_CB(set_daytemp));
register_device_value(tag, &hc->nighttemp, DeviceValueType::UINT, FL_(div2), FL_(nighttemp), DeviceValueUOM::DEGREES, MAKE_CF_CB(set_nighttemp));
register_device_value(tag, &hc->program, DeviceValueType::ENUM, FL_(enum_progMode3), FL_(program), DeviceValueUOM::NONE, MAKE_CF_CB(set_program));
register_device_value(tag, &hc->minflowtemp, DeviceValueType::UINT, nullptr, FL_(minflowtemp), DeviceValueUOM::DEGREES, MAKE_CF_CB(set_minflowtemp));
register_device_value(tag, &hc->maxflowtemp, DeviceValueType::UINT, nullptr, FL_(maxflowtemp), DeviceValueUOM::DEGREES, MAKE_CF_CB(set_maxflowtemp));
register_device_value(tag, &hc->tempautotemp, DeviceValueType::UINT, FL_(div2), FL_(tempautotemp), DeviceValueUOM::DEGREES, MAKE_CF_CB(set_tempautotemp));
register_device_value(
tag, &hc->heatingtype, DeviceValueType::ENUM, FL_(enum_heatingtype), FL_(heatingtype), DeviceValueUOM::NONE, MAKE_CF_CB(set_heatingtype));
register_device_value(tag, &hc->summertemp, DeviceValueType::UINT, nullptr, FL_(summertemp), DeviceValueUOM::DEGREES, MAKE_CF_CB(set_summertemp));
register_device_value(tag, &hc->summermode, DeviceValueType::ENUM, FL_(enum_summer), FL_(summermode), DeviceValueUOM::NONE);
break;
case EMS_DEVICE_FLAG_RC30:
register_device_value(tag, &hc->mode, DeviceValueType::ENUM, FL_(enum_mode3), FL_(mode), DeviceValueUOM::NONE, MAKE_CF_CB(set_mode));
register_device_value(tag, &hc->holiday, DeviceValueType::STRING, FL_(tpl_holidays), FL_(holidays), DeviceValueUOM::NONE, MAKE_CF_CB(set_holiday));
register_device_value(tag, &hc->vacation, DeviceValueType::STRING, FL_(tpl_holidays), FL_(vacations), DeviceValueUOM::NONE, MAKE_CF_CB(set_vacation));
register_device_value(tag, &hc->program, DeviceValueType::ENUM, FL_(enum_progMode2), FL_(program), DeviceValueUOM::NONE, MAKE_CF_CB(set_program));
register_device_value(tag, &hc->pause, DeviceValueType::UINT, nullptr, FL_(pause), DeviceValueUOM::HOURS, MAKE_CF_CB(set_pause));
register_device_value(tag, &hc->party, DeviceValueType::UINT, nullptr, FL_(party), DeviceValueUOM::HOURS, MAKE_CF_CB(set_party));
register_device_value(
tag, &hc->switchtime1, DeviceValueType::STRING, FL_(tpl_switchtime1), FL_(switchtime1), DeviceValueUOM::NONE, MAKE_CF_CB(set_switchtime1));
register_device_value(
tag, &hc->heatingtype, DeviceValueType::ENUM, FL_(enum_heatingtype), FL_(heatingtype), DeviceValueUOM::NONE, MAKE_CF_CB(set_heatingtype));
register_device_value(
tag, &hc->controlmode, DeviceValueType::ENUM, FL_(enum_controlmode2), FL_(controlmode), DeviceValueUOM::NONE, MAKE_CF_CB(set_controlmode));
register_device_value(tag, &hc->holidaytemp, DeviceValueType::UINT, FL_(div2), FL_(holidaytemp), DeviceValueUOM::DEGREES, MAKE_CF_CB(set_holidaytemp));
register_device_value(tag, &hc->nighttemp, DeviceValueType::UINT, FL_(div2), FL_(nighttemp2), DeviceValueUOM::DEGREES, MAKE_CF_CB(set_nighttemp));
register_device_value(tag, &hc->daylowtemp, DeviceValueType::UINT, FL_(div2), FL_(daylowtemp), DeviceValueUOM::DEGREES, MAKE_CF_CB(set_daylowtemp));
register_device_value(tag, &hc->daymidtemp, DeviceValueType::UINT, FL_(div2), FL_(daymidtemp), DeviceValueUOM::DEGREES, MAKE_CF_CB(set_daymidtemp));
register_device_value(tag, &hc->daytemp, DeviceValueType::UINT, FL_(div2), FL_(dayhightemp), DeviceValueUOM::DEGREES, MAKE_CF_CB(set_daytemp));
break;
case EMS_DEVICE_FLAG_RC30_N:
case EMS_DEVICE_FLAG_RC35:
register_device_value(tag, &hc->mode, DeviceValueType::ENUM, FL_(enum_mode3), FL_(mode), DeviceValueUOM::NONE, MAKE_CF_CB(set_mode));
register_device_value(tag, &hc->modetype, DeviceValueType::ENUM, FL_(enum_modetype3), FL_(modetype), DeviceValueUOM::NONE);
register_device_value(tag, &hc->daytemp, DeviceValueType::UINT, FL_(div2), FL_(daytemp), DeviceValueUOM::DEGREES, MAKE_CF_CB(set_daytemp));
register_device_value(tag, &hc->nighttemp, DeviceValueType::UINT, FL_(div2), FL_(nighttemp), DeviceValueUOM::DEGREES, MAKE_CF_CB(set_nighttemp));
register_device_value(tag, &hc->designtemp, DeviceValueType::UINT, nullptr, FL_(designtemp), DeviceValueUOM::DEGREES, MAKE_CF_CB(set_designtemp));
register_device_value(tag, &hc->offsettemp, DeviceValueType::INT, FL_(div2), FL_(offsettemp), DeviceValueUOM::DEGREES_R, MAKE_CF_CB(set_offsettemp));
register_device_value(tag, &hc->holidaytemp, DeviceValueType::UINT, FL_(div2), FL_(holidaytemp), DeviceValueUOM::DEGREES, MAKE_CF_CB(set_holidaytemp));
register_device_value(tag, &hc->targetflowtemp, DeviceValueType::UINT, nullptr, FL_(targetflowtemp), DeviceValueUOM::DEGREES);
register_device_value(tag, &hc->summertemp, DeviceValueType::UINT, nullptr, FL_(summertemp), DeviceValueUOM::DEGREES, MAKE_CF_CB(set_summertemp));
register_device_value(tag, &hc->summermode, DeviceValueType::ENUM, FL_(enum_summer), FL_(summermode), DeviceValueUOM::NONE);
register_device_value(tag, &hc->holidaymode, DeviceValueType::BOOL, nullptr, FL_(holidaymode), DeviceValueUOM::NONE);
register_device_value(tag, &hc->nofrosttemp, DeviceValueType::INT, nullptr, FL_(nofrosttemp), DeviceValueUOM::DEGREES, MAKE_CF_CB(set_nofrosttemp));
register_device_value(
tag, &hc->nofrostmode, DeviceValueType::ENUM, FL_(enum_nofrostmode), FL_(nofrostmode), DeviceValueUOM::NONE, MAKE_CF_CB(set_nofrostmode));
register_device_value(tag, &hc->roominfluence, DeviceValueType::UINT, nullptr, FL_(roominfluence), DeviceValueUOM::DEGREES_R, MAKE_CF_CB(set_roominfluence));
register_device_value(tag, &hc->minflowtemp, DeviceValueType::UINT, nullptr, FL_(minflowtemp), DeviceValueUOM::DEGREES, MAKE_CF_CB(set_minflowtemp));
register_device_value(tag, &hc->maxflowtemp, DeviceValueType::UINT, nullptr, FL_(maxflowtemp), DeviceValueUOM::DEGREES, MAKE_CF_CB(set_maxflowtemp));
register_device_value(
tag, &hc->flowtempoffset, DeviceValueType::UINT, nullptr, FL_(flowtempoffset), DeviceValueUOM::DEGREES_R, MAKE_CF_CB(set_flowtempoffset));
register_device_value(
tag, &hc->heatingtype, DeviceValueType::ENUM, FL_(enum_heatingtype), FL_(heatingtype), DeviceValueUOM::NONE, MAKE_CF_CB(set_heatingtype));
register_device_value(tag, &hc->reducemode, DeviceValueType::ENUM, FL_(enum_reducemode), FL_(reducemode), DeviceValueUOM::NONE, MAKE_CF_CB(set_reducemode));
register_device_value(
tag, &hc->controlmode, DeviceValueType::ENUM, FL_(enum_controlmode2), FL_(controlmode), DeviceValueUOM::NONE, MAKE_CF_CB(set_controlmode));
register_device_value(tag, &hc->control, DeviceValueType::ENUM, FL_(enum_control), FL_(control), DeviceValueUOM::NONE, MAKE_CF_CB(set_control));
register_device_value(tag, &hc->holiday, DeviceValueType::STRING, FL_(tpl_holidays), FL_(holidays), DeviceValueUOM::NONE, MAKE_CF_CB(set_holiday));
register_device_value(tag, &hc->vacation, DeviceValueType::STRING, FL_(tpl_holidays), FL_(vacations), DeviceValueUOM::NONE, MAKE_CF_CB(set_vacation));
register_device_value(tag, &hc->program, DeviceValueType::ENUM, FL_(enum_progMode2), FL_(program), DeviceValueUOM::NONE, MAKE_CF_CB(set_program));
register_device_value(tag, &hc->pause, DeviceValueType::UINT, nullptr, FL_(pause), DeviceValueUOM::HOURS, MAKE_CF_CB(set_pause));
register_device_value(tag, &hc->party, DeviceValueType::UINT, nullptr, FL_(party), DeviceValueUOM::HOURS, MAKE_CF_CB(set_party));
register_device_value(tag, &hc->tempautotemp, DeviceValueType::UINT, FL_(div2), FL_(tempautotemp), DeviceValueUOM::DEGREES, MAKE_CF_CB(set_tempautotemp));
register_device_value(tag, &hc->noreducetemp, DeviceValueType::INT, nullptr, FL_(noreducetemp), DeviceValueUOM::DEGREES, MAKE_CF_CB(set_noreducetemp));
register_device_value(tag, &hc->reducetemp, DeviceValueType::INT, nullptr, FL_(reducetemp), DeviceValueUOM::DEGREES, MAKE_CF_CB(set_reducetemp));
register_device_value(tag, &hc->vacreducetemp, DeviceValueType::INT, nullptr, FL_(vacreducetemp), DeviceValueUOM::DEGREES, MAKE_CF_CB(set_vacreducetemp));
register_device_value(
tag, &hc->vacreducemode, DeviceValueType::ENUM, FL_(enum_reducemode), FL_(vacreducemode), DeviceValueUOM::NONE, MAKE_CF_CB(set_vacreducemode));
register_device_value(tag, &hc->remotetemp, DeviceValueType::SHORT, FL_(div10), FL_(remotetemp), DeviceValueUOM::DEGREES, MAKE_CF_CB(set_remotetemp));
register_device_value(tag, &hc->wwprio, DeviceValueType::BOOL, nullptr, FL_(wwprio), DeviceValueUOM::NONE, MAKE_CF_CB(set_wwprio));
register_device_value(
tag, &hc->switchtime1, DeviceValueType::STRING, FL_(tpl_switchtime), FL_(switchtime1), DeviceValueUOM::NONE, MAKE_CF_CB(set_switchtime1));
register_device_value(
tag, &hc->switchtime2, DeviceValueType::STRING, FL_(tpl_switchtime), FL_(switchtime2), DeviceValueUOM::NONE, MAKE_CF_CB(set_switchtime2));
break;
case EMS_DEVICE_FLAG_JUNKERS:
register_device_value(tag, &hc->mode, DeviceValueType::ENUM, FL_(enum_mode4), FL_(mode), DeviceValueUOM::NONE, MAKE_CF_CB(set_mode));
register_device_value(tag, &hc->modetype, DeviceValueType::ENUM, FL_(enum_modetype4), FL_(modetype), DeviceValueUOM::NONE);
register_device_value(tag, &hc->daytemp, DeviceValueType::UINT, FL_(div2), FL_(heattemp), DeviceValueUOM::DEGREES, MAKE_CF_CB(set_heattemp));
register_device_value(tag, &hc->nighttemp, DeviceValueType::UINT, FL_(div2), FL_(ecotemp), DeviceValueUOM::DEGREES, MAKE_CF_CB(set_ecotemp));
register_device_value(tag, &hc->nofrosttemp, DeviceValueType::INT, FL_(div2), FL_(nofrosttemp), DeviceValueUOM::DEGREES, MAKE_CF_CB(set_nofrosttemp));
register_device_value(tag, &hc->control, DeviceValueType::ENUM, FL_(enum_j_control), FL_(control), DeviceValueUOM::NONE, MAKE_CF_CB(set_control));
register_device_value(tag, &hc->program, DeviceValueType::ENUM, FL_(enum_progMode4), FL_(program), DeviceValueUOM::NONE, MAKE_CF_CB(set_program));
register_device_value(tag, &hc->remotetemp, DeviceValueType::SHORT, FL_(div10), FL_(remotetemp), DeviceValueUOM::DEGREES);
register_device_value(tag, &hc->targetflowtemp, DeviceValueType::UINT, nullptr, FL_(targetflowtemp), DeviceValueUOM::DEGREES);
break;
default:
break;
}
}
} // namespace emsesp