Files
EMS-ESP32/src/emsesp.cpp
2024-01-21 09:35:16 +01:00

1551 lines
62 KiB
C++

/*
* EMS-ESP - https://github.com/emsesp/EMS-ESP
* Copyright 2020-2024 Paul Derbyshire
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "emsesp.h"
static_assert(uuid::thread_safe, "uuid-common must be thread-safe");
static_assert(uuid::log::thread_safe, "uuid-log must be thread-safe");
static_assert(uuid::console::thread_safe, "uuid-console must be thread-safe");
namespace emsesp {
AsyncWebServer webServer(80);
#if defined(EMSESP_STANDALONE)
FS dummyFS;
ESP8266React EMSESP::esp8266React(&webServer, &dummyFS);
WebSettingsService EMSESP::webSettingsService = WebSettingsService(&webServer, &dummyFS, EMSESP::esp8266React.getSecurityManager());
WebCustomizationService EMSESP::webCustomizationService = WebCustomizationService(&webServer, &dummyFS, EMSESP::esp8266React.getSecurityManager());
WebSchedulerService EMSESP::webSchedulerService = WebSchedulerService(&webServer, &dummyFS, EMSESP::esp8266React.getSecurityManager());
WebCustomEntityService EMSESP::webCustomEntityService = WebCustomEntityService(&webServer, &dummyFS, EMSESP::esp8266React.getSecurityManager());
#else
ESP8266React EMSESP::esp8266React(&webServer, &LittleFS);
WebSettingsService EMSESP::webSettingsService = WebSettingsService(&webServer, &LittleFS, EMSESP::esp8266React.getSecurityManager());
WebCustomizationService EMSESP::webCustomizationService = WebCustomizationService(&webServer, &LittleFS, EMSESP::esp8266React.getSecurityManager());
WebSchedulerService EMSESP::webSchedulerService = WebSchedulerService(&webServer, &LittleFS, EMSESP::esp8266React.getSecurityManager());
WebCustomEntityService EMSESP::webCustomEntityService = WebCustomEntityService(&webServer, &LittleFS, EMSESP::esp8266React.getSecurityManager());
#endif
WebStatusService EMSESP::webStatusService = WebStatusService(&webServer, EMSESP::esp8266React.getSecurityManager());
WebDataService EMSESP::webDataService = WebDataService(&webServer, EMSESP::esp8266React.getSecurityManager());
WebAPIService EMSESP::webAPIService = WebAPIService(&webServer, EMSESP::esp8266React.getSecurityManager());
WebLogService EMSESP::webLogService = WebLogService(&webServer, EMSESP::esp8266React.getSecurityManager());
using DeviceFlags = EMSdevice;
using DeviceType = EMSdevice::DeviceType;
std::vector<std::unique_ptr<EMSdevice>> EMSESP::emsdevices; // array of all the detected EMS devices
std::vector<EMSESP::Device_record> EMSESP::device_library_; // library of all our known EMS devices, in heap
uuid::log::Logger EMSESP::logger_{F_(emsesp), uuid::log::Facility::KERN};
uuid::log::Logger EMSESP::logger() {
return logger_;
}
#ifndef EMSESP_STANDALONE
uuid::syslog::SyslogService System::syslog_;
#endif
// The services
RxService EMSESP::rxservice_; // incoming Telegram Rx handler
TxService EMSESP::txservice_; // outgoing Telegram Tx handler
Mqtt EMSESP::mqtt_; // mqtt handler
System EMSESP::system_; // core system services
TemperatureSensor EMSESP::temperaturesensor_; // Temperature sensors
AnalogSensor EMSESP::analogsensor_; // Analog sensors
Shower EMSESP::shower_; // Shower logic
Preferences EMSESP::nvs_; // NV Storage
// static/common variables
uint16_t EMSESP::watch_id_ = WATCH_ID_NONE; // for when log is TRACE. 0 means no trace set
uint8_t EMSESP::watch_ = 0; // trace off
uint16_t EMSESP::read_id_ = WATCH_ID_NONE;
bool EMSESP::read_next_ = false;
uint16_t EMSESP::publish_id_ = 0;
uint16_t EMSESP::response_id_ = 0;
bool EMSESP::tap_water_active_ = false; // for when Boiler states we having running warm water. used in Shower()
uint32_t EMSESP::last_fetch_ = 0;
uint8_t EMSESP::publish_all_idx_ = 0;
uint8_t EMSESP::unique_id_count_ = 0;
bool EMSESP::trace_raw_ = false;
uint16_t EMSESP::wait_validate_ = 0;
bool EMSESP::wait_km_ = true;
// for a specific EMS device go and request data values
// or if device_id is 0 it will fetch from all our known and active devices
void EMSESP::fetch_device_values(const uint8_t device_id) {
for (const auto & emsdevice : emsdevices) {
if ((device_id == 0) || emsdevice->is_device_id(device_id)) {
emsdevice->fetch_values();
if (device_id != 0) {
return; // quit, we only want to return the selected device
}
}
}
}
// see if the deviceID exists
bool EMSESP::valid_device(const uint8_t device_id) {
for (const auto & emsdevice : emsdevices) {
if (emsdevice && emsdevice->is_device_id(device_id)) {
return true;
}
}
return false; // can't find it
}
// for a specific EMS device type go and request data values
void EMSESP::fetch_device_values_type(const uint8_t device_type) {
for (const auto & emsdevice : emsdevices) {
if (emsdevice && (emsdevice->device_type() == device_type)) {
emsdevice->fetch_values();
}
}
}
bool EMSESP::cmd_is_readonly(const uint8_t device_type, const uint8_t device_id, const char * cmd, const int8_t id) {
for (const auto & emsdevice : emsdevices) {
if (emsdevice && (emsdevice->device_type() == device_type) && (!device_id || emsdevice->device_id() == device_id)) {
return emsdevice->is_readonly(cmd, id);
}
}
return false;
}
uint8_t EMSESP::device_id_from_cmd(const uint8_t device_type, const char * cmd, const int8_t id) {
for (const auto & emsdevice : emsdevices) {
if (emsdevice && emsdevice->device_type() == device_type && emsdevice->has_cmd(cmd, id)) {
return emsdevice->device_id();
}
}
return 0;
}
// clears list of recognized devices
void EMSESP::clear_all_devices() {
// temporarily removed: clearing the list causes a crash, the associated commands and mqtt should also be removed.
// emsdevices.clear(); // remove entries, but doesn't delete actual devices
}
// return number of devices of a known type
uint8_t EMSESP::count_devices(const uint8_t device_type) {
uint8_t count = 0;
for (const auto & emsdevice : emsdevices) {
if (emsdevice) {
count += (emsdevice->device_type() == device_type);
}
}
return count;
}
// return total number of devices excluding the Controller
uint8_t EMSESP::count_devices() {
uint8_t count = 0;
for (const auto & emsdevice : emsdevices) {
if (emsdevice) {
count += (emsdevice->device_type() != EMSdevice::DeviceType::CONTROLLER);
}
}
return count;
}
// returns the index of a device if there are more of the same type
// or 0 if there is only one or none
uint8_t EMSESP::device_index(const uint8_t device_type, const uint8_t unique_id) {
if (count_devices(device_type) <= 1) {
return 0; // none or only 1 device exists
}
uint8_t index = 1;
for (const auto & emsdevice : emsdevices) {
if (emsdevice->device_type() == device_type) {
// did we find it?
if (emsdevice->unique_id() == unique_id) {
return index;
}
index++;
}
}
return 0; // didn't find it
}
// scans for new devices
void EMSESP::scan_devices() {
EMSESP::clear_all_devices();
EMSESP::send_read_request(EMSdevice::EMS_TYPE_UBADevices, EMSdevice::EMS_DEVICE_ID_BOILER);
}
// to watch both type IDs and deviceIDs
void EMSESP::watch_id(uint16_t watch_id) {
watch_id_ = watch_id;
}
// resets all counters and bumps the UART
// this is called when the tx_mode is persisted in the FS either via Web UI or the console
void EMSESP::uart_init() {
uint8_t tx_mode = 0;
uint8_t rx_gpio = 0;
uint8_t tx_gpio = 0;
EMSESP::webSettingsService.read([&](WebSettings & settings) {
tx_mode = settings.tx_mode;
rx_gpio = settings.rx_gpio;
tx_gpio = settings.tx_gpio;
});
EMSuart::stop();
// don't start UART if we have invalid GPIOs
if (System::is_valid_gpio(rx_gpio) && System::is_valid_gpio(tx_gpio)) {
EMSuart::start(tx_mode, rx_gpio, tx_gpio); // start UART
} else {
LOG_WARNING("Invalid UART Rx/Tx GPIOs. Check config.");
}
txservice_.start(); // sends out request to EMS bus for all devices
txservice_.tx_mode(tx_mode);
// force a fetch for all new values, unless Tx is set to off
if (tx_mode != 0) {
EMSESP::fetch_device_values();
}
}
// return status of bus: connected (0), connected but Tx is broken (1), disconnected (2)
uint8_t EMSESP::bus_status() {
if (!rxservice_.bus_connected()) {
return BUS_STATUS_OFFLINE;
}
// check if we have Tx issues.
uint32_t total_sent = txservice_.telegram_read_count() + txservice_.telegram_write_count();
uint32_t total_fail = txservice_.telegram_read_fail_count() + txservice_.telegram_write_fail_count();
// nothing sent and also no errors - must be ok
if ((total_sent == 0) && (total_fail == 0)) {
return BUS_STATUS_CONNECTED;
}
// nothing sent, but have Tx errors
if ((total_sent == 0) && (total_fail != 0)) {
return BUS_STATUS_TX_ERRORS;
}
// Tx Failure rate > 10%
if ((total_fail < total_sent) && (((total_fail * 100) / total_sent) > EMSbus::EMS_TX_ERROR_LIMIT)) {
return BUS_STATUS_TX_ERRORS;
}
return BUS_STATUS_CONNECTED;
}
// show the EMS bus status plus both Rx and Tx queues
void EMSESP::show_ems(uuid::console::Shell & shell) {
// EMS bus information
switch (bus_status()) {
case BUS_STATUS_OFFLINE:
shell.printfln("EMS Bus is disconnected.");
break;
case BUS_STATUS_TX_ERRORS:
shell.printfln("EMS Bus is connected, but Tx is not stable.");
break;
default:
shell.printfln("EMS Bus is connected.");
break;
}
shell.println();
if (bus_status() != BUS_STATUS_OFFLINE) {
shell.printfln("EMS Bus info:");
EMSESP::webSettingsService.read([&](WebSettings & settings) { shell.printfln(" Tx mode: %d", settings.tx_mode); });
shell.printfln(" Bus protocol: %s", EMSbus::is_ht3() ? "HT3" : "Buderus");
shell.printfln(" #recognized EMS devices: %d", EMSESP::emsdevices.size());
shell.printfln(" #telegrams received: %d", rxservice_.telegram_count());
shell.printfln(" #read requests sent: %d", txservice_.telegram_read_count());
shell.printfln(" #write requests sent: %d", txservice_.telegram_write_count());
shell.printfln(" #incomplete telegrams: %d", rxservice_.telegram_error_count());
shell.printfln(" #read fails (after %d retries): %d", TxService::MAXIMUM_TX_RETRIES, txservice_.telegram_read_fail_count());
shell.printfln(" #write fails (after %d retries): %d", TxService::MAXIMUM_TX_RETRIES, txservice_.telegram_write_fail_count());
shell.printfln(" Rx line quality: %d%%", rxservice_.quality());
shell.printfln(" Tx line quality: %d%%", (txservice_.read_quality() + txservice_.read_quality()) / 2);
shell.println();
}
// Rx queue
auto rx_telegrams = rxservice_.queue();
if (rx_telegrams.empty()) {
shell.printfln("Rx Queue is empty");
} else {
shell.printfln("Rx Queue (%ld telegram%s):", rx_telegrams.size(), rx_telegrams.size() == 1 ? "" : "s");
for (const auto & it : rx_telegrams) {
shell.printfln(" [%02d] %s", it.id_, pretty_telegram(it.telegram_).c_str());
}
}
shell.println();
// Tx queue
auto tx_telegrams = txservice_.queue();
if (tx_telegrams.empty()) {
shell.printfln("Tx Queue is empty");
} else {
shell.printfln("Tx Queue (%ld telegram%s):", tx_telegrams.size(), tx_telegrams.size() == 1 ? "" : "s");
std::string op;
for (const auto & it : tx_telegrams) {
if ((it.telegram_->operation) == Telegram::Operation::TX_RAW) {
op = "RAW ";
} else if ((it.telegram_->operation) == Telegram::Operation::TX_READ) {
op = "READ ";
} else if ((it.telegram_->operation) == Telegram::Operation::TX_WRITE) {
op = "WRITE";
}
shell.printfln(" [%02d%c] %s %s", it.id_, ((it.retry_) ? '*' : ' '), op.c_str(), pretty_telegram(it.telegram_).c_str());
}
}
shell.println();
}
// Dump all entities to Serial out
// this is intended to run within the OS with lots of available memory!
#if defined(EMSESP_STANDALONE)
void EMSESP::dump_all_values(uuid::console::Shell & shell) {
Serial.println("---- CSV START ----"); // marker use by py script
// add header for CSV
Serial.print(
"device name,device type,product id,shortname,fullname,type [options...] \\| (min/max),uom,writeable,discovery entityid v3.4, discovery entityid");
Serial.println();
for (const auto & device_class : EMSFactory::device_handlers()) {
// go through each device type so they are sorted
for (const auto & device : device_library_) {
if (device_class.first == device.device_type) {
uint8_t device_id = 0;
// Mixer class looks at device_id to determine type and the tag
// so fixing to 0x28 which will give all the settings except flowSetTemp
if (device.device_type == DeviceType::MIXER) {
if (device.flags == EMSdevice::EMS_DEVICE_FLAG_MMPLUS) {
if (device.product_id == 160) { // MM100
device_id = 0x28; // wwc
} else {
device_id = 0x20; // hc
}
} else {
device_id = 0x20; // should cover all the other device types
}
}
// add the device and print out all the entities
// if (device.product_id == 69) { // only for testing mixer
emsdevices.push_back(
EMSFactory::add(device.device_type, device_id, device.product_id, "1.0", device.name, device.flags, EMSdevice::Brand::NO_BRAND));
emsdevices.back()->dump_value_info();
// } // only for testing mixer
}
}
}
Serial.println("---- CSV END ----"); // marker use by py script
}
#endif
// show EMS device values to the shell console
void EMSESP::show_device_values(uuid::console::Shell & shell) {
if (emsdevices.empty()) {
shell.printfln("No EMS devices detected.");
shell.println();
return;
}
// do this in the order of factory classes to keep a consistent order when displaying
for (const auto & device_class : EMSFactory::device_handlers()) {
for (const auto & emsdevice : emsdevices) {
if (emsdevice && (emsdevice->device_type() == device_class.first)) {
// print header, with device type translated
shell.printfln("%s: %s (%d)", emsdevice->device_type_2_device_name_translated(), emsdevice->to_string().c_str(), emsdevice->count_entities());
JsonDocument doc;
JsonObject json = doc.to<JsonObject>();
emsdevice->generate_values(json, DeviceValueTAG::TAG_NONE, true, EMSdevice::OUTPUT_TARGET::CONSOLE);
// print line
for (JsonPair p : json) {
std::string key = p.key().c_str(); // this will be fullname and the shortname in brackets
// extract the shortname from the key, which is in brackets
std::size_t first_bracket = key.find_last_of('(');
std::size_t last_bracket = key.find_last_of(')');
std::string uom = emsdevice->get_value_uom(key.substr(first_bracket + 1, last_bracket - first_bracket - 1));
shell.printfln(" %s: %s%s %s%s", key.c_str(), COLOR_BRIGHT_GREEN, p.value().as<std::string>().c_str(), uom.c_str(), COLOR_RESET);
}
shell.println();
}
}
}
// show any custom entities
if (webCustomEntityService.count_entities() > 0) {
shell.printfln("Custom entities:");
JsonDocument custom_doc; // use max size
JsonObject custom_output = custom_doc.to<JsonObject>();
webCustomEntityService.show_values(custom_output);
for (JsonPair p : custom_output) {
shell.printfln(" %s: %s%s%s", p.key().c_str(), COLOR_BRIGHT_GREEN, p.value().as<std::string>().c_str(), COLOR_RESET);
}
shell.println();
}
}
// show temperature sensors and Analog sensors
void EMSESP::show_sensor_values(uuid::console::Shell & shell) {
if (temperaturesensor_.have_sensors()) {
shell.printfln("Temperature sensors:");
char s[10];
char s2[10];
uint8_t fahrenheit = EMSESP::system_.fahrenheit() ? 2 : 0;
for (const auto & sensor : temperaturesensor_.sensors()) {
if (Helpers::hasValue(sensor.temperature_c)) {
shell.printfln(" %s: %s%s °%c%s (offset %s, ID: %s)",
sensor.name().c_str(),
COLOR_BRIGHT_GREEN,
Helpers::render_value(s, sensor.temperature_c, 10, fahrenheit),
(fahrenheit == 0) ? 'C' : 'F',
COLOR_RESET,
Helpers::render_value(s2, sensor.offset(), 10, fahrenheit),
sensor.id().c_str());
} else {
shell.printfln(" %s (offset %s, ID: %s)", sensor.name().c_str(), Helpers::render_value(s, sensor.offset(), 10, fahrenheit), sensor.id().c_str());
}
}
shell.println();
}
if (analogsensor_.have_sensors()) {
char s[10];
char s2[10];
shell.printfln("Analog sensors:");
for (const auto & sensor : analogsensor_.sensors()) {
switch (sensor.type()) {
case AnalogSensor::AnalogType::ADC:
shell.printfln(" %s: %s%s %s%s (Type: ADC, Factor: %s, Offset: %d)",
sensor.name().c_str(),
COLOR_BRIGHT_GREEN,
Helpers::render_value(s, sensor.value(), 2),
EMSdevice::uom_to_string(sensor.uom()),
COLOR_RESET,
Helpers::render_value(s2, sensor.factor(), 4),
sensor.offset());
break;
default:
// case AnalogSensor::AnalogType::DIGITAL_IN:
// case AnalogSensor::AnalogType::COUNTER:
shell.printfln(" %s: %s%d%s (Type: %s)",
sensor.name().c_str(),
COLOR_BRIGHT_GREEN,
(uint16_t)sensor.value(), // as int
COLOR_RESET,
sensor.type() == AnalogSensor::AnalogType::COUNTER ? "Counter" : "Digital In");
break;
}
}
shell.println();
}
}
// MQTT publish everything, immediately
void EMSESP::publish_all(bool force) {
if (force) {
publish_all_idx_ = 1;
reset_mqtt_ha();
return;
}
if (Mqtt::connected()) {
publish_device_values(EMSdevice::DeviceType::BOILER);
publish_device_values(EMSdevice::DeviceType::THERMOSTAT);
publish_device_values(EMSdevice::DeviceType::SOLAR);
publish_device_values(EMSdevice::DeviceType::MIXER);
publish_device_values(EMSdevice::DeviceType::WATER);
publish_other_values(); // switch and heat pump, ...
publish_sensor_values(true); // includes temperature and analog sensors
system_.send_heartbeat();
}
}
// loop and wait between devices for publishing all values
void EMSESP::publish_all_loop() {
if (!Mqtt::connected() || !publish_all_idx_) {
return;
}
// wait for free queue before sending next message, HA-messages are also queued
if (Mqtt::publish_queued() > 0) {
return;
}
switch (publish_all_idx_++) {
case 1:
publish_device_values(EMSdevice::DeviceType::BOILER);
break;
case 2:
publish_device_values(EMSdevice::DeviceType::THERMOSTAT);
break;
case 3:
publish_device_values(EMSdevice::DeviceType::SOLAR);
break;
case 4:
publish_device_values(EMSdevice::DeviceType::MIXER);
break;
case 5:
publish_device_values(EMSdevice::DeviceType::WATER);
break;
case 6:
publish_other_values(); // switch and heat pump
break;
case 7:
publish_sensor_values(true, true);
break;
case 8:
if (Mqtt::ha_enabled()) {
Mqtt::ha_status();
}
system_.send_heartbeat();
break;
default:
// all finished
publish_all_idx_ = 0;
}
}
// force HA to re-create all the devices next time they are detected
// also removes the old HA topics
void EMSESP::reset_mqtt_ha() {
if (!Mqtt::ha_enabled()) {
return;
}
for (const auto & emsdevice : emsdevices) {
emsdevice->ha_config_clear();
}
// force the re-creating of the temperature and analog sensor topics (for HA)
temperaturesensor_.reload();
analogsensor_.reload();
}
// create json doc for the devices values and add to MQTT publish queue
// this will also create the HA /config topic for each device value
// generate_values_json is called to build the device value (dv) object array
void EMSESP::publish_device_values(uint8_t device_type) {
JsonDocument doc;
JsonObject json = doc.to<JsonObject>();
bool need_publish = false;
bool nested = (Mqtt::is_nested());
// group by device type
for (uint8_t tag = DeviceValueTAG::TAG_BOILER_DATA_WW; tag <= DeviceValueTAG::TAG_HS16; tag++) {
JsonObject json_tag = json;
bool nest_created = false;
for (const auto & emsdevice : emsdevices) {
if (emsdevice && (emsdevice->device_type() == device_type)) {
if (nested && !nest_created && emsdevice->has_tags(tag)) {
json_tag = doc[EMSdevice::tag_to_mqtt(tag)].to<JsonObject>();
nest_created = true;
}
need_publish |= emsdevice->generate_values(json_tag, tag, false, EMSdevice::OUTPUT_TARGET::MQTT);
}
}
if (need_publish && ((!nested && tag >= DeviceValueTAG::TAG_DEVICE_DATA_WW) || (tag == DeviceValueTAG::TAG_BOILER_DATA_WW))) {
Mqtt::queue_publish(Mqtt::tag_to_topic(device_type, tag), json);
json = doc.to<JsonObject>();
need_publish = false;
}
}
if (need_publish) {
if (doc.overflowed()) {
LOG_WARNING("MQTT buffer overflow, please use individual topics");
}
Mqtt::queue_publish(Mqtt::tag_to_topic(device_type, DeviceValueTAG::TAG_NONE), json);
}
// we want to create the /config topic after the data payload to prevent HA from throwing up a warning
if (Mqtt::ha_enabled()) {
for (const auto & emsdevice : emsdevices) {
if (emsdevice && (emsdevice->device_type() == device_type)) {
emsdevice->mqtt_ha_entity_config_create();
}
}
}
}
// call the devices that don't need special attention
void EMSESP::publish_other_values() {
publish_device_values(EMSdevice::DeviceType::SWITCH);
publish_device_values(EMSdevice::DeviceType::HEATPUMP);
publish_device_values(EMSdevice::DeviceType::HEATSOURCE);
publish_device_values(EMSdevice::DeviceType::VENTILATION);
publish_device_values(EMSdevice::DeviceType::EXTENSION);
publish_device_values(EMSdevice::DeviceType::ALERT);
publish_device_values(EMSdevice::DeviceType::POOL);
// other devices without values yet
// publish_device_values(EMSdevice::DeviceType::GATEWAY);
// publish_device_values(EMSdevice::DeviceType::CONNECT);
// publish_device_values(EMSdevice::DeviceType::GENERIC);
webSchedulerService.publish();
webCustomEntityService.publish();
}
// publish both the temperature and analog sensor values
void EMSESP::publish_sensor_values(const bool time, const bool force) {
if (sensor_enabled()) {
if (temperaturesensor_.updated_values() || time || force) {
temperaturesensor_.publish_values(force);
}
}
if (analog_enabled()) {
if (analogsensor_.updated_values() || time || force) {
analogsensor_.publish_values(force);
}
}
}
// MQTT publish a telegram as raw data to the topic 'response'
void EMSESP::publish_response(std::shared_ptr<const Telegram> telegram) {
static char * buffer = nullptr;
static uint8_t offset;
if (buffer == nullptr) {
offset = telegram->offset; // store offset from first part
buffer = new char[768]; // max 256 hex-codes, 255 spaces, 1 termination
buffer[0] = '\0';
}
strlcat(buffer, Helpers::data_to_hex(telegram->message_data, telegram->message_length).c_str(), 768);
if (response_id_ != 0) {
strlcat(buffer, " ", 768);
return;
}
JsonDocument doc;
char s[10];
doc["src"] = Helpers::hextoa(s, telegram->src);
doc["dest"] = Helpers::hextoa(s, telegram->dest);
doc["type"] = Helpers::hextoa(s, telegram->type_id);
doc["offset"] = Helpers::hextoa(s, offset);
doc["data"] = buffer;
if (telegram->message_length <= 4 && strlen(buffer) <= 11) {
uint32_t value = 0;
for (uint8_t i = 0; i < telegram->message_length; i++) {
value = (value << 8) + telegram->message_data[i];
}
doc["value"] = value;
}
Mqtt::queue_publish("response", doc.as<JsonObject>());
delete[] buffer;
buffer = nullptr;
}
// builds json with the detail of each value,
// for a specific EMS device type or the sensors, scheduler and custom entities
bool EMSESP::get_device_value_info(JsonObject root, const char * cmd, const int8_t id, const uint8_t devicetype) {
for (const auto & emsdevice : emsdevices) {
if (emsdevice->device_type() == devicetype) {
if (emsdevice->get_value_info(root, cmd, id)) {
return true;
}
}
}
// specific for the temperaturesensor
if (devicetype == DeviceType::TEMPERATURESENSOR) {
return EMSESP::temperaturesensor_.get_value_info(root, cmd, id);
}
// analog sensor
if (devicetype == DeviceType::ANALOGSENSOR) {
return EMSESP::analogsensor_.get_value_info(root, cmd, id);
}
// scheduler
if (devicetype == DeviceType::SCHEDULER) {
return EMSESP::webSchedulerService.get_value_info(root, cmd);
}
// own entities
if (devicetype == DeviceType::CUSTOM) {
return EMSESP::webCustomEntityService.get_value_info(root, cmd);
}
char error[100];
snprintf(error, sizeof(error), "cannot find values for entity '%s'", cmd);
root["message"] = error;
return false;
}
// search for recognized device_ids : Me, All, otherwise print hex value
std::string EMSESP::device_tostring(const uint8_t device_id) {
if ((device_id & 0x7F) == EMSbus::ems_bus_id()) {
return "Me";
} else if (device_id == 0x00) {
return "All";
} else {
char buffer[5];
return Helpers::hextoa(buffer, device_id);
}
}
// created a pretty print telegram as a text string
// e.g. Boiler(0x08) -> Me(0x0B), Version(0x02), data: 7B 06 01 00 00 00 00 00 00 04 (offset 1)
std::string EMSESP::pretty_telegram(std::shared_ptr<const Telegram> telegram) {
uint8_t src = telegram->src & 0x7F;
uint8_t dest = telegram->dest & 0x7F;
uint8_t offset = telegram->offset;
// find name for src and dest by looking up known devices
std::string src_name("");
std::string dest_name("");
std::string type_name("");
for (const auto & emsdevice : emsdevices) {
if (emsdevice) {
// get src & dest
if (emsdevice->is_device_id(src)) {
src_name = emsdevice->device_type_name();
} else if (emsdevice->is_device_id(dest)) {
dest_name = emsdevice->device_type_name();
}
// get the type name
if (type_name.empty()) {
if ((telegram->operation == Telegram::Operation::RX_READ && emsdevice->is_device_id(dest))
|| (telegram->operation != Telegram::Operation::RX_READ && dest == 0 && emsdevice->is_device_id(src))
|| (telegram->operation != Telegram::Operation::RX_READ && src == EMSbus::ems_bus_id() && emsdevice->is_device_id(dest))) {
type_name = emsdevice->telegram_type_name(telegram);
}
}
}
}
// if we can't find names for the devices, use their hex values
if (src_name.empty()) {
src_name = device_tostring(src);
}
if (dest_name.empty()) {
dest_name = device_tostring(dest);
}
// check for global/common types like Version & UBADevices
if (telegram->type_id == EMSdevice::EMS_TYPE_VERSION) {
type_name = "Version";
} else if (telegram->type_id == EMSdevice::EMS_TYPE_UBADevices) {
type_name = "UBADevices";
}
// if we don't know the type show
if (type_name.empty()) {
type_name = "?";
}
std::string str;
str.reserve(200);
if (telegram->operation == Telegram::Operation::RX_READ) {
str = src_name + "(" + Helpers::hextoa(src) + ") -R-> " + dest_name + "(" + Helpers::hextoa(dest) + "), " + type_name + "("
+ Helpers::hextoa(telegram->type_id) + "), length: " + Helpers::hextoa(telegram->message_data[0]);
} else if (telegram->dest == 0) {
str = src_name + "(" + Helpers::hextoa(src) + ") -B-> " + dest_name + "(" + Helpers::hextoa(dest) + "), " + type_name + "("
+ Helpers::hextoa(telegram->type_id) + "), data: " + telegram->to_string_message();
} else {
str = src_name + "(" + Helpers::hextoa(src) + ") -W-> " + dest_name + "(" + Helpers::hextoa(dest) + "), " + type_name + "("
+ Helpers::hextoa(telegram->type_id) + "), data: " + telegram->to_string_message();
}
if (offset) {
str += " (offset " + Helpers::itoa(offset) + ")";
}
return str;
}
/*
* Type 0x07 - UBADevices - shows us the connected EMS devices
* e.g. 08 00 07 00 0B 80 00 00 00 00 00 00 00 00 00 00 00
* Junkers has 15 bytes of data
* each byte is a bitmask for which devices are active
* byte 1 = 0x08 - 0x0F, byte 2 = 0x10 - 0x17, etc...
* e.g. in example above 1st byte = x0B = b1011 so we have deviceIDs 0x08, 0x09, 0x011
* and 2nd byte = x80 = b1000 b0000 = deviceID 0x17
*/
void EMSESP::process_UBADevices(std::shared_ptr<const Telegram> telegram) {
// exit it length is incorrect (must be 13 or 15 bytes long)
if (telegram->message_length > 15) {
return;
}
// for each byte, check the bits and determine the device_id
for (uint8_t data_byte = 0; data_byte < telegram->message_length; data_byte++) {
uint8_t next_byte = telegram->message_data[data_byte];
if (next_byte) {
for (uint8_t bit = 0; bit < 8; bit++) {
if (next_byte & 0x01) {
uint8_t device_id = ((data_byte + 1) * 8) + bit;
// if we haven't already detected this device, request it's version details, unless its us (EMS-ESP)
// when the version info is received, it will automagically add the device
if ((device_id != EMSbus::ems_bus_id()) && !(EMSESP::device_exists(device_id))) {
LOG_DEBUG("New EMS device detected with ID 0x%02X. Requesting version information.", device_id);
send_read_request(EMSdevice::EMS_TYPE_VERSION, device_id);
}
}
next_byte = next_byte >> 1; // advance 1 bit
}
}
}
}
// process the Version telegram (type 0x02), which is a common type
// e.g. 09 0B 02 00 PP V1 V2
void EMSESP::process_version(std::shared_ptr<const Telegram> telegram) {
// check for valid telegram, just in case
if (telegram->message_length < 3) {
// for empty telegram add device with empty product, version and brand
if (!telegram->message_length) {
(void)add_device(telegram->src, 0, "00.00", 0);
}
return;
}
// check for 2nd subscriber, e.g. 18 0B 02 00 00 00 00 5E 02 01
uint8_t offset = 0;
if (telegram->message_data[0] == 0x00) {
// see if we have a 2nd subscriber
if (telegram->message_data[3] != 0x00) {
offset = 3;
} else {
return; // ignore whole telegram
}
}
// extra details from the telegram
uint8_t device_id = telegram->src; // deviceID
uint8_t product_id = telegram->message_data[offset]; // productID
// get version as XX.XX
char version[8];
snprintf(version, sizeof(version), "%02d.%02d", telegram->message_data[offset + 1], telegram->message_data[offset + 2]);
// some devices store the protocol type (HT3, Buderus) in the last byte
uint8_t brand;
if (telegram->message_length >= 10) {
brand = EMSdevice::decode_brand(telegram->message_data[9]);
} else {
brand = EMSdevice::Brand::NO_BRAND; // unknown
}
// add it - will be overwritten if device already exists
(void)add_device(device_id, product_id, version, brand);
}
// find the device object that matches the deviceID and see if it has a matching telegram type handler
// but only process if the telegram is sent to us or it's a broadcast (dest=0x00=all)
// We also check for common telegram types, like the Version(0x02)
// returns false if there are none found
bool EMSESP::process_telegram(std::shared_ptr<const Telegram> telegram) {
// if watching or reading...
if ((telegram->type_id == read_id_ || telegram->type_id == response_id_) && (telegram->dest == EMSbus::ems_bus_id())) {
if (telegram->type_id == response_id_) {
if (!trace_raw_) {
LOG_TRACE("%s", pretty_telegram(telegram).c_str());
}
if (!read_next_) {
response_id_ = 0;
}
publish_response(telegram);
} else {
LOG_NOTICE("%s", pretty_telegram(telegram).c_str());
}
// check if read is finished or gives more parts
if (!read_next_) {
read_id_ = WATCH_ID_NONE;
}
read_next_ = false;
} else if (watch() == WATCH_ON) {
if ((watch_id_ == WATCH_ID_NONE) || (telegram->type_id == watch_id_)
|| ((watch_id_ < 0x80) && ((telegram->src == watch_id_) || (telegram->dest == watch_id_)))) {
LOG_NOTICE("%s", pretty_telegram(telegram).c_str());
} else if (!trace_raw_) {
LOG_TRACE("%s", pretty_telegram(telegram).c_str());
}
} else if (!trace_raw_) {
LOG_TRACE("%s", pretty_telegram(telegram).c_str());
}
// only process broadcast telegrams or ones sent to us on request
// if ((telegram->dest != 0x00) && (telegram->dest != EMSbus::ems_bus_id())) {
if (telegram->operation == Telegram::Operation::RX_READ) {
// LOG_DEBUG("read telegram received, not processing");
return false;
}
// Check for custom entities reding this telegram
webCustomEntityService.get_value(telegram);
// check for common types, like the Version(0x02)
if (telegram->type_id == EMSdevice::EMS_TYPE_VERSION) {
process_version(telegram);
return true;
} else if (telegram->type_id == EMSdevice::EMS_TYPE_UBADevices) {
// do not flood tx-queue with version requests while waiting for km200
if (!wait_km_) {
process_UBADevices(telegram);
}
return true;
}
// match device_id and type_id
// calls the associated process function for that EMS device
// returns false if the device_id doesn't recognize it
// after the telegram has been processed, see if there have been values changed and we need to do a MQTT publish
bool found = false;
bool knowndevice = false;
for (const auto & emsdevice : emsdevices) {
if (emsdevice->is_device_id(telegram->src) && (telegram->dest == 0 || telegram->dest == EMSbus::ems_bus_id())) {
knowndevice = true;
found = emsdevice->handle_telegram(telegram);
// if we correctly processed the telegram then follow up with sending it via MQTT (if enabled)
if (found && Mqtt::connected()) {
if ((mqtt_.get_publish_onchange(emsdevice->device_type()) && emsdevice->has_update())
|| (telegram->type_id == publish_id_ && telegram->dest == EMSbus::ems_bus_id())) {
if (telegram->type_id == publish_id_) {
publish_id_ = 0;
}
emsdevice->has_update(false); // reset flag
if (!Mqtt::publish_single()) {
publish_device_values(emsdevice->device_type()); // publish to MQTT if we explicitly have too
}
}
}
if (wait_validate_ == telegram->type_id) {
wait_validate_ = 0;
}
if (!found && telegram->message_length > 0) {
emsdevice->add_handlers_ignored(telegram->type_id);
}
break;
} else if (emsdevice->is_device_id(telegram->dest) && telegram->src != EMSbus::ems_bus_id()) {
emsdevice->handle_telegram(telegram);
}
}
// handle unknown broadcasted telegrams
if (!found && telegram->dest == 0) {
LOG_DEBUG("No telegram type handler found for ID 0x%02X (src 0x%02X)", telegram->type_id, telegram->src);
if (watch() == WATCH_UNKNOWN) {
LOG_NOTICE("%s", pretty_telegram(telegram).c_str());
}
if (!wait_km_ && !knowndevice && (telegram->src != EMSbus::ems_bus_id()) && (telegram->message_length > 0)) {
send_read_request(EMSdevice::EMS_TYPE_VERSION, telegram->src);
}
}
return found;
}
// return true if we have this device already registered
bool EMSESP::device_exists(const uint8_t device_id) {
for (const auto & emsdevice : emsdevices) {
if (emsdevice && emsdevice->is_device_id(device_id)) {
return true;
}
}
return false; // not found
}
// for each associated EMS device go and get its system information
void EMSESP::show_devices(uuid::console::Shell & shell) {
if (emsdevices.empty()) {
shell.printfln("No EMS devices detected");
shell.println();
return;
}
shell.printfln("These EMS devices are currently active:");
shell.println();
// count the number of thermostats
/*
uint8_t num_thermostats = 0;
for (const auto & emsdevice : emsdevices) {
if (emsdevice && (emsdevice->device_type() == DeviceType::THERMOSTAT)) {
num_thermostats++;
}
}
*/
// for all device objects from emsdevice.h
// so we keep a consistent order
// don't translate the device type name
for (const auto & device_class : EMSFactory::device_handlers()) {
for (const auto & emsdevice : emsdevices) {
if (emsdevice && (emsdevice->device_type() == device_class.first)) {
shell.printf("%s: %s", emsdevice->device_type_name(), emsdevice->to_string().c_str());
shell.println();
emsdevice->show_telegram_handlers(shell);
#if defined(EMSESP_DEBUG)
emsdevice->show_mqtt_handlers(shell);
#endif
shell.println();
}
}
}
}
// add a new or update existing EMS device to our list of active EMS devices
// if its not in our database, we don't add it
bool EMSESP::add_device(const uint8_t device_id, const uint8_t product_id, const char * version, const uint8_t brand) {
// don't add ourselves!
if (device_id == EMSbus::ems_bus_id()) {
return false;
}
// first check to see if we already have it, if so update the record
for (const auto & emsdevice : emsdevices) {
if (emsdevice && emsdevice->is_device_id(device_id)) {
if (product_id == 0) { // update only with valid product_id
return true;
}
LOG_DEBUG("Updating details for already active deviceID 0x%02X", device_id);
emsdevice->product_id(product_id);
emsdevice->version(version);
// only set brand if it doesn't already exist
if (emsdevice->brand() == EMSdevice::Brand::NO_BRAND) {
emsdevice->brand(brand);
}
// find the name and flags in our database
for (const auto & device : device_library_) {
if (device.product_id == product_id && device.device_type == emsdevice->device_type()) {
emsdevice->name(device.name);
emsdevice->add_flags(device.flags);
}
}
return true; // finish up
}
}
// look up the rest of the details using the product_id and create the new device object
Device_record * device_p = nullptr;
for (auto & device : device_library_) {
if (device.product_id == product_id) {
// sometimes boilers share the same productID as controllers
// so only add boilers if the device_id is 0x08
// cascaded boilers with 0x70.., map to heatsources
if (device.device_type == DeviceType::BOILER) {
if (device_id == EMSdevice::EMS_DEVICE_ID_BOILER) {
device_p = &device;
break;
}
if (device_id >= EMSdevice::EMS_DEVICE_ID_HS1 && device_id <= EMSdevice::EMS_DEVICE_ID_HS16) {
device_p = &device;
device_p->device_type = DeviceType::HEATSOURCE;
break;
}
} else {
// it's not a boiler, but we have a match
device_p = &device;
break;
}
}
}
// if we don't recognize the productID report it and add as a generic device
if (device_p == nullptr) {
LOG_NOTICE("Unrecognized EMS device (deviceID 0x%02X, productID %d). Please report on GitHub.", device_id, product_id);
emsdevices.push_back(
EMSFactory::add(DeviceType::GENERIC, device_id, product_id, version, "unknown", DeviceFlags::EMS_DEVICE_FLAG_NONE, EMSdevice::Brand::NO_BRAND));
return false; // not found
}
auto name = device_p->name;
auto device_type = device_p->device_type;
auto flags = device_p->flags;
// check for integrated modules with same product id, but different function (device_id)
if (device_type == DeviceType::HEATPUMP) {
if (device_id == EMSdevice::EMS_DEVICE_ID_MODEM) {
device_type = DeviceType::GATEWAY;
name = "WiFi module";
} else if (device_id == EMSdevice::EMS_DEVICE_ID_RFBASE) {
device_type = DeviceType::CONNECT;
name = "Wireless sensor base";
}
}
if (device_id >= EMSdevice::EMS_DEVICE_ID_DHW1 && device_id <= EMSdevice::EMS_DEVICE_ID_DHW8) {
device_type = DeviceType::WATER;
}
// empty reply to version, read a generic device from database
if (product_id == 0) {
// check for known device IDs
if (device_id == EMSdevice::EMS_DEVICE_ID_RFSENSOR) {
// see: https://github.com/emsesp/EMS-ESP32/issues/103#issuecomment-911717342 and https://github.com/emsesp/EMS-ESP32/issues/624
name = "RF room temperature sensor";
device_type = DeviceType::THERMOSTAT;
} else if (device_id == EMSdevice::EMS_DEVICE_ID_ROOMTHERMOSTAT || device_id == EMSdevice::EMS_DEVICE_ID_TADO_OLD) {
// see https://github.com/emsesp/EMS-ESP32/issues/174
name = "Generic thermostat";
device_type = DeviceType::THERMOSTAT;
flags = DeviceFlags::EMS_DEVICE_FLAG_RC10 | DeviceFlags::EMS_DEVICE_FLAG_NO_WRITE;
} else if (device_id == EMSdevice::EMS_DEVICE_ID_RS232) {
name = "RS232";
device_type = DeviceType::CONNECT;
} else if (device_id == EMSdevice::EMS_DEVICE_ID_TERMINAL) {
name = "Terminal";
device_type = DeviceType::CONNECT;
} else if (device_id == EMSdevice::EMS_DEVICE_ID_SERVICEKEY) {
name = "Service Key";
device_type = DeviceType::CONNECT;
} else if (device_id == EMSdevice::EMS_DEVICE_ID_CASCADE) {
name = "Cascade";
device_type = DeviceType::CONNECT;
} else if (device_id == EMSdevice::EMS_DEVICE_ID_EASYCOM
|| (device_id >= EMSdevice::EMS_DEVICE_ID_MODEM && device_id <= EMSdevice::EMS_DEVICE_ID_MODEM + 5)) {
// see https://github.com/emsesp/EMS-ESP/issues/460#issuecomment-709553012
name = "Modem";
device_type = DeviceType::CONNECT;
} else if (device_id == EMSdevice::EMS_DEVICE_ID_CONVERTER) {
name = "Converter"; // generic
} else if (device_id == EMSdevice::EMS_DEVICE_ID_CLOCK) {
name = "Clock"; // generic
device_type = DeviceType::CONTROLLER;
} else if (device_id == EMSdevice::EMS_DEVICE_ID_CONTROLLER) {
name = "Generic Controller";
device_type = DeviceType::CONTROLLER;
} else if (device_id == EMSdevice::EMS_DEVICE_ID_BOILER) {
name = "Generic Boiler";
device_type = DeviceType::BOILER;
flags = DeviceFlags::EMS_DEVICE_FLAG_HEATPUMP;
LOG_WARNING("Unknown EMS boiler. Using generic profile. Please report on GitHub.");
} else if (device_id >= 0x68 && device_id <= 0x6F) {
// test for https://github.com/emsesp/EMS-ESP32/issues/882
name = "Cascaded Controller";
device_type = DeviceType::CONTROLLER;
} else {
LOG_WARNING("Unrecognized EMS device (device ID 0x%02X, no product ID). Please report on GitHub.", device_id);
return false;
}
}
LOG_DEBUG("Adding new device %s (deviceID 0x%02X, productID %d, version %s)", name, device_id, product_id, version);
emsdevices.push_back(EMSFactory::add(device_type, device_id, product_id, version, name, flags, brand));
// assign a unique ID. Note that this is not actual unique after a restart as it's dependent on the order that devices are found
// can't be 0 otherwise web won't work
emsdevices.back()->unique_id(++unique_id_count_);
// sort devices based on type
std::sort(emsdevices.begin(), emsdevices.end(), [](const std::unique_ptr<EMSdevice> & a, const std::unique_ptr<EMSdevice> & b) {
return a->device_type() < b->device_type();
});
fetch_device_values(device_id); // go and fetch its data
// Print to LOG showing we've added a new device
LOG_INFO("Recognized new %s with deviceID 0x%02X", EMSdevice::device_type_2_device_name(device_type), device_id);
// add command commands for all devices, except for connect, controller and gateway
if ((device_type == DeviceType::CONNECT) || (device_type == DeviceType::CONTROLLER) || (device_type == DeviceType::GATEWAY)) {
return true;
}
Command::add(
device_type,
F_(info),
[device_type](const char * value, const int8_t id, JsonObject output) {
return EMSdevice::export_values(device_type, output, id, EMSdevice::OUTPUT_TARGET::API_VERBOSE);
},
FL_(info_cmd));
Command::add(
device_type,
F_(values),
[device_type](const char * value, const int8_t id, JsonObject output) {
return EMSdevice::export_values(device_type,
output,
id,
EMSdevice::OUTPUT_TARGET::API_SHORTNAMES); // HIDDEN command showing short names, used in e.g. /api/boiler
},
nullptr,
CommandFlag::HIDDEN); // this command is hidden
Command::add(
device_type,
F_(commands),
[device_type](const char * value, const int8_t id, JsonObject output) { return command_commands(device_type, output, id); },
FL_(commands_cmd));
Command::add(
device_type,
F_(entities),
[device_type](const char * value, const int8_t id, JsonObject output) { return command_entities(device_type, output, id); },
FL_(entities_cmd));
// MQTT subscribe to the device e.g. "ems-esp/boiler/#"
auto topic = std::string(EMSdevice::device_type_2_device_name(device_type)) + "/#";
Mqtt::subscribe(device_type, topic, nullptr);
return true;
}
// list device entities
bool EMSESP::command_entities(uint8_t device_type, JsonObject output, const int8_t id) {
JsonObject node;
for (const auto & emsdevice : emsdevices) {
if (emsdevice && (emsdevice->device_type() == device_type)) {
emsdevice->list_device_entries(output);
return true;
}
}
return false;
}
// list all available commands, return as json
bool EMSESP::command_commands(uint8_t device_type, JsonObject output, const int8_t id) {
return Command::list(device_type, output);
}
// send a read request, passing it into to the Tx Service, with optional offset and length
void EMSESP::send_read_request(const uint16_t type_id, const uint8_t dest, const uint8_t offset, const uint8_t length, const bool front) {
txservice_.read_request(type_id, dest, offset, length, front);
}
// sends write request
void EMSESP::send_write_request(const uint16_t type_id,
const uint8_t dest,
const uint8_t offset,
uint8_t * message_data,
const uint8_t message_length,
const uint16_t validate_typeid) {
txservice_.add(Telegram::Operation::TX_WRITE, dest, type_id, offset, message_data, message_length, validate_typeid, true);
}
void EMSESP::send_write_request(const uint16_t type_id, const uint8_t dest, const uint8_t offset, const uint8_t value) {
send_write_request(type_id, dest, offset, value, 0);
}
// send Tx write with a single value
void EMSESP::send_write_request(const uint16_t type_id, const uint8_t dest, const uint8_t offset, const uint8_t value, const uint16_t validate_typeid) {
uint8_t message_data[1];
message_data[0] = value;
EMSESP::send_write_request(type_id, dest, offset, message_data, 1, validate_typeid);
}
// this is main entry point when data is received on the Rx line, via emsuart library
// we check if its a complete telegram or just a single byte (which could be a poll or a return status)
// the CRC check is not done here, only when it's added to the Rx queue with add()
void EMSESP::incoming_telegram(uint8_t * data, const uint8_t length) {
#ifdef EMSESP_UART_DEBUG
static uint32_t rx_time_ = 0;
#endif
// check first for echo
uint8_t first_value = data[0];
if (((first_value & 0x7F) == EMSbus::ems_bus_id()) && (length > 1)) {
// if we ask ourself at roomcontrol for version e.g. 0B 98 02 00 20
Roomctrl::check((data[1] ^ 0x80 ^ rxservice_.ems_mask()), data, length);
#ifdef EMSESP_UART_DEBUG
// get_uptime is only updated once per loop, does not give the right time
LOG_TRACE("[UART_DEBUG] Echo after %d ms: %s", ::millis() - rx_time_, Helpers::data_to_hex(data, length).c_str());
#endif
// add to RxQueue for log/watch
rxservice_.add(data, length);
return; // it's an echo
}
// are we waiting for a response from a recent Tx Read or Write?
uint8_t tx_state = EMSbus::tx_state();
if (tx_state != Telegram::Operation::NONE) {
bool tx_successful = false;
EMSbus::tx_state(Telegram::Operation::NONE); // reset Tx wait state
// if we're waiting on a Write operation, we want a single byte 1 or 4
if ((tx_state == Telegram::Operation::TX_WRITE) && (length == 1)) {
if (first_value == TxService::TX_WRITE_SUCCESS) {
LOG_DEBUG("Last Tx write successful");
txservice_.increment_telegram_write_count(); // last tx/write was confirmed ok
txservice_.send_poll(); // close the bus
publish_id_ = txservice_.post_send_query(); // follow up with any post-read if set
txservice_.reset_retry_count();
tx_successful = true;
} else if (first_value == TxService::TX_WRITE_FAIL) {
LOG_ERROR("Last Tx write rejected by host");
txservice_.send_poll(); // close the bus
}
} else if (tx_state == Telegram::Operation::TX_READ && length == 1) {
EMSbus::tx_state(Telegram::Operation::TX_READ); // reset Tx wait state
return;
} else if (tx_state == Telegram::Operation::TX_READ) {
// got a telegram with data in it. See if the src/dest matches that from the last one we sent and continue to process it
uint8_t src = data[0];
uint8_t dest = data[1];
if (txservice_.is_last_tx(src, dest)) {
LOG_DEBUG("Last Tx read successful");
txservice_.increment_telegram_read_count();
txservice_.reset_retry_count();
tx_successful = true;
// if telegram is longer read next part with offset +25 for ems+ or +27 for ems1.0
// not for response to raw send commands without read_id set
if ((response_id_ == 0 || read_id_ > 0) && (length >= 31) && (txservice_.read_next_tx(data[3], length) == read_id_)) {
read_next_ = true;
txservice_.send();
} else {
txservice_.send_poll(); // close the bus
}
}
}
// if Tx wasn't successful, retry or just give up
if (!tx_successful) {
txservice_.retry_tx(tx_state, data, length);
return;
}
}
// check for poll
if (length == 1) {
// if ht3 poll must be ems_bus_id else if Buderus poll must be (ems_bus_id | 0x80)
uint8_t poll_id = (first_value ^ 0x80 ^ rxservice_.ems_mask());
static uint32_t connect_time = 0;
if (!rxservice_.bus_connected()) {
wait_km_ = true;
connect_time = uuid::get_uptime_sec();
}
if (poll_id == EMSbus::ems_bus_id()) {
EMSbus::last_bus_activity(uuid::get_uptime()); // set the flag indication the EMS bus is active
}
if (wait_km_) {
if (poll_id != 0x48 && (uuid::get_uptime_sec() - connect_time) < EMS_WAIT_KM_TIMEOUT) {
return;
}
wait_km_ = false; // KM200 is polled, from now on it is safe to send
}
#ifdef EMSESP_UART_DEBUG
char s[4];
if (first_value & 0x80) {
LOG_TRACE("[UART_DEBUG] next Poll %s after %d ms", Helpers::hextoa(s, first_value), ::millis() - rx_time_);
// time measurement starts here, use millis because get_uptime is only updated once per loop
rx_time_ = ::millis();
} else {
LOG_TRACE("[UART_DEBUG] Poll ack %s after %d ms", Helpers::hextoa(s, first_value), ::millis() - rx_time_);
}
#endif
// check for poll to us, if so send top message from Tx queue immediately and quit
if (poll_id == txservice_.get_send_id()) {
txservice_.send();
}
// send remote room temperature if active
Roomctrl::send(poll_id);
return;
} else {
#ifdef EMSESP_UART_DEBUG
LOG_TRACE("[UART_DEBUG] Reply after %d ms: %s", ::millis() - rx_time_, Helpers::data_to_hex(data, length).c_str());
#endif
Roomctrl::check((data[1] ^ 0x80 ^ rxservice_.ems_mask()), data, length); // check if there is a message for the roomcontroller
rxservice_.add(data, length); // add to RxQueue
}
}
// fetch devices one by one
void EMSESP::scheduled_fetch_values() {
static uint8_t no = 0;
if (no || (uuid::get_uptime() - last_fetch_ > EMS_FETCH_FREQUENCY)) {
if (!no) {
last_fetch_ = uuid::get_uptime();
no = 1;
}
if (txservice_.tx_queue_empty()) {
uint8_t i = 0;
for (const auto & emsdevice : emsdevices) {
if (++i >= no) {
emsdevice->fetch_values();
no++;
return;
}
}
webCustomEntityService.fetch();
no = 0;
}
}
}
// EMSESP main class
EMSESP::EMSESP()
#ifndef EMSESP_STANDALONE
: telnet_([this](Stream & stream, const IPAddress & addr, uint16_t port) -> std::shared_ptr<uuid::console::Shell> {
return std::make_shared<EMSESPConsole>(*this, stream, addr, port);
})
#endif
{
}
// start all the core services
// the services must be loaded in the correct order
void EMSESP::start() {
serial_console_.begin(SERIAL_CONSOLE_BAUD_RATE);
shell_ = std::make_shared<EMSESPConsole>(*this, serial_console_, true);
shell_->maximum_log_messages(100);
shell_->start();
#if defined(EMSESP_DEBUG)
shell_->log_level(uuid::log::Level::DEBUG);
#else
shell_->log_level(uuid::log::Level::TRACE);
#endif
#if defined(EMSESP_STANDALONE)
shell_->add_flags(CommandFlags::ADMIN); // always start in su/admin mode when running tests
#endif
// start the file system
#ifndef EMSESP_STANDALONE
if (!LittleFS.begin(true)) {
Serial.println("LittleFS Mount Failed. Using default settings.");
return;
}
#endif
// do a quick scan of the filesystem to see if we have a /config folder
// so we know if this is a new install or not
#ifndef EMSESP_STANDALONE
File root = LittleFS.open("/config");
bool factory_settings = !root;
if (!root) {
#if defined(EMSESP_DEBUG)
Serial.println("No config found, assuming factory settings");
#endif
}
root.close();
#else
bool factory_settings = false;
#endif
esp8266React.begin(); // loads core system services settings (network, mqtt, ap, ntp etc)
webLogService.begin(); // start web log service. now we can start capturing logs to the web log
nvs_.begin("ems-esp", false, "nvs");
LOG_INFO("Starting EMS-ESP version %s", EMSESP_APP_VERSION); // welcome message
LOG_DEBUG("System is running in Debug mode");
LOG_INFO("Last system reset reason Core0: %s, Core1: %s", system_.reset_reason(0).c_str(), system_.reset_reason(1).c_str());
// see if we're restoring a settings file
if (system_.check_restore()) {
LOG_WARNING("System needs a restart to apply new settings. Please wait.");
system_.system_restart();
};
webSettingsService.begin(); // load EMS-ESP Application settings...
// do any system upgrades
if (system_.check_upgrade(factory_settings)) {
LOG_WARNING("System needs a restart to apply new settings. Please wait.");
system_.system_restart();
};
system_.reload_settings(); // ... and store some of the settings locally
webCustomizationService.begin(); // load the customizations
webSchedulerService.begin(); // load the scheduler events
webCustomEntityService.begin(); // load the custom telegram reads
// start telnet service if it's enabled
// default idle is 10 minutes, default write timeout is 0 (automatic)
// note, this must be started after the network/wifi for ESP32 otherwise it'll crash
if (system_.telnet_enabled()) {
#ifndef EMSESP_STANDALONE
telnet_.start();
telnet_.initial_idle_timeout(3600); // in sec, one hour idle timeout
telnet_.default_write_timeout(1000); // in ms, socket timeout 1 second
#endif
}
mqtt_.start(); // mqtt init
system_.start(); // starts commands, led, adc, button, network (sets hostname), syslog & uart
shower_.start(); // initialize shower timer and shower alert
temperaturesensor_.start(); // Temperature external sensors
analogsensor_.start(); // Analog external sensors
webLogService.start(); // apply settings to weblog service
// Load our library of known devices into stack mem. Names are stored in Flash memory
device_library_ = {
#include "device_library.h"
};
LOG_INFO("Loaded EMS device library (%d records)", device_library_.size());
#if defined(EMSESP_STANDALONE)
Mqtt::on_connect(); // simulate an MQTT connection
#endif
webServer.begin(); // start the web server
}
// main loop calling all services
void EMSESP::loop() {
esp8266React.loop(); // web services
system_.loop(); // does LED and checks system health, and syslog service
// if we're doing an OTA upload, skip everything except from console refresh
if (!system_.upload_status()) {
// service loops
webLogService.loop(); // log in Web UI
rxservice_.loop(); // process any incoming Rx telegrams
shower_.loop(); // check for shower on/off
temperaturesensor_.loop(); // read sensor temperatures
analogsensor_.loop(); // read analog sensor values
publish_all_loop(); // with HA messages in parts to avoid flooding the mqtt queue
mqtt_.loop(); // sends out anything in the MQTT queue
webSchedulerService.loop(); // handle any scheduled jobs
// force a query on the EMS devices to fetch latest data at a set interval (1 min)
scheduled_fetch_values();
}
uuid::loop();
#ifndef EMSESP_STANDALONE
if (system_.telnet_enabled()) {
telnet_.loop();
}
#else
if (!shell_->running()) {
::exit(0);
}
#endif
Shell::loop_all();
}
} // namespace emsesp