mirror of
https://github.com/emsesp/EMS-ESP32.git
synced 2025-12-06 15:59:52 +03:00
2228 lines
71 KiB
C++
2228 lines
71 KiB
C++
/*
|
|
* MyESP - my ESP helper class to handle WiFi, MQTT and Telnet
|
|
*
|
|
* Paul Derbyshire - first revision: December 2018
|
|
*
|
|
* Ideas borrowed from Espurna https://github.com/xoseperez/espurna
|
|
*/
|
|
|
|
#include "MyESP.h"
|
|
|
|
#ifdef CRASH
|
|
EEPROM_Rotate EEPROMr;
|
|
#endif
|
|
|
|
union system_rtcmem_t {
|
|
struct {
|
|
uint8_t stability_counter;
|
|
uint8_t reset_reason;
|
|
uint8_t boot_status;
|
|
uint8_t _reserved_;
|
|
} parts;
|
|
uint32_t value;
|
|
};
|
|
|
|
uint8_t RtcmemSize = (sizeof(RtcmemData) / 4u);
|
|
auto Rtcmem = reinterpret_cast<volatile RtcmemData *>(RTCMEM_ADDR);
|
|
|
|
// constructor
|
|
MyESP::MyESP() {
|
|
_app_hostname = strdup("MyESP");
|
|
_app_name = strdup("MyESP");
|
|
_app_version = strdup(MYESP_VERSION);
|
|
|
|
_boottime = NULL;
|
|
_load_average = 100; // calculated load average
|
|
|
|
_telnetcommand_callback = NULL;
|
|
_telnet_callback = NULL;
|
|
|
|
_command[0] = '\0';
|
|
|
|
_fs_callback = NULL;
|
|
_fs_settings_callback = NULL;
|
|
|
|
_web_callback = NULL;
|
|
|
|
_helpProjectCmds = NULL;
|
|
_helpProjectCmds_count = 0;
|
|
|
|
_serial = false;
|
|
_serial_default = false;
|
|
|
|
_heartbeat = false;
|
|
_mqtt_host = NULL;
|
|
_mqtt_password = NULL;
|
|
_mqtt_username = NULL;
|
|
_mqtt_retain = false;
|
|
_mqtt_keepalive = 300;
|
|
_mqtt_will_topic = NULL;
|
|
_mqtt_will_online_payload = NULL;
|
|
_mqtt_will_offline_payload = NULL;
|
|
_mqtt_base = NULL;
|
|
_mqtt_topic = NULL;
|
|
_mqtt_qos = 0;
|
|
_mqtt_reconnect_delay = MQTT_RECONNECT_DELAY_MIN;
|
|
_mqtt_last_connection = 0;
|
|
_mqtt_connecting = false;
|
|
|
|
_firstInstall = false;
|
|
|
|
_wifi_password = NULL;
|
|
_wifi_ssid = NULL;
|
|
_wifi_callback = NULL;
|
|
_wifi_connected = false;
|
|
|
|
_ota_pre_callback = NULL;
|
|
_ota_post_callback = NULL;
|
|
_ota_doing_update = false;
|
|
|
|
_suspendOutput = false;
|
|
|
|
_rtcmem_status = false;
|
|
_systemStable = true;
|
|
}
|
|
|
|
MyESP::~MyESP() {
|
|
end();
|
|
}
|
|
|
|
// end
|
|
void MyESP::end() {
|
|
SerialAndTelnet.end();
|
|
jw.disconnect();
|
|
}
|
|
|
|
// general debug to the telnet or serial channels
|
|
void MyESP::myDebug(const char * format, ...) {
|
|
if (_suspendOutput)
|
|
return;
|
|
|
|
va_list args;
|
|
va_start(args, format);
|
|
char test[1];
|
|
|
|
int len = ets_vsnprintf(test, 1, format, args) + 1;
|
|
|
|
char * buffer = new char[len];
|
|
ets_vsnprintf(buffer, len, format, args);
|
|
va_end(args);
|
|
|
|
SerialAndTelnet.println(buffer);
|
|
|
|
delete[] buffer;
|
|
}
|
|
|
|
// for flashmemory. Must use PSTR()
|
|
void MyESP::myDebug_P(PGM_P format_P, ...) {
|
|
if (_suspendOutput)
|
|
return;
|
|
|
|
char format[strlen_P(format_P) + 1];
|
|
memcpy_P(format, format_P, sizeof(format));
|
|
|
|
va_list args;
|
|
va_start(args, format_P);
|
|
char test[1];
|
|
int len = ets_vsnprintf(test, 1, format, args) + 1;
|
|
|
|
char * buffer = new char[len];
|
|
ets_vsnprintf(buffer, len, format, args);
|
|
|
|
va_end(args);
|
|
|
|
#ifdef MYESP_TIMESTAMP
|
|
// capture & print timestamp
|
|
char timestamp[10] = {0};
|
|
snprintf_P(timestamp, sizeof(timestamp), PSTR("[%06lu] "), millis() % 1000000);
|
|
SerialAndTelnet.print(timestamp);
|
|
#endif
|
|
|
|
SerialAndTelnet.println(buffer);
|
|
|
|
delete[] buffer;
|
|
}
|
|
|
|
// use Serial?
|
|
bool MyESP::getUseSerial() {
|
|
return (_serial);
|
|
}
|
|
|
|
// heartbeat
|
|
bool MyESP::getHeartbeat() {
|
|
return (_heartbeat);
|
|
}
|
|
|
|
// init heap ram
|
|
uint32_t MyESP::_getInitialFreeHeap() {
|
|
static uint32_t _heap = 0;
|
|
|
|
if (0 == _heap) {
|
|
_heap = ESP.getFreeHeap();
|
|
}
|
|
|
|
return _heap;
|
|
}
|
|
|
|
// used heap mem
|
|
// note calls to getFreeHeap sometimes causes some ESPs to crash
|
|
uint32_t MyESP::_getUsedHeap() {
|
|
return _getInitialFreeHeap() - ESP.getFreeHeap();
|
|
}
|
|
|
|
// called when WiFi is connected, and used to start OTA, MQTT
|
|
void MyESP::_wifiCallback(justwifi_messages_t code, char * parameter) {
|
|
if ((code == MESSAGE_CONNECTED)) {
|
|
#if defined(ARDUINO_ARCH_ESP32)
|
|
String hostname = String(WiFi.getHostname());
|
|
#else
|
|
String hostname = WiFi.hostname();
|
|
#endif
|
|
|
|
myDebug_P(PSTR("[WIFI] SSID %s"), WiFi.SSID().c_str());
|
|
myDebug_P(PSTR("[WIFI] CH %d"), WiFi.channel());
|
|
myDebug_P(PSTR("[WIFI] RSSI %d"), WiFi.RSSI());
|
|
myDebug_P(PSTR("[WIFI] IP %s"), WiFi.localIP().toString().c_str());
|
|
myDebug_P(PSTR("[WIFI] MAC %s"), WiFi.macAddress().c_str());
|
|
myDebug_P(PSTR("[WIFI] GW %s"), WiFi.gatewayIP().toString().c_str());
|
|
myDebug_P(PSTR("[WIFI] MASK %s"), WiFi.subnetMask().toString().c_str());
|
|
myDebug_P(PSTR("[WIFI] DNS %s"), WiFi.dnsIP().toString().c_str());
|
|
myDebug_P(PSTR("[WIFI] HOST %s"), hostname.c_str());
|
|
|
|
// start OTA
|
|
ArduinoOTA.begin(); // moved to support esp32
|
|
myDebug_P(PSTR("[OTA] listening to %s.local:%u"), ArduinoOTA.getHostname().c_str(), OTA_PORT);
|
|
|
|
// MQTT Setup
|
|
_mqtt_setup();
|
|
|
|
_wifi_connected = true;
|
|
|
|
// finally if we don't want Serial anymore, turn it off
|
|
if (!_serial) {
|
|
myDebug_P(PSTR("[SYSTEM] Disabling serial port communication."));
|
|
SerialAndTelnet.flush(); // flush so all buffer is printed to serial
|
|
SerialAndTelnet.setSerial(NULL);
|
|
}
|
|
|
|
// call any final custom settings
|
|
if (_wifi_callback) {
|
|
_wifi_callback();
|
|
}
|
|
|
|
jw.enableAPFallback(false); // Disable AP mode after initial connect was successful
|
|
}
|
|
|
|
if (code == MESSAGE_ACCESSPOINT_CREATED) {
|
|
_wifi_connected = true;
|
|
|
|
myDebug_P(PSTR("[WIFI] MODE AP --------------------------------------"));
|
|
myDebug_P(PSTR("[WIFI] SSID %s"), jw.getAPSSID().c_str());
|
|
myDebug_P(PSTR("[WIFI] IP %s"), WiFi.softAPIP().toString().c_str());
|
|
myDebug_P(PSTR("[WIFI] MAC %s"), WiFi.softAPmacAddress().c_str());
|
|
|
|
// finally if we don't want Serial anymore, turn it off
|
|
if (!_serial) {
|
|
myDebug_P(PSTR("[SYSTEM] Disabling serial port communication."));
|
|
SerialAndTelnet.flush(); // flush so all buffer is printed to serial
|
|
SerialAndTelnet.setSerial(NULL);
|
|
}
|
|
|
|
// call any final custom settings
|
|
if (_wifi_callback) {
|
|
_wifi_callback();
|
|
}
|
|
}
|
|
|
|
if (code == MESSAGE_CONNECTING) {
|
|
myDebug_P(PSTR("[WIFI] Connecting to %s"), parameter);
|
|
_wifi_connected = false;
|
|
}
|
|
|
|
if (code == MESSAGE_CONNECT_FAILED) {
|
|
myDebug_P(PSTR("[WIFI] Could not connect to %s"), parameter);
|
|
_wifi_connected = false;
|
|
}
|
|
|
|
if (code == MESSAGE_DISCONNECTED) {
|
|
myDebug_P(PSTR("[WIFI] Disconnected"));
|
|
_wifi_connected = false;
|
|
}
|
|
|
|
if (code == MESSAGE_SCANNING) {
|
|
myDebug_P(PSTR("[WIFI] Scanning\n"));
|
|
}
|
|
|
|
if (code == MESSAGE_SCAN_FAILED) {
|
|
myDebug_P(PSTR("[WIFI] Scan failed\n"));
|
|
}
|
|
|
|
if (code == MESSAGE_NO_NETWORKS) {
|
|
myDebug_P(PSTR("[WIFI] No networks found\n"));
|
|
}
|
|
|
|
if (code == MESSAGE_NO_KNOWN_NETWORKS) {
|
|
myDebug_P(PSTR("[WIFI] No known networks found\n"));
|
|
}
|
|
|
|
if (code == MESSAGE_FOUND_NETWORK) {
|
|
myDebug_P(PSTR("[WIFI] %s\n"), parameter);
|
|
}
|
|
|
|
if (code == MESSAGE_CONNECT_WAITING) {
|
|
// too much noise
|
|
}
|
|
|
|
if (code == MESSAGE_ACCESSPOINT_CREATING) {
|
|
myDebug_P(PSTR("[WIFI] Creating access point\n"));
|
|
}
|
|
|
|
if (code == MESSAGE_ACCESSPOINT_FAILED) {
|
|
myDebug_P(PSTR("[WIFI] Could not create access point\n"));
|
|
}
|
|
|
|
if (code == MESSAGE_WPS_START) {
|
|
myDebug_P(PSTR("[WIFI] WPS started\n"));
|
|
}
|
|
|
|
if (code == MESSAGE_WPS_SUCCESS) {
|
|
myDebug_P(PSTR("[WIFI] WPS succeeded!\n"));
|
|
}
|
|
|
|
if (code == MESSAGE_WPS_ERROR) {
|
|
myDebug_P(PSTR("[WIFI] WPS failed\n"));
|
|
}
|
|
|
|
if (code == MESSAGE_SMARTCONFIG_START) {
|
|
myDebug_P(PSTR("[WIFI] Smart Config started\n"));
|
|
}
|
|
|
|
if (code == MESSAGE_SMARTCONFIG_SUCCESS) {
|
|
myDebug_P(PSTR("[WIFI] Smart Config succeeded!\n"));
|
|
}
|
|
|
|
if (code == MESSAGE_SMARTCONFIG_ERROR) {
|
|
myDebug_P(PSTR("[WIFI] Smart Config failed\n"));
|
|
}
|
|
}
|
|
|
|
// return true if in WiFi AP mode
|
|
// does not work after wifi reset on ESP32 yet. See https://github.com/espressif/arduino-esp32/issues/1306
|
|
bool MyESP::isAPmode() {
|
|
return (WiFi.getMode() & WIFI_AP);
|
|
}
|
|
|
|
// received MQTT message
|
|
// we send this to the call back function. Important to parse are the event strings such as MQTT_MESSAGE_EVENT and MQTT_CONNECT_EVENT
|
|
void MyESP::_mqttOnMessage(char * topic, char * payload, size_t len) {
|
|
if (len == 0)
|
|
return;
|
|
|
|
char message[len + 1];
|
|
strlcpy(message, (char *)payload, len + 1);
|
|
|
|
// myDebug_P(PSTR("[MQTT] Received %s => %s"), topic, message); // enable for debugging
|
|
|
|
// topics are in format MQTT_BASE/HOSTNAME/TOPIC
|
|
char * topic_magnitude = strrchr(topic, '/'); // strip out everything until last /
|
|
if (topic_magnitude != nullptr) {
|
|
topic = topic_magnitude + 1;
|
|
}
|
|
|
|
// check for standard messages
|
|
// Restart the device
|
|
if (strcmp(topic, MQTT_TOPIC_RESTART) == 0) {
|
|
myDebug_P(PSTR("[MQTT] Received restart command"), message);
|
|
resetESP();
|
|
return;
|
|
}
|
|
|
|
// handle response from a start message
|
|
// for example with HA it sends the system time from the server
|
|
if (strcmp(topic, MQTT_TOPIC_START) == 0) {
|
|
myDebug_P(PSTR("[MQTT] Received boottime: %s"), message);
|
|
setBoottime(message);
|
|
return;
|
|
}
|
|
|
|
// Send message event to custom service
|
|
(_mqtt_callback)(MQTT_MESSAGE_EVENT, topic, message);
|
|
}
|
|
|
|
// MQTT subscribe
|
|
// to MQTT_BASE/app_hostname/topic
|
|
void MyESP::mqttSubscribe(const char * topic) {
|
|
if (mqttClient.connected() && (strlen(topic) > 0)) {
|
|
unsigned int packetId = mqttClient.subscribe(_mqttTopic(topic), _mqtt_qos);
|
|
myDebug_P(PSTR("[MQTT] Subscribing to %s (PID %d)"), _mqttTopic(topic), packetId);
|
|
}
|
|
}
|
|
|
|
// MQTT unsubscribe
|
|
// to MQTT_BASE/app_hostname/topic
|
|
void MyESP::mqttUnsubscribe(const char * topic) {
|
|
if (mqttClient.connected() && (strlen(topic) > 0)) {
|
|
unsigned int packetId = mqttClient.unsubscribe(_mqttTopic(topic));
|
|
myDebug_P(PSTR("[MQTT] Unsubscribing to %s (PID %d)"), _mqttTopic(topic), packetId);
|
|
}
|
|
}
|
|
|
|
// MQTT Publish
|
|
void MyESP::mqttPublish(const char * topic, const char * payload) {
|
|
// myDebug_P(PSTR("[MQTT] Sending pubish to %s with payload %s"), _mqttTopic(topic), payload);
|
|
mqttClient.publish(_mqttTopic(topic), _mqtt_qos, _mqtt_retain, payload);
|
|
}
|
|
|
|
// MQTT onConnect - when a connect is established
|
|
void MyESP::_mqttOnConnect() {
|
|
myDebug_P(PSTR("[MQTT] Connected"));
|
|
_mqtt_reconnect_delay = MQTT_RECONNECT_DELAY_MIN;
|
|
|
|
_mqtt_last_connection = millis();
|
|
|
|
// say we're alive to the Last Will topic
|
|
mqttClient.publish(_mqttTopic(_mqtt_will_topic), 1, true, _mqtt_will_online_payload);
|
|
|
|
// subscribe to general subs
|
|
mqttSubscribe(MQTT_TOPIC_RESTART);
|
|
|
|
// subscribe to a start message and send the first publish
|
|
myESP.mqttSubscribe(MQTT_TOPIC_START);
|
|
myESP.mqttPublish(MQTT_TOPIC_START, MQTT_TOPIC_START_PAYLOAD);
|
|
|
|
// call custom function to handle mqtt receives
|
|
(_mqtt_callback)(MQTT_CONNECT_EVENT, NULL, NULL);
|
|
}
|
|
|
|
// MQTT setup
|
|
void MyESP::_mqtt_setup() {
|
|
if (!_mqtt_host) {
|
|
myDebug_P(PSTR("[MQTT] is disabled"));
|
|
}
|
|
|
|
mqttClient.onConnect([this](bool sessionPresent) { _mqttOnConnect(); });
|
|
|
|
mqttClient.onDisconnect([this](AsyncMqttClientDisconnectReason reason) {
|
|
if (reason == AsyncMqttClientDisconnectReason::TCP_DISCONNECTED) {
|
|
myDebug_P(PSTR("[MQTT] TCP Disconnected"));
|
|
(_mqtt_callback)(MQTT_DISCONNECT_EVENT, NULL, NULL); // call callback with disconnect
|
|
}
|
|
if (reason == AsyncMqttClientDisconnectReason::MQTT_IDENTIFIER_REJECTED) {
|
|
myDebug_P(PSTR("[MQTT] Identifier Rejected"));
|
|
}
|
|
if (reason == AsyncMqttClientDisconnectReason::MQTT_SERVER_UNAVAILABLE) {
|
|
myDebug_P(PSTR("[MQTT] Server unavailable"));
|
|
}
|
|
if (reason == AsyncMqttClientDisconnectReason::MQTT_MALFORMED_CREDENTIALS) {
|
|
myDebug_P(PSTR("[MQTT] Malformed credentials"));
|
|
}
|
|
if (reason == AsyncMqttClientDisconnectReason::MQTT_NOT_AUTHORIZED) {
|
|
myDebug_P(PSTR("[MQTT] Not authorized"));
|
|
}
|
|
|
|
// Reset reconnection delay
|
|
_mqtt_last_connection = millis();
|
|
_mqtt_connecting = false;
|
|
});
|
|
|
|
//mqttClient.onSubscribe([this](uint16_t packetId, uint8_t qos) { myDebug_P(PSTR("[MQTT] Subscribe ACK for PID %d"), packetId); });
|
|
|
|
//mqttClient.onPublish([this](uint16_t packetId) { myDebug_P(PSTR("[MQTT] Publish ACK for PID %d"), packetId); });
|
|
|
|
mqttClient.onMessage([this](char * topic, char * payload, AsyncMqttClientMessageProperties properties, size_t len, size_t index, size_t total) {
|
|
_mqttOnMessage(topic, payload, len);
|
|
});
|
|
}
|
|
|
|
// WiFI setup
|
|
void MyESP::_wifi_setup() {
|
|
jw.setHostname(_app_hostname); // Set WIFI hostname
|
|
jw.subscribe([this](justwifi_messages_t code, char * parameter) { _wifiCallback(code, parameter); });
|
|
jw.enableAP(false);
|
|
jw.setConnectTimeout(WIFI_CONNECT_TIMEOUT);
|
|
jw.setReconnectTimeout(WIFI_RECONNECT_INTERVAL);
|
|
jw.enableAPFallback(true); // AP mode only as fallback
|
|
jw.enableSTA(true); // Enable STA mode (connecting to a router)
|
|
jw.enableScan(false); // Configure it to scan available networks and connect in order of dBm
|
|
jw.cleanNetworks(); // Clean existing network configuration
|
|
jw.addNetwork(_wifi_ssid, _wifi_password); // Add a network
|
|
|
|
#if defined(ESP8266)
|
|
WiFi.setSleepMode(WIFI_NONE_SLEEP); // added to possibly fix wifi dropouts in arduino core 2.5.0
|
|
#endif
|
|
}
|
|
|
|
// set the callback function for the OTA onstart
|
|
void MyESP::setOTA(ota_callback_f OTACallback_pre, ota_callback_f OTACallback_post) {
|
|
_ota_pre_callback = OTACallback_pre;
|
|
_ota_post_callback = OTACallback_post;
|
|
}
|
|
|
|
// OTA callback when the upload process starts
|
|
void MyESP::_OTACallback() {
|
|
myDebug_P(PSTR("[OTA] Start"));
|
|
|
|
#ifdef CRASH
|
|
// If we are not specifically reserving the sectors we are using as
|
|
// EEPROM in the memory layout then any OTA upgrade will overwrite
|
|
// all but the last one.
|
|
// Calling rotate(false) disables rotation so all writes will be done
|
|
// to the last sector. It also sets the dirty flag to true so the next commit()
|
|
// will actually persist current configuration to that last sector.
|
|
// Calling rotate(false) will also prevent any other EEPROM write
|
|
// to overwrite the OTA image.
|
|
// In case the OTA process fails, reenable rotation.
|
|
// See onError callback below.
|
|
EEPROMr.rotate(false);
|
|
EEPROMr.commit();
|
|
#endif
|
|
|
|
// stop the web server
|
|
webServer.close();
|
|
|
|
_ota_doing_update = true;
|
|
|
|
if (_ota_pre_callback) {
|
|
(_ota_pre_callback)(); // call custom function
|
|
}
|
|
}
|
|
|
|
// OTA Setup
|
|
void MyESP::_ota_setup() {
|
|
if (!_wifi_ssid) {
|
|
return;
|
|
}
|
|
|
|
ArduinoOTA.setPort(OTA_PORT);
|
|
ArduinoOTA.setHostname(_app_hostname);
|
|
|
|
ArduinoOTA.onStart([this]() { _OTACallback(); });
|
|
ArduinoOTA.onEnd([this]() {
|
|
myDebug_P(PSTR("[OTA] Done, restarting..."));
|
|
_ota_doing_update = false;
|
|
_deferredReset(500, CUSTOM_RESET_OTA);
|
|
});
|
|
|
|
/*
|
|
ArduinoOTA.onProgress([this](unsigned int progress, unsigned int total) {
|
|
static unsigned int _progOld;
|
|
unsigned int _prog = (progress / (total / 100));
|
|
if (_prog != _progOld) {
|
|
myDebug_P(PSTR("[OTA] Progress: %u%%\r"), _prog);
|
|
_progOld = _prog;
|
|
}
|
|
});
|
|
*/
|
|
|
|
ArduinoOTA.onError([this](ota_error_t error) {
|
|
if (error == OTA_AUTH_ERROR)
|
|
myDebug_P(PSTR("[OTA] Auth Failed"));
|
|
else if (error == OTA_BEGIN_ERROR)
|
|
myDebug_P(PSTR("[OTA] Begin Failed"));
|
|
else if (error == OTA_CONNECT_ERROR)
|
|
myDebug_P(PSTR("[OTA] Connect Failed"));
|
|
else if (error == OTA_RECEIVE_ERROR)
|
|
myDebug_P(PSTR("[OTA] Receive Failed"));
|
|
else if (error == OTA_END_ERROR)
|
|
myDebug_P(PSTR("[OTA] End Failed"));
|
|
|
|
#ifdef CRASH
|
|
// There's been an error, reenable eeprom rotation
|
|
EEPROMr.rotate(true);
|
|
#endif
|
|
});
|
|
}
|
|
|
|
// sets boottime
|
|
void MyESP::setBoottime(const char * boottime) {
|
|
if (_boottime) {
|
|
free(_boottime);
|
|
}
|
|
_boottime = strdup(boottime);
|
|
}
|
|
|
|
// eeprom
|
|
void MyESP::_eeprom_setup() {
|
|
#ifdef CRASH
|
|
EEPROMr.size(4);
|
|
EEPROMr.begin(SPI_FLASH_SEC_SIZE);
|
|
#endif
|
|
}
|
|
|
|
// Set callback of sketch function to process project messages
|
|
void MyESP::setTelnet(command_t * cmds, uint8_t count, telnetcommand_callback_f callback_cmd, telnet_callback_f callback) {
|
|
_helpProjectCmds = cmds; // command list
|
|
_helpProjectCmds_count = count; // number of commands
|
|
_telnetcommand_callback = callback_cmd; // external function to handle commands
|
|
_telnet_callback = callback;
|
|
}
|
|
|
|
void MyESP::_telnetConnected() {
|
|
myDebug_P(PSTR("[TELNET] Telnet connection established"));
|
|
_consoleShowHelp(); // Show the initial message
|
|
|
|
#ifdef CRASH
|
|
// show crash dump if just restarted after a fatal crash
|
|
uint32_t crash_time;
|
|
EEPROMr.get(SAVE_CRASH_EEPROM_OFFSET + SAVE_CRASH_CRASH_TIME, crash_time);
|
|
if ((crash_time != 0) && (crash_time != 0xFFFFFFFF)) {
|
|
myDebug_P(PSTR("[SYSTEM] There is stack data available from the last system crash. Use 'crash dump' to view and 'crash clear' to reset"));
|
|
}
|
|
#endif
|
|
|
|
// call callback
|
|
if (_telnet_callback) {
|
|
(_telnet_callback)(TELNET_EVENT_CONNECT);
|
|
}
|
|
}
|
|
|
|
void MyESP::_telnetDisconnected() {
|
|
myDebug_P(PSTR("[TELNET] Telnet connection closed"));
|
|
if (_telnet_callback) {
|
|
(_telnet_callback)(TELNET_EVENT_DISCONNECT); // call callback
|
|
}
|
|
}
|
|
|
|
// Initialize the telnet server
|
|
void MyESP::_telnet_setup() {
|
|
SerialAndTelnet.setWelcomeMsg("");
|
|
SerialAndTelnet.setCallbackOnConnect([this]() { _telnetConnected(); });
|
|
SerialAndTelnet.setCallbackOnDisconnect([this]() { _telnetDisconnected(); });
|
|
SerialAndTelnet.setDebugOutput(false);
|
|
SerialAndTelnet.begin(TELNET_SERIAL_BAUD); // default baud is 115200
|
|
|
|
// serial is only on when booting
|
|
#ifdef DEFAULT_NO_SERIAL
|
|
_serial_default = false;
|
|
#else
|
|
_serial_default = true;
|
|
#endif
|
|
|
|
// init command buffer for console commands
|
|
memset(_command, 0, TELNET_MAX_COMMAND_LENGTH);
|
|
}
|
|
|
|
// Show help of commands
|
|
void MyESP::_consoleShowHelp() {
|
|
myDebug_P(PSTR(""));
|
|
myDebug_P(PSTR("* Connected to: %s version %s"), _app_name, _app_version);
|
|
|
|
if (isAPmode()) {
|
|
myDebug_P(PSTR("* Device is in AP mode with SSID %s"), jw.getAPSSID().c_str());
|
|
} else {
|
|
myDebug_P(PSTR("* Hostname: %s (%s)"), _getESPhostname().c_str(), WiFi.localIP().toString().c_str());
|
|
myDebug_P(PSTR("* WiFi SSID: %s (signal %d%%)"), WiFi.SSID().c_str(), getWifiQuality());
|
|
if (isMQTTConnected()) {
|
|
myDebug_P(PSTR("* MQTT connected (heartbeat %s)"), getHeartbeat() ? "enabled" : "disabled");
|
|
} else {
|
|
myDebug_P(PSTR("* MQTT disconnected"));
|
|
}
|
|
}
|
|
|
|
myDebug_P(PSTR("*"));
|
|
myDebug_P(PSTR("* Commands:"));
|
|
myDebug_P(PSTR("* ?=help, CTRL-D/quit=exit telnet session"));
|
|
myDebug_P(PSTR("* set, system, reboot"));
|
|
#ifdef CRASH
|
|
myDebug_P(PSTR("* crash <dump | clear | test [n]>"));
|
|
#endif
|
|
|
|
// print custom commands if available. Taken from progmem
|
|
if (_telnetcommand_callback) {
|
|
// find the longest key length so we can right align it
|
|
uint8_t max_len = 0;
|
|
for (uint8_t i = 0; i < _helpProjectCmds_count; i++) {
|
|
if ((strlen(_helpProjectCmds[i].key) > max_len) && (!_helpProjectCmds[i].set)) {
|
|
max_len = strlen(_helpProjectCmds[i].key);
|
|
}
|
|
}
|
|
|
|
for (uint8_t i = 0; i < _helpProjectCmds_count; i++) {
|
|
if (!_helpProjectCmds[i].set) {
|
|
SerialAndTelnet.print("* ");
|
|
SerialAndTelnet.print(_helpProjectCmds[i].key);
|
|
for (uint8_t j = 0; j < ((max_len + 5) - strlen(_helpProjectCmds[i].key)); j++) { // account for longest string length
|
|
SerialAndTelnet.print(" "); // padding
|
|
}
|
|
SerialAndTelnet.println(_helpProjectCmds[i].description);
|
|
}
|
|
}
|
|
}
|
|
myDebug_P(PSTR("")); // newline
|
|
}
|
|
|
|
// print all set commands and current values
|
|
void MyESP::_printSetCommands() {
|
|
myDebug_P(PSTR("")); // newline
|
|
myDebug_P(PSTR("The following set commands are available:"));
|
|
myDebug_P(PSTR("")); // newline
|
|
myDebug_P(PSTR("* set erase"));
|
|
myDebug_P(PSTR("* set <wifi_ssid | wifi_password> [value]"));
|
|
myDebug_P(PSTR("* set <mqtt_host | mqtt_username | mqtt_password> [value]"));
|
|
myDebug_P(PSTR("* set serial <on | off>"));
|
|
|
|
// print custom commands if available. Taken from progmem
|
|
if (_telnetcommand_callback) {
|
|
// find the longest key length so we can right align it
|
|
uint8_t max_len = 0;
|
|
for (uint8_t i = 0; i < _helpProjectCmds_count; i++) {
|
|
if ((strlen(_helpProjectCmds[i].key) > max_len) && (_helpProjectCmds[i].set)) {
|
|
max_len = strlen(_helpProjectCmds[i].key);
|
|
}
|
|
}
|
|
|
|
for (uint8_t i = 0; i < _helpProjectCmds_count; i++) {
|
|
if (_helpProjectCmds[i].set) {
|
|
SerialAndTelnet.print(FPSTR("* set "));
|
|
SerialAndTelnet.print(FPSTR(_helpProjectCmds[i].key));
|
|
for (uint8_t j = 0; j < ((max_len + 5) - strlen(_helpProjectCmds[i].key)); j++) { // account for longest string length
|
|
SerialAndTelnet.print(FPSTR(" ")); // padding
|
|
}
|
|
SerialAndTelnet.println(FPSTR(_helpProjectCmds[i].description));
|
|
}
|
|
}
|
|
}
|
|
|
|
myDebug_P(PSTR("")); // newline
|
|
myDebug_P(PSTR("Stored settings:"));
|
|
myDebug_P(PSTR("")); // newline
|
|
myDebug_P(PSTR(" wifi_ssid=%s "), (!_wifi_ssid) ? "<not set>" : _wifi_ssid);
|
|
SerialAndTelnet.print(FPSTR(" wifi_password="));
|
|
if (!_wifi_password) {
|
|
SerialAndTelnet.print(FPSTR("<not set>"));
|
|
} else {
|
|
for (uint8_t i = 0; i < strlen(_wifi_password); i++) {
|
|
SerialAndTelnet.print(FPSTR("*"));
|
|
}
|
|
}
|
|
myDebug_P(PSTR("")); // newline
|
|
myDebug_P(PSTR(" mqtt_host=%s"), (!_mqtt_host) ? "<not set>" : _mqtt_host);
|
|
myDebug_P(PSTR(" mqtt_username=%s"), (!_mqtt_username) ? "<not set>" : _mqtt_username);
|
|
SerialAndTelnet.print(FPSTR(" mqtt_password="));
|
|
if (!_mqtt_password) {
|
|
SerialAndTelnet.print(FPSTR("<not set>"));
|
|
} else {
|
|
for (uint8_t i = 0; i < strlen(_mqtt_password); i++) {
|
|
SerialAndTelnet.print(FPSTR("*"));
|
|
}
|
|
}
|
|
|
|
myDebug_P(PSTR("")); // newline
|
|
myDebug_P(PSTR(" serial=%s"), (_serial) ? "on" : "off");
|
|
myDebug_P(PSTR(" heartbeat=%s"), (_heartbeat) ? "on" : "off");
|
|
|
|
// print any custom settings
|
|
(_fs_settings_callback)(MYESP_FSACTION_LIST, 0, NULL, NULL);
|
|
|
|
myDebug_P(PSTR("")); // newline
|
|
}
|
|
|
|
// reset / restart
|
|
void MyESP::resetESP() {
|
|
myDebug_P(PSTR("* Reboot ESP..."));
|
|
_deferredReset(500, CUSTOM_RESET_TERMINAL);
|
|
end();
|
|
#if defined(ARDUINO_ARCH_ESP32)
|
|
ESP.restart();
|
|
#else
|
|
ESP.restart();
|
|
#endif
|
|
}
|
|
|
|
// read next word from string buffer
|
|
// if parameter true then a word is only terminated by a newline
|
|
char * MyESP::_telnet_readWord(bool allow_all_chars) {
|
|
if (allow_all_chars) {
|
|
return (strtok(NULL, "\n")); // allow only newline
|
|
} else {
|
|
return (strtok(NULL, ", \n")); // allow space and comma
|
|
}
|
|
}
|
|
|
|
// change settings - always as strings
|
|
// messy code but effective since we don't have too many settings
|
|
// wc is word count, number of parameters after the 'set' command
|
|
bool MyESP::_changeSetting(uint8_t wc, const char * setting, const char * value) {
|
|
bool ok = false;
|
|
|
|
// check for our internal commands first
|
|
if (strcmp(setting, "erase") == 0) {
|
|
_fs_eraseConfig();
|
|
return true;
|
|
|
|
} else if (strcmp(setting, "wifi_ssid") == 0) {
|
|
if (_wifi_ssid)
|
|
free(_wifi_ssid);
|
|
_wifi_ssid = NULL; // just to be sure
|
|
if (value) {
|
|
_wifi_ssid = strdup(value);
|
|
}
|
|
ok = true;
|
|
jw.enableSTA(false);
|
|
myDebug_P(PSTR("Note: please 'reboot' ESP to apply new WiFi settings"));
|
|
} else if (strcmp(setting, "wifi_password") == 0) {
|
|
if (_wifi_password)
|
|
free(_wifi_password);
|
|
_wifi_password = NULL; // just to be sure
|
|
if (value) {
|
|
_wifi_password = strdup(value);
|
|
}
|
|
ok = true;
|
|
jw.enableSTA(false);
|
|
myDebug_P(PSTR("Note: please 'reboot' ESP to apply new WiFi settings"));
|
|
|
|
} else if (strcmp(setting, "mqtt_host") == 0) {
|
|
if (_mqtt_host)
|
|
free(_mqtt_host);
|
|
_mqtt_host = NULL; // just to be sure
|
|
if (value) {
|
|
_mqtt_host = strdup(value);
|
|
}
|
|
ok = true;
|
|
} else if (strcmp(setting, "mqtt_username") == 0) {
|
|
if (_mqtt_username)
|
|
free(_mqtt_username);
|
|
_mqtt_username = NULL; // just to be sure
|
|
if (value) {
|
|
_mqtt_username = strdup(value);
|
|
}
|
|
ok = true;
|
|
} else if (strcmp(setting, "mqtt_password") == 0) {
|
|
if (_mqtt_password)
|
|
free(_mqtt_password);
|
|
_mqtt_password = NULL; // just to be sure
|
|
if (value) {
|
|
_mqtt_password = strdup(value);
|
|
}
|
|
ok = true;
|
|
|
|
} else if (strcmp(setting, "serial") == 0) {
|
|
ok = true;
|
|
_serial = false;
|
|
if (value) {
|
|
if (strcmp(value, "on") == 0) {
|
|
_serial = true;
|
|
ok = true;
|
|
myDebug_P(PSTR("Reboot ESP to activate Serial mode."));
|
|
} else if (strcmp(value, "off") == 0) {
|
|
_serial = false;
|
|
ok = true;
|
|
myDebug_P(PSTR("Reboot ESP to deactivate Serial mode."));
|
|
} else {
|
|
ok = false;
|
|
}
|
|
}
|
|
|
|
} else if (strcmp(setting, "heartbeat") == 0) {
|
|
ok = true;
|
|
_heartbeat = false;
|
|
if (value) {
|
|
if (strcmp(value, "on") == 0) {
|
|
_heartbeat = true;
|
|
ok = true;
|
|
myDebug_P(PSTR("Heartbeat on"));
|
|
} else if (strcmp(value, "off") == 0) {
|
|
_heartbeat = false;
|
|
ok = true;
|
|
myDebug_P(PSTR("Heartbeat off"));
|
|
} else {
|
|
ok = false;
|
|
}
|
|
}
|
|
} else {
|
|
// finally check for any custom commands
|
|
ok = (_fs_settings_callback)(MYESP_FSACTION_SET, wc, setting, value);
|
|
}
|
|
|
|
// if we were able to recognize the set command, continue
|
|
if (ok) {
|
|
// check for 2 params
|
|
if (value == nullptr) {
|
|
myDebug_P(PSTR("%s setting reset to its default value."), setting);
|
|
} else {
|
|
// must be 3 params
|
|
myDebug_P(PSTR("%s changed."), setting);
|
|
}
|
|
|
|
myDebug_P(PSTR("")); // newline
|
|
|
|
(void)fs_saveConfig(); // always save the values
|
|
}
|
|
|
|
return ok;
|
|
}
|
|
|
|
// force the serial on/off
|
|
void MyESP::setUseSerial(bool b) {
|
|
_serial_default = _serial = b;
|
|
SerialAndTelnet.setSerial(b ? &Serial : NULL);
|
|
}
|
|
|
|
void MyESP::_telnetCommand(char * commandLine) {
|
|
char * str = commandLine;
|
|
bool state = false;
|
|
|
|
if (strlen(commandLine) == 0)
|
|
return;
|
|
|
|
// count the number of arguments
|
|
unsigned wc = 0;
|
|
while (*str) {
|
|
if (*str == ' ' || *str == '\n' || *str == '\t') {
|
|
state = false;
|
|
} else if (state == false) {
|
|
state = true;
|
|
++wc;
|
|
}
|
|
++str;
|
|
}
|
|
|
|
// check first for reserved commands
|
|
char * temp = strdup(commandLine); // because strotok kills original string buffer
|
|
char * ptrToCommandName = strtok((char *)temp, " \n"); // space and newline
|
|
|
|
// set command
|
|
if (strcmp(ptrToCommandName, "set") == 0) {
|
|
bool ok = false;
|
|
if (wc == 1) {
|
|
_printSetCommands();
|
|
ok = true;
|
|
} else if (wc == 2) { // set <xxx>
|
|
char * setting = _telnet_readWord(false);
|
|
ok = _changeSetting(wc - 1, setting, NULL);
|
|
} else { // set <xxx> <yyy>
|
|
char * setting = _telnet_readWord(false);
|
|
char * value = _telnet_readWord(true); // allow strange characters
|
|
ok = _changeSetting(wc - 1, setting, value);
|
|
}
|
|
|
|
if (!ok) {
|
|
myDebug_P(PSTR("\nInvalid parameter for set command."));
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
// reboot command
|
|
if ((strcmp(ptrToCommandName, "reboot") == 0) && (wc == 1)) {
|
|
resetESP();
|
|
}
|
|
|
|
// show system stats
|
|
if ((strcmp(ptrToCommandName, "system") == 0) && (wc == 1)) {
|
|
showSystemStats();
|
|
return;
|
|
}
|
|
|
|
// show system stats
|
|
if ((strcmp(ptrToCommandName, "quit") == 0) && (wc == 1)) {
|
|
myDebug_P(PSTR("[TELNET] exiting telnet session"));
|
|
SerialAndTelnet.disconnectClient();
|
|
return;
|
|
}
|
|
|
|
#ifdef CRASH
|
|
// crash command
|
|
if ((strcmp(ptrToCommandName, "crash") == 0) && (wc >= 2)) {
|
|
char * cmd = _telnet_readWord(false);
|
|
if (strcmp(cmd, "dump") == 0) {
|
|
crashDump();
|
|
} else if (strcmp(cmd, "clear") == 0) {
|
|
crashClear();
|
|
} else if ((strcmp(cmd, "test") == 0) && (wc == 3)) {
|
|
char * value = _telnet_readWord(false);
|
|
crashTest(atoi(value));
|
|
} else {
|
|
myDebug_P(PSTR("Error. Usage: crash <dump | clear | test [n]>"));
|
|
}
|
|
return; // don't call custom command line callback
|
|
}
|
|
#endif
|
|
|
|
// call callback function
|
|
(_telnetcommand_callback)(wc, commandLine);
|
|
}
|
|
|
|
// returns WiFi hostname as a String object
|
|
String MyESP::_getESPhostname() {
|
|
String hostname;
|
|
|
|
#if defined(ARDUINO_ARCH_ESP32)
|
|
hostname = String(WiFi.getHostname());
|
|
#else
|
|
hostname = WiFi.hostname();
|
|
#endif
|
|
|
|
return (hostname);
|
|
}
|
|
|
|
// returns build time as a String - copied for espurna. see (c)
|
|
// takes the time from the gcc during compilation
|
|
String MyESP::_buildTime() {
|
|
const char time_now[] = __TIME__; // hh:mm:ss
|
|
unsigned int hour = atoi(&time_now[0]);
|
|
unsigned int minute = atoi(&time_now[3]);
|
|
unsigned int second = atoi(&time_now[6]);
|
|
|
|
const char date_now[] = __DATE__; // Mmm dd yyyy
|
|
const char * months[] = {"Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", "Sep", "Oct", "Nov", "Dec"};
|
|
unsigned int month = 0;
|
|
for (int i = 0; i < 12; i++) {
|
|
if (strncmp(date_now, months[i], 3) == 0) {
|
|
month = i + 1;
|
|
break;
|
|
}
|
|
}
|
|
unsigned int day = atoi(&date_now[3]);
|
|
unsigned int year = atoi(&date_now[7]);
|
|
|
|
char buffer[20];
|
|
snprintf_P(buffer, sizeof(buffer), PSTR("%04d-%02d-%02d %02d:%02d:%02d"), year, month, day, hour, minute, second);
|
|
|
|
return String(buffer);
|
|
}
|
|
|
|
// returns system uptime in seconds - copied for espurna. see (c)
|
|
unsigned long MyESP::_getUptime() {
|
|
static uint32_t last_uptime = 0;
|
|
static uint8_t uptime_overflows = 0;
|
|
|
|
if (millis() < last_uptime) {
|
|
++uptime_overflows;
|
|
}
|
|
last_uptime = millis();
|
|
uint32_t uptime_seconds = uptime_overflows * (UPTIME_OVERFLOW / 1000) + (last_uptime / 1000);
|
|
|
|
return uptime_seconds;
|
|
}
|
|
|
|
// init RTC mem
|
|
void MyESP::_rtcmemInit() {
|
|
memset((uint32_t *)RTCMEM_ADDR, 0, sizeof(uint32_t) * RTCMEM_BLOCKS);
|
|
Rtcmem->magic = RTCMEM_MAGIC;
|
|
}
|
|
|
|
uint8_t MyESP::getSystemBootStatus() {
|
|
system_rtcmem_t data;
|
|
data.value = Rtcmem->sys;
|
|
return data.parts.boot_status;
|
|
}
|
|
|
|
void MyESP::_setSystemBootStatus(uint8_t status) {
|
|
system_rtcmem_t data;
|
|
data.value = Rtcmem->sys;
|
|
data.parts.boot_status = status;
|
|
Rtcmem->sys = data.value;
|
|
// myDebug("*** setting boot status to %d", data.parts.boot_status);
|
|
}
|
|
|
|
uint8_t MyESP::_getSystemStabilityCounter() {
|
|
system_rtcmem_t data;
|
|
data.value = Rtcmem->sys;
|
|
return data.parts.stability_counter;
|
|
}
|
|
|
|
void MyESP::_setSystemStabilityCounter(uint8_t counter) {
|
|
system_rtcmem_t data;
|
|
data.value = Rtcmem->sys;
|
|
data.parts.stability_counter = counter;
|
|
Rtcmem->sys = data.value;
|
|
}
|
|
|
|
uint8_t MyESP::_getSystemResetReason() {
|
|
system_rtcmem_t data;
|
|
data.value = Rtcmem->sys;
|
|
return data.parts.reset_reason;
|
|
}
|
|
|
|
void MyESP::_setSystemResetReason(uint8_t reason) {
|
|
system_rtcmem_t data;
|
|
data.value = Rtcmem->sys;
|
|
data.parts.reset_reason = reason;
|
|
Rtcmem->sys = data.value;
|
|
}
|
|
|
|
// system_get_rst_info() result is cached by the Core init for internal use
|
|
uint32_t MyESP::getSystemResetReason() {
|
|
return resetInfo.reason;
|
|
}
|
|
|
|
void MyESP::_rtcmemSetup() {
|
|
_rtcmem_status = _rtcmemStatus();
|
|
if (!_rtcmem_status) {
|
|
_rtcmemInit();
|
|
}
|
|
}
|
|
|
|
void MyESP::_setCustomResetReason(uint8_t reason) {
|
|
_setSystemResetReason(reason);
|
|
}
|
|
|
|
// returns false if not set and needs to be intialized, causing all rtcmem data to be wiped
|
|
bool MyESP::_rtcmemStatus() {
|
|
bool readable;
|
|
|
|
uint32_t reason = getSystemResetReason();
|
|
|
|
// the last reset could have been caused by manually pressing the reset button
|
|
// so before wiping, capture the boot sequence
|
|
if (reason == REASON_EXT_SYS_RST) { // external system reset
|
|
if (getSystemBootStatus() == MYESP_BOOTSTATUS_BOOTING) {
|
|
_setSystemBootStatus(MYESP_BOOTSTATUS_RESETNEEDED);
|
|
} else {
|
|
_setSystemBootStatus(MYESP_BOOTSTATUS_POWERON);
|
|
}
|
|
}
|
|
|
|
switch (reason) {
|
|
//case REASON_EXT_SYS_RST: // external system reset
|
|
case REASON_WDT_RST: // hardware watch dog reset
|
|
case REASON_DEFAULT_RST: // normal startup by power on
|
|
readable = false;
|
|
break;
|
|
default:
|
|
readable = true;
|
|
}
|
|
|
|
readable = readable and (RTCMEM_MAGIC == Rtcmem->magic);
|
|
|
|
return readable;
|
|
}
|
|
|
|
bool MyESP::_getRtcmemStatus() {
|
|
return _rtcmem_status;
|
|
}
|
|
|
|
uint8_t MyESP::_getCustomResetReason() {
|
|
static uint8_t status = 255;
|
|
if (status == 255) {
|
|
if (_rtcmemStatus())
|
|
status = _getSystemResetReason();
|
|
if (status > 0)
|
|
_setCustomResetReason(0);
|
|
if (status > CUSTOM_RESET_MAX)
|
|
status = 0;
|
|
}
|
|
return status;
|
|
}
|
|
|
|
void MyESP::_deferredReset(unsigned long delaytime, uint8_t reason) {
|
|
_setSystemBootStatus(MYESP_BOOTSTATUS_POWERON);
|
|
_setCustomResetReason(reason);
|
|
delay(delaytime);
|
|
}
|
|
|
|
// Call this method on boot with stable=true to reset the crash counter
|
|
// Each call increments the counter
|
|
// If the counter reaches SYSTEM_CHECK_MAX then the system is flagged as unstable
|
|
void MyESP::_setSystemCheck(bool stable) {
|
|
uint8_t value = 0;
|
|
|
|
if (stable) {
|
|
value = 0; // system is ok
|
|
// myDebug_P(PSTR("[SYSTEM] System OK\n"));
|
|
} else {
|
|
if (!_getRtcmemStatus()) {
|
|
_setSystemStabilityCounter(1);
|
|
return;
|
|
}
|
|
|
|
value = _getSystemStabilityCounter();
|
|
|
|
if (++value > SYSTEM_CHECK_MAX) {
|
|
_systemStable = false;
|
|
value = 0; // system is unstable
|
|
myDebug_P(PSTR("[SYSTEM] Warning, system UNSTABLE. Serial mode is enabled."));
|
|
|
|
// enable Serial again
|
|
if (!_serial) {
|
|
SerialAndTelnet.setSerial(&Serial);
|
|
_serial = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
_setSystemStabilityCounter(value);
|
|
}
|
|
|
|
// return if system is stable (false=bad)
|
|
bool MyESP::_getSystemCheck() {
|
|
return _systemStable;
|
|
}
|
|
|
|
// periodically check if system is stable
|
|
void MyESP::_systemCheckLoop() {
|
|
static bool checked = false;
|
|
if (!checked && (millis() > SYSTEM_CHECK_TIME)) {
|
|
_setSystemCheck(true); // Flag system as stable
|
|
checked = true;
|
|
}
|
|
}
|
|
|
|
|
|
// print out ESP system stats
|
|
// for battery power is ESP.getVcc()
|
|
void MyESP::showSystemStats() {
|
|
#if defined(ESP8266)
|
|
myDebug_P(PSTR("%sESP8266 System stats:%s"), COLOR_BOLD_ON, COLOR_BOLD_OFF);
|
|
#else
|
|
myDebug_P(PSTR("ESP32 System stats:"));
|
|
#endif
|
|
myDebug_P(PSTR(""));
|
|
|
|
myDebug_P(PSTR(" [APP] %s version: %s"), _app_name, _app_version);
|
|
myDebug_P(PSTR(" [APP] MyESP version: %s"), MYESP_VERSION);
|
|
myDebug_P(PSTR(" [APP] Build timestamp: %s"), _buildTime().c_str());
|
|
if (_boottime != NULL) {
|
|
myDebug_P(PSTR(" [APP] Boot time: %s"), _boottime);
|
|
}
|
|
|
|
// uptime
|
|
uint32_t t = _getUptime(); // seconds
|
|
|
|
uint32_t d = t / 86400L;
|
|
uint32_t h = ((t % 86400L) / 3600L) % 60;
|
|
uint32_t rem = t % 3600L;
|
|
uint8_t m = rem / 60;
|
|
uint8_t s = rem % 60;
|
|
myDebug_P(PSTR(" [APP] Uptime: %d days %d hours %d minutes %d seconds"), d, h, m, s);
|
|
|
|
myDebug_P(PSTR(" [APP] System Load: %d%%"), getSystemLoadAverage());
|
|
|
|
if (!_getSystemCheck()) {
|
|
myDebug_P(PSTR(" [SYSTEM] Device is in SAFE MODE"));
|
|
}
|
|
|
|
if (isAPmode()) {
|
|
myDebug_P(PSTR(" [WIFI] Device is in AP mode with SSID %s"), jw.getAPSSID().c_str());
|
|
} else {
|
|
myDebug_P(PSTR(" [WIFI] WiFi Hostname: %s"), _getESPhostname().c_str());
|
|
myDebug_P(PSTR(" [WIFI] WiFi IP: %s"), WiFi.localIP().toString().c_str());
|
|
myDebug_P(PSTR(" [WIFI] WiFi signal strength: %d%%"), getWifiQuality());
|
|
}
|
|
|
|
myDebug_P(PSTR(" [WIFI] WiFi MAC: %s"), WiFi.macAddress().c_str());
|
|
|
|
if (isMQTTConnected()) {
|
|
myDebug_P(PSTR(" [MQTT] is connected (with heartbeat %s)"), getHeartbeat() ? "enabled" : "disabled");
|
|
} else {
|
|
myDebug_P(PSTR(" [MQTT] is disconnected"));
|
|
}
|
|
|
|
#ifdef CRASH
|
|
char output_str[80] = {0};
|
|
char buffer[16] = {0};
|
|
myDebug_P(PSTR(" [EEPROM] EEPROM size: %u"), EEPROMr.reserved() * SPI_FLASH_SEC_SIZE);
|
|
strlcpy(output_str, " [EEPROM] EEPROM Sector pool size is ", sizeof(output_str));
|
|
strlcat(output_str, itoa(EEPROMr.size(), buffer, 10), sizeof(output_str));
|
|
strlcat(output_str, ", and in use are: ", sizeof(output_str));
|
|
for (uint32_t i = 0; i < EEPROMr.size(); i++) {
|
|
strlcat(output_str, itoa(EEPROMr.base() - i, buffer, 10), sizeof(output_str));
|
|
strlcat(output_str, " ", sizeof(output_str));
|
|
}
|
|
myDebug(output_str);
|
|
#endif
|
|
|
|
#ifdef ARDUINO_BOARD
|
|
myDebug_P(PSTR(" [SYSTEM] Board: %s"), ARDUINO_BOARD);
|
|
#endif
|
|
|
|
myDebug_P(PSTR(" [SYSTEM] CPU frequency: %u MHz"), ESP.getCpuFreqMHz());
|
|
myDebug_P(PSTR(" [SYSTEM] SDK version: %s"), ESP.getSdkVersion());
|
|
|
|
#if defined(ESP8266)
|
|
myDebug_P(PSTR(" [SYSTEM] CPU chip ID: 0x%06X"), ESP.getChipId());
|
|
myDebug_P(PSTR(" [SYSTEM] Core version: %s"), ESP.getCoreVersion().c_str());
|
|
myDebug_P(PSTR(" [SYSTEM] Boot version: %d"), ESP.getBootVersion());
|
|
myDebug_P(PSTR(" [SYSTEM] Boot mode: %d"), ESP.getBootMode());
|
|
unsigned char reason = _getCustomResetReason();
|
|
if (reason > 0) {
|
|
char buffer[32];
|
|
strcpy_P(buffer, custom_reset_string[reason - 1]);
|
|
myDebug_P(PSTR(" [SYSTEM] Last reset reason: %s"), buffer);
|
|
} else {
|
|
myDebug_P(PSTR(" [SYSTEM] Last reset reason: %s"), (char *)ESP.getResetReason().c_str());
|
|
myDebug_P(PSTR(" [SYSTEM] Last reset info: %s"), (char *)ESP.getResetInfo().c_str());
|
|
}
|
|
myDebug_P(PSTR(" [SYSTEM] Restart count: %d"), _getSystemStabilityCounter());
|
|
|
|
myDebug_P(PSTR(" [SYSTEM] rtcmem status: blocks:%u addr:0x%p"), RtcmemSize, Rtcmem);
|
|
for (uint8_t block = 0; block < RtcmemSize; ++block) {
|
|
myDebug_P(PSTR(" [SYSTEM] rtcmem %02u: %u"), block, reinterpret_cast<volatile uint32_t *>(RTCMEM_ADDR)[block]);
|
|
}
|
|
#endif
|
|
|
|
FlashMode_t mode = ESP.getFlashChipMode();
|
|
#if defined(ESP8266)
|
|
myDebug_P(PSTR(" [FLASH] Flash chip ID: 0x%06X"), ESP.getFlashChipId());
|
|
#endif
|
|
myDebug_P(PSTR(" [FLASH] Flash speed: %u Hz"), ESP.getFlashChipSpeed());
|
|
myDebug_P(PSTR(" [FLASH] Flash mode: %s"), mode == FM_QIO ? "QIO" : mode == FM_QOUT ? "QOUT" : mode == FM_DIO ? "DIO" : mode == FM_DOUT ? "DOUT" : "UNKNOWN");
|
|
#if defined(ESP8266)
|
|
myDebug_P(PSTR(" [FLASH] Flash size (CHIP): %d"), ESP.getFlashChipRealSize());
|
|
#endif
|
|
myDebug_P(PSTR(" [FLASH] Flash size (SDK): %d"), ESP.getFlashChipSize());
|
|
myDebug_P(PSTR(" [FLASH] Flash Reserved: %d"), 1 * SPI_FLASH_SEC_SIZE);
|
|
myDebug_P(PSTR(" [MEM] Firmware size: %d"), ESP.getSketchSize());
|
|
myDebug_P(PSTR(" [MEM] Max OTA size: %d"), (ESP.getFreeSketchSpace() - 0x1000) & 0xFFFFF000);
|
|
myDebug_P(PSTR(" [MEM] OTA Reserved: %d"), 4 * SPI_FLASH_SEC_SIZE);
|
|
|
|
uint32_t total_memory = _getInitialFreeHeap();
|
|
uint32_t free_memory = ESP.getFreeHeap();
|
|
|
|
myDebug(" [MEM] Free Heap: %d bytes initially | %d bytes used (%2u%%) | %d bytes free (%2u%%)",
|
|
total_memory,
|
|
total_memory - free_memory,
|
|
100 * (total_memory - free_memory) / total_memory,
|
|
free_memory,
|
|
100 * free_memory / total_memory);
|
|
|
|
myDebug_P(PSTR(""));
|
|
}
|
|
|
|
/*
|
|
* Send heartbeat via MQTT with all system data
|
|
*/
|
|
void MyESP::_heartbeatCheck(bool force = false) {
|
|
static uint32_t last_heartbeat = 0;
|
|
|
|
if ((millis() - last_heartbeat > HEARTBEAT_INTERVAL) || force) {
|
|
last_heartbeat = millis();
|
|
|
|
if (!isMQTTConnected() || !(_heartbeat)) {
|
|
return;
|
|
}
|
|
|
|
uint32_t total_memory = _getInitialFreeHeap();
|
|
uint32_t free_memory = ESP.getFreeHeap();
|
|
uint8_t mem_available = 100 * free_memory / total_memory; // as a %
|
|
|
|
char payload[300] = {0};
|
|
char s[10];
|
|
strlcpy(payload, "version=", sizeof(payload));
|
|
strlcat(payload, _app_version, sizeof(payload)); // version
|
|
strlcat(payload, ", IP=", sizeof(payload));
|
|
strlcat(payload, WiFi.localIP().toString().c_str(), sizeof(payload)); // IP address
|
|
strlcat(payload, ", rssid=", sizeof(payload));
|
|
strlcat(payload, itoa(getWifiQuality(), s, 10), sizeof(payload)); // rssi %
|
|
strlcat(payload, "%, load=", sizeof(payload));
|
|
strlcat(payload, ltoa(getSystemLoadAverage(), s, 10), sizeof(payload)); // load
|
|
strlcat(payload, "%, uptime=", sizeof(payload));
|
|
strlcat(payload, ltoa(_getUptime(), s, 10), sizeof(payload)); // uptime in secs
|
|
strlcat(payload, "secs, freemem=", sizeof(payload));
|
|
strlcat(payload, itoa(mem_available, s, 10), sizeof(payload)); // free mem as a %
|
|
strlcat(payload, "%", sizeof(payload));
|
|
|
|
// send to MQTT
|
|
myESP.mqttPublish(MQTT_TOPIC_HEARTBEAT, payload);
|
|
}
|
|
}
|
|
|
|
// handler for Telnet
|
|
void MyESP::_telnetHandle() {
|
|
SerialAndTelnet.handle();
|
|
|
|
static uint8_t charsRead = 0;
|
|
// read asynchronously until full command input
|
|
while (SerialAndTelnet.available()) {
|
|
char c = SerialAndTelnet.read();
|
|
|
|
if (c == 0)
|
|
return;
|
|
|
|
SerialAndTelnet.serialPrint(c); // echo to Serial (if connected)
|
|
|
|
switch (c) {
|
|
case '\r': // likely have full command in buffer now, commands are terminated by CR and/or LF
|
|
case '\n':
|
|
_command[charsRead] = '\0'; // null terminate our command char array
|
|
|
|
if (charsRead > 0) {
|
|
charsRead = 0; // is static, so have to reset
|
|
_suspendOutput = false;
|
|
if (_serial) {
|
|
SerialAndTelnet.serialPrint('\n'); // force newline if in Serial
|
|
}
|
|
_telnetCommand(_command);
|
|
}
|
|
break;
|
|
|
|
case '\b': // (^H)
|
|
case 0x7F: // (^?)
|
|
if (charsRead > 0) {
|
|
_command[--charsRead] = '\0';
|
|
|
|
SerialAndTelnet.write(' ');
|
|
SerialAndTelnet.write('\b');
|
|
}
|
|
|
|
break;
|
|
|
|
case '?':
|
|
if (!_suspendOutput) {
|
|
_consoleShowHelp();
|
|
} else {
|
|
_command[charsRead++] = c; // add it to buffer as its part of the string entered
|
|
}
|
|
break;
|
|
case 0x04: // EOT, CTRL-D
|
|
myDebug_P(PSTR("[TELNET] exiting telnet session"));
|
|
SerialAndTelnet.disconnectClient();
|
|
break;
|
|
default:
|
|
_suspendOutput = true;
|
|
if (charsRead < TELNET_MAX_COMMAND_LENGTH) {
|
|
_command[charsRead++] = c;
|
|
}
|
|
_command[charsRead] = '\0'; // just in case
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// make sure we have a connection to MQTT broker
|
|
void MyESP::_mqttConnect() {
|
|
if (!_mqtt_host)
|
|
return; // MQTT not enabled
|
|
|
|
// Do not connect if already connected or still trying to connect
|
|
if (mqttClient.connected() || _mqtt_connecting || (WiFi.status() != WL_CONNECTED)) {
|
|
return;
|
|
}
|
|
|
|
// Check reconnect interval
|
|
if (millis() - _mqtt_last_connection < _mqtt_reconnect_delay) {
|
|
return;
|
|
}
|
|
|
|
_mqtt_connecting = true; // we're doing a connection
|
|
|
|
// Increase the reconnect delay
|
|
_mqtt_reconnect_delay += MQTT_RECONNECT_DELAY_STEP;
|
|
if (_mqtt_reconnect_delay > MQTT_RECONNECT_DELAY_MAX) {
|
|
_mqtt_reconnect_delay = MQTT_RECONNECT_DELAY_MAX;
|
|
}
|
|
|
|
mqttClient.setServer(_mqtt_host, MQTT_PORT);
|
|
mqttClient.setClientId(_app_hostname);
|
|
mqttClient.setKeepAlive(_mqtt_keepalive);
|
|
mqttClient.setCleanSession(false);
|
|
|
|
// last will
|
|
if (_mqtt_will_topic) {
|
|
//myDebug_P(PSTR("[MQTT] Setting last will topic %s"), _mqttTopic(_mqtt_will_topic));
|
|
mqttClient.setWill(_mqttTopic(_mqtt_will_topic), 1, true,
|
|
_mqtt_will_offline_payload); // retain always true
|
|
}
|
|
|
|
if (_mqtt_username && _mqtt_password) {
|
|
myDebug_P(PSTR("[MQTT] Connecting to MQTT using user %s..."), _mqtt_username);
|
|
mqttClient.setCredentials(_mqtt_username, _mqtt_password);
|
|
} else {
|
|
myDebug_P(PSTR("[MQTT] Connecting to MQTT..."));
|
|
}
|
|
|
|
// Connect to the MQTT broker
|
|
mqttClient.connect();
|
|
}
|
|
|
|
// Setup everything we need
|
|
void MyESP::setWIFI(const char * wifi_ssid, const char * wifi_password, wifi_callback_f callback) {
|
|
// Check SSID too long or missing
|
|
if (!wifi_ssid || *wifi_ssid == 0x00 || strlen(wifi_ssid) > MAX_SSID_LEN) {
|
|
_wifi_ssid = NULL;
|
|
} else {
|
|
_wifi_ssid = strdup(wifi_ssid);
|
|
}
|
|
|
|
// Check PASS too long
|
|
if (!wifi_password || *wifi_ssid == 0x00 || strlen(wifi_password) > MAX_PWD_LEN) {
|
|
_wifi_password = NULL;
|
|
} else {
|
|
_wifi_password = strdup(wifi_password);
|
|
}
|
|
|
|
// callback
|
|
_wifi_callback = callback;
|
|
}
|
|
|
|
// init MQTT settings
|
|
void MyESP::setMQTT(const char * mqtt_host,
|
|
const char * mqtt_username,
|
|
const char * mqtt_password,
|
|
const char * mqtt_base,
|
|
unsigned long mqtt_keepalive,
|
|
unsigned char mqtt_qos,
|
|
bool mqtt_retain,
|
|
const char * mqtt_will_topic,
|
|
const char * mqtt_will_online_payload,
|
|
const char * mqtt_will_offline_payload,
|
|
mqtt_callback_f callback) {
|
|
// can be empty
|
|
if (!mqtt_host || *mqtt_host == 0x00) {
|
|
_mqtt_host = NULL;
|
|
} else {
|
|
_mqtt_host = strdup(mqtt_host);
|
|
}
|
|
|
|
// mqtt username and password can be empty
|
|
if (!mqtt_username || *mqtt_username == 0x00) {
|
|
_mqtt_username = NULL;
|
|
} else {
|
|
_mqtt_username = strdup(mqtt_username);
|
|
}
|
|
|
|
// can be empty
|
|
if (!mqtt_password || *mqtt_password == 0x00) {
|
|
_mqtt_password = NULL;
|
|
} else {
|
|
_mqtt_password = strdup(mqtt_password);
|
|
}
|
|
|
|
// base
|
|
if (_mqtt_base) {
|
|
free(_mqtt_base);
|
|
}
|
|
_mqtt_base = strdup(mqtt_base);
|
|
|
|
// callback
|
|
_mqtt_callback = callback;
|
|
|
|
// various mqtt settings
|
|
_mqtt_keepalive = mqtt_keepalive;
|
|
_mqtt_qos = mqtt_qos;
|
|
_mqtt_retain = mqtt_retain;
|
|
|
|
// last will
|
|
if (!mqtt_will_topic || *mqtt_will_topic == 0x00) {
|
|
_mqtt_will_topic = NULL;
|
|
} else {
|
|
_mqtt_will_topic = strdup(mqtt_will_topic);
|
|
}
|
|
|
|
if (!mqtt_will_online_payload || *mqtt_will_online_payload == 0x00) {
|
|
_mqtt_will_online_payload = NULL;
|
|
} else {
|
|
_mqtt_will_online_payload = strdup(mqtt_will_online_payload);
|
|
}
|
|
|
|
if (!mqtt_will_offline_payload || *mqtt_will_offline_payload == 0x00) {
|
|
_mqtt_will_offline_payload = NULL;
|
|
} else {
|
|
_mqtt_will_offline_payload = strdup(mqtt_will_offline_payload);
|
|
}
|
|
}
|
|
|
|
// builds up a topic by prefixing the base and hostname
|
|
char * MyESP::_mqttTopic(const char * topic) {
|
|
char buffer[MQTT_MAX_TOPIC_SIZE] = {0};
|
|
|
|
strlcpy(buffer, _mqtt_base, sizeof(buffer));
|
|
strlcat(buffer, "/", sizeof(buffer));
|
|
strlcat(buffer, _app_hostname, sizeof(buffer));
|
|
strlcat(buffer, "/", sizeof(buffer));
|
|
strlcat(buffer, topic, sizeof(buffer));
|
|
|
|
if (_mqtt_topic) {
|
|
free(_mqtt_topic);
|
|
}
|
|
_mqtt_topic = strdup(buffer);
|
|
|
|
return _mqtt_topic;
|
|
}
|
|
|
|
// print contents of file
|
|
// assumes Serial is open
|
|
void MyESP::_fs_printConfig() {
|
|
myDebug_P(PSTR("[FS] Contents:"));
|
|
|
|
File configFile = SPIFFS.open(MYEMS_CONFIG_FILE, "r");
|
|
if (!configFile) {
|
|
myDebug_P(PSTR("[FS] Failed to read file for printing"));
|
|
return;
|
|
}
|
|
|
|
while (configFile.available()) {
|
|
SerialAndTelnet.print((char)configFile.read());
|
|
}
|
|
myDebug_P(PSTR("")); // newline
|
|
|
|
configFile.close();
|
|
}
|
|
|
|
// format File System
|
|
void MyESP::_fs_eraseConfig() {
|
|
myDebug_P(PSTR("[FS] Erasing all settings, please wait a few seconds. ESP will "
|
|
"automatically restart when finished."));
|
|
|
|
if (SPIFFS.remove(MYEMS_CONFIG_FILE)) {
|
|
delay(1000); // wait 1 second
|
|
SerialAndTelnet.flush();
|
|
resetESP(); // hard reset
|
|
}
|
|
}
|
|
|
|
// custom callback for web info
|
|
void MyESP::setWeb(web_callback_f callback_web) {
|
|
_web_callback = callback_web;
|
|
}
|
|
|
|
void MyESP::setSettings(fs_callback_f callback_fs, fs_settings_callback_f callback_settings_fs) {
|
|
_fs_callback = callback_fs;
|
|
_fs_settings_callback = callback_settings_fs;
|
|
}
|
|
|
|
// load from spiffs
|
|
bool MyESP::_fs_loadConfig() {
|
|
File configFile = SPIFFS.open(MYEMS_CONFIG_FILE, "r");
|
|
|
|
size_t size = configFile.size();
|
|
if (size > 1024) {
|
|
myDebug_P(PSTR("[FS] Config file size is too large"));
|
|
return false;
|
|
} else if (size == 0) {
|
|
return false;
|
|
}
|
|
|
|
StaticJsonDocument<SPIFFS_MAXSIZE> doc;
|
|
JsonObject json = doc.to<JsonObject>();
|
|
|
|
// Deserialize the JSON document
|
|
DeserializationError error = deserializeJson(doc, configFile);
|
|
if (error) {
|
|
myDebug_P(PSTR("[FS] Failed to read config file. Error %s"), error.c_str());
|
|
return false;
|
|
}
|
|
|
|
const char * value;
|
|
|
|
// fetch the standard system parameters
|
|
value = json["wifi_ssid"];
|
|
_wifi_ssid = (value) ? strdup(value) : NULL;
|
|
|
|
value = json["wifi_password"];
|
|
_wifi_password = (value) ? strdup(value) : NULL;
|
|
|
|
value = json["mqtt_host"];
|
|
_mqtt_host = (value) ? strdup(value) : NULL;
|
|
|
|
value = json["mqtt_username"];
|
|
_mqtt_username = (value) ? strdup(value) : NULL;
|
|
|
|
value = json["mqtt_password"];
|
|
_mqtt_password = (value) ? strdup(value) : NULL;
|
|
|
|
_serial = json["serial"] | _serial_default;
|
|
|
|
_heartbeat = (bool)json["heartbeat"]; // defaults to off
|
|
|
|
|
|
// callback for loading custom settings
|
|
// ok is false if there's a problem loading a custom setting (e.g. does not exist)
|
|
bool ok = (_fs_callback)(MYESP_FSACTION_LOAD, json);
|
|
|
|
configFile.close();
|
|
|
|
return ok;
|
|
}
|
|
|
|
// save settings to spiffs
|
|
bool MyESP::fs_saveConfig() {
|
|
bool ok = true;
|
|
|
|
// call any custom functions before handling SPIFFS
|
|
if (_ota_pre_callback) {
|
|
(_ota_pre_callback)();
|
|
}
|
|
|
|
StaticJsonDocument<SPIFFS_MAXSIZE> doc;
|
|
JsonObject json = doc.to<JsonObject>();
|
|
|
|
json["app_version"] = _app_version;
|
|
json["wifi_ssid"] = _wifi_ssid;
|
|
json["wifi_password"] = _wifi_password;
|
|
json["mqtt_host"] = _mqtt_host;
|
|
json["mqtt_username"] = _mqtt_username;
|
|
json["mqtt_password"] = _mqtt_password;
|
|
json["serial"] = _serial;
|
|
json["heartbeat"] = _heartbeat;
|
|
|
|
// callback for saving custom settings
|
|
(void)(_fs_callback)(MYESP_FSACTION_SAVE, json);
|
|
|
|
// if file exists, remove it just to be safe
|
|
if (SPIFFS.exists(MYEMS_CONFIG_FILE)) {
|
|
SPIFFS.remove(MYEMS_CONFIG_FILE);
|
|
}
|
|
|
|
// open for writing
|
|
File configFile = SPIFFS.open(MYEMS_CONFIG_FILE, "w");
|
|
if (!configFile) {
|
|
myDebug_P(PSTR("[FS] Failed to open config file for writing"));
|
|
return false;
|
|
}
|
|
|
|
// Serialize JSON to file
|
|
if (serializeJson(json, configFile) == 0) {
|
|
myDebug_P(PSTR("[FS] Failed to write config file"));
|
|
ok = false;
|
|
}
|
|
|
|
configFile.close();
|
|
|
|
// call any custom functions before handling SPIFFS
|
|
if (_ota_post_callback) {
|
|
(_ota_post_callback)();
|
|
}
|
|
|
|
return ok; // it worked
|
|
}
|
|
|
|
// init the SPIFF file system and load the config
|
|
// if it doesn't exist try and create it
|
|
void MyESP::_fs_setup() {
|
|
if (!SPIFFS.begin()) {
|
|
myDebug_P(PSTR("[FS] Failed to mount the file system. Erasing..."));
|
|
_fs_eraseConfig(); // fix for ESP32
|
|
return;
|
|
}
|
|
|
|
// if its flagged as a first install, re-create the initial config file and quit function
|
|
if (_firstInstall) {
|
|
myDebug_P(PSTR("[FS] Re-creating config file for initial install"));
|
|
fs_saveConfig();
|
|
return;
|
|
}
|
|
|
|
// load the config file. if it doesn't exist (function returns false) create it
|
|
if (!_fs_loadConfig()) {
|
|
myDebug_P(PSTR("[FS] Re-creating config file"));
|
|
fs_saveConfig();
|
|
_firstInstall = true; // flag as a first install
|
|
}
|
|
|
|
// assume if the wifi ssid is empty, its a fresh install too
|
|
if ((_wifi_ssid == NULL)) {
|
|
_firstInstall = true; // flag as a first install
|
|
}
|
|
|
|
// _fs_printConfig(); // enable for debugging
|
|
}
|
|
|
|
uint32_t MyESP::getSystemLoadAverage() {
|
|
return _load_average;
|
|
}
|
|
|
|
// calculate load average
|
|
void MyESP::_calculateLoad() {
|
|
static uint32_t last_loadcheck = 0;
|
|
static uint32_t load_counter_temp = 0;
|
|
load_counter_temp++;
|
|
|
|
if (millis() - last_loadcheck > LOADAVG_INTERVAL) {
|
|
static uint32_t load_counter = 0;
|
|
static uint32_t load_counter_max = 1;
|
|
|
|
load_counter = load_counter_temp;
|
|
load_counter_temp = 0;
|
|
if (load_counter > load_counter_max) {
|
|
load_counter_max = load_counter;
|
|
}
|
|
_load_average = 100 - (100 * load_counter / load_counter_max);
|
|
last_loadcheck = millis();
|
|
}
|
|
}
|
|
|
|
// returns true is MQTT is alive
|
|
bool MyESP::isMQTTConnected() {
|
|
return mqttClient.connected();
|
|
}
|
|
|
|
// return true if wifi is connected
|
|
bool MyESP::isWifiConnected() {
|
|
return (_wifi_connected);
|
|
}
|
|
|
|
/*
|
|
Return the quality (Received Signal Strength Indicator)
|
|
of the WiFi network.
|
|
Returns a number between 0 and 100 if WiFi is connected.
|
|
Returns -1 if WiFi is disconnected.
|
|
|
|
High quality: 90% ~= -55dBm
|
|
Medium quality: 50% ~= -75dBm
|
|
Low quality: 30% ~= -85dBm
|
|
Unusable quality: 8% ~= -96dBm
|
|
*/
|
|
int MyESP::getWifiQuality() {
|
|
if (WiFi.status() != WL_CONNECTED)
|
|
return -1;
|
|
int dBm = WiFi.RSSI();
|
|
if (dBm <= -100)
|
|
return 0;
|
|
if (dBm >= -50)
|
|
return 100;
|
|
return 2 * (dBm + 100);
|
|
}
|
|
|
|
#ifdef CRASH
|
|
/**
|
|
* Save crash information in EEPROM
|
|
* This function is called automatically if ESP8266 suffers an exception
|
|
* It should be kept quick / consise to be able to execute before hardware wdt may kick in
|
|
*/
|
|
extern "C" void custom_crash_callback(struct rst_info * rst_info, uint32_t stack_start, uint32_t stack_end) {
|
|
// write crash time to EEPROM
|
|
uint32_t crash_time = millis();
|
|
EEPROMr.put(SAVE_CRASH_EEPROM_OFFSET + SAVE_CRASH_CRASH_TIME, crash_time);
|
|
|
|
// write reset info to EEPROM
|
|
EEPROMr.write(SAVE_CRASH_EEPROM_OFFSET + SAVE_CRASH_RESTART_REASON, rst_info->reason);
|
|
EEPROMr.write(SAVE_CRASH_EEPROM_OFFSET + SAVE_CRASH_EXCEPTION_CAUSE, rst_info->exccause);
|
|
|
|
// write epc1, epc2, epc3, excvaddr and depc to EEPROM
|
|
EEPROMr.put(SAVE_CRASH_EEPROM_OFFSET + SAVE_CRASH_EPC1, rst_info->epc1);
|
|
EEPROMr.put(SAVE_CRASH_EEPROM_OFFSET + SAVE_CRASH_EPC2, rst_info->epc2);
|
|
EEPROMr.put(SAVE_CRASH_EEPROM_OFFSET + SAVE_CRASH_EPC3, rst_info->epc3);
|
|
EEPROMr.put(SAVE_CRASH_EEPROM_OFFSET + SAVE_CRASH_EXCVADDR, rst_info->excvaddr);
|
|
EEPROMr.put(SAVE_CRASH_EEPROM_OFFSET + SAVE_CRASH_DEPC, rst_info->depc);
|
|
|
|
// write stack start and end address to EEPROM
|
|
EEPROMr.put(SAVE_CRASH_EEPROM_OFFSET + SAVE_CRASH_STACK_START, stack_start);
|
|
EEPROMr.put(SAVE_CRASH_EEPROM_OFFSET + SAVE_CRASH_STACK_END, stack_end);
|
|
|
|
// write stack trace to EEPROM and avoid overwriting settings
|
|
int16_t current_address = SAVE_CRASH_EEPROM_OFFSET + SAVE_CRASH_STACK_TRACE;
|
|
for (uint32_t i = stack_start; i < stack_end; i++) {
|
|
byte * byteValue = (byte *)i;
|
|
EEPROMr.write(current_address++, *byteValue);
|
|
}
|
|
|
|
EEPROMr.commit();
|
|
}
|
|
|
|
/**
|
|
* Clears crash info
|
|
*/
|
|
void MyESP::crashClear() {
|
|
myDebug_P(PSTR("[CRASH] Clearing crash dump"));
|
|
uint32_t crash_time = 0xFFFFFFFF;
|
|
EEPROMr.put(SAVE_CRASH_EEPROM_OFFSET + SAVE_CRASH_CRASH_TIME, crash_time);
|
|
EEPROMr.commit();
|
|
}
|
|
|
|
/**
|
|
* Print out crash information that has been previously saved in EEPROM
|
|
* Copied from https://github.com/krzychb/EspSaveCrash
|
|
*/
|
|
void MyESP::crashDump() {
|
|
uint32_t crash_time;
|
|
EEPROMr.get(SAVE_CRASH_EEPROM_OFFSET + SAVE_CRASH_CRASH_TIME, crash_time);
|
|
if ((crash_time == 0) || (crash_time == 0xFFFFFFFF)) {
|
|
myDebug_P(PSTR("[CRASH] No crash data captured."));
|
|
return;
|
|
}
|
|
|
|
uint32_t t = crash_time / 1000; // convert to seconds
|
|
uint32_t d = t / 86400L;
|
|
uint32_t h = (t / 3600L) % 60;
|
|
uint32_t rem = t % 3600L;
|
|
uint8_t m = rem / 60;
|
|
uint8_t s = rem % 60;
|
|
myDebug_P(PSTR("[CRASH] Last crash was %d days %d hours %d minutes %d seconds since boot time"), d, h, m, s);
|
|
|
|
// get reason and exception
|
|
// https://www.espressif.com/sites/default/files/documentation/esp8266_reset_causes_and_common_fatal_exception_causes_en.pdf
|
|
char buffer[80] = {0};
|
|
char ss[16] = {0};
|
|
strlcpy(buffer, "[CRASH] Reason of restart: ", sizeof(buffer));
|
|
|
|
uint8_t reason = EEPROMr.read(SAVE_CRASH_EEPROM_OFFSET + SAVE_CRASH_RESTART_REASON);
|
|
switch (reason) {
|
|
case REASON_WDT_RST:
|
|
strlcat(buffer, "1 - Hardware WDT reset", sizeof(buffer));
|
|
break;
|
|
case REASON_EXCEPTION_RST:
|
|
strlcat(buffer, "2 - Fatal exception", sizeof(buffer));
|
|
break;
|
|
case REASON_SOFT_WDT_RST:
|
|
strlcat(buffer, "3 - Software watchdog reset", sizeof(buffer));
|
|
break;
|
|
case REASON_EXT_SYS_RST:
|
|
strlcat(buffer, "6 - Hardware reset", sizeof(buffer));
|
|
break;
|
|
case REASON_SOFT_RESTART:
|
|
strlcat(buffer, "4 - Software reset", sizeof(buffer));
|
|
break;
|
|
default:
|
|
strlcat(buffer, itoa(reason, ss, 10), sizeof(buffer));
|
|
}
|
|
myDebug(buffer);
|
|
|
|
// check for exception
|
|
// see https://github.com/esp8266/Arduino/blob/master/doc/exception_causes.rst
|
|
if (reason == REASON_EXCEPTION_RST) {
|
|
// get exception cause
|
|
uint8_t cause = EEPROMr.read(SAVE_CRASH_EEPROM_OFFSET + SAVE_CRASH_EXCEPTION_CAUSE);
|
|
strlcpy(buffer, "[CRASH] Exception cause: ", sizeof(buffer));
|
|
if (cause == 0) {
|
|
strlcat(buffer, "0 - IllegalInstructionCause", sizeof(buffer));
|
|
} else if (cause == 3) {
|
|
strlcat(buffer, "3 - LoadStoreErrorCause", sizeof(buffer));
|
|
} else if (cause == 6) {
|
|
strlcat(buffer, "6 - IntegerDivideByZeroCause", sizeof(buffer));
|
|
} else if (cause == 9) {
|
|
strlcat(buffer, "9 - LoadStoreAlignmentCause", sizeof(buffer));
|
|
} else {
|
|
strlcat(buffer, itoa(cause, ss, 10), sizeof(buffer));
|
|
}
|
|
}
|
|
myDebug(buffer);
|
|
|
|
uint32_t epc1, epc2, epc3, excvaddr, depc;
|
|
EEPROMr.get(SAVE_CRASH_EEPROM_OFFSET + SAVE_CRASH_EPC1, epc1);
|
|
EEPROMr.get(SAVE_CRASH_EEPROM_OFFSET + SAVE_CRASH_EPC2, epc2);
|
|
EEPROMr.get(SAVE_CRASH_EEPROM_OFFSET + SAVE_CRASH_EPC3, epc3);
|
|
EEPROMr.get(SAVE_CRASH_EEPROM_OFFSET + SAVE_CRASH_EXCVADDR, excvaddr);
|
|
EEPROMr.get(SAVE_CRASH_EEPROM_OFFSET + SAVE_CRASH_DEPC, depc);
|
|
|
|
myDebug_P(PSTR("[CRASH] epc1=0x%08x epc2=0x%08x epc3=0x%08x"), epc1, epc2, epc3);
|
|
myDebug_P(PSTR("[CRASH] excvaddr=0x%08x depc=0x%08x"), excvaddr, depc);
|
|
|
|
uint32_t stack_start, stack_end;
|
|
EEPROMr.get(SAVE_CRASH_EEPROM_OFFSET + SAVE_CRASH_STACK_START, stack_start);
|
|
EEPROMr.get(SAVE_CRASH_EEPROM_OFFSET + SAVE_CRASH_STACK_END, stack_end);
|
|
|
|
myDebug_P(PSTR("[CRASH] sp=0x%08x end=0x%08x"), stack_start, stack_end);
|
|
|
|
int16_t current_address = SAVE_CRASH_EEPROM_OFFSET + SAVE_CRASH_STACK_TRACE;
|
|
int16_t stack_len = stack_end - stack_start;
|
|
|
|
uint32_t stack_trace;
|
|
|
|
myDebug_P(PSTR(">>>stack>>>"));
|
|
|
|
for (int16_t i = 0; i < stack_len; i += 0x10) {
|
|
SerialAndTelnet.printf("%08x: ", stack_start + i);
|
|
for (byte j = 0; j < 4; j++) {
|
|
EEPROMr.get(current_address, stack_trace);
|
|
SerialAndTelnet.printf("%08x ", stack_trace);
|
|
current_address += 4;
|
|
}
|
|
SerialAndTelnet.println();
|
|
}
|
|
myDebug_P(PSTR("<<<stack<<<"));
|
|
myDebug_P(PSTR("\nTo clean this dump use the command: %scrash clear%s\n"), COLOR_BOLD_ON, COLOR_BOLD_OFF);
|
|
}
|
|
|
|
/*
|
|
* Force some crashes to test if stack collection and debugging works
|
|
*/
|
|
void MyESP::crashTest(uint8_t t) {
|
|
if (t == 1) {
|
|
myDebug_P(PSTR("[CRASH] Attempting to divide by zero ..."));
|
|
int result, zero;
|
|
zero = 0;
|
|
result = 1 / zero;
|
|
Serial.printf("Result = %d", result);
|
|
}
|
|
|
|
if (t == 2) {
|
|
myDebug_P(PSTR("[CRASH] Attempting to read through a pointer to no object ..."));
|
|
int * nullPointer;
|
|
nullPointer = NULL;
|
|
// null pointer dereference - read
|
|
// attempt to read a value through a null pointer
|
|
Serial.println(*nullPointer);
|
|
}
|
|
|
|
if (t == 3) {
|
|
myDebug_P(PSTR("[CRASH] Crashing with hardware WDT (%ld ms) ...\n"), millis());
|
|
ESP.wdtDisable();
|
|
while (true) {
|
|
// stay in an infinite loop doing nothing
|
|
// this way other process can not be executed
|
|
//
|
|
// Note:
|
|
// Hardware wdt kicks in if software wdt is unable to perfrom
|
|
// Nothing will be saved in EEPROM for the hardware wdt
|
|
}
|
|
}
|
|
|
|
if (t == 4) {
|
|
myDebug_P(PSTR("[CRASH] Crashing with software WDT (%ld ms) ...\n"), millis());
|
|
while (true) {
|
|
// stay in an infinite loop doing nothing
|
|
// this way other process can not be executed
|
|
}
|
|
}
|
|
}
|
|
|
|
#else
|
|
void MyESP::crashTest(uint8_t t) {
|
|
}
|
|
void MyESP::crashClear() {
|
|
}
|
|
void MyESP::crashDump() {
|
|
}
|
|
void MyESP::crashInfo() {
|
|
}
|
|
#endif
|
|
|
|
// default home web page
|
|
void MyESP::_webRootPage() {
|
|
char s[1000] = {0};
|
|
|
|
strlcpy(s, webCommonPage_start, sizeof(s));
|
|
strlcat(s, webCommonPage_start_refresh, sizeof(s));
|
|
strlcat(s, webCommonPage_start_body, sizeof(s));
|
|
|
|
strlcat(s, "<h1>", sizeof(s));
|
|
strlcat(s, _app_name, sizeof(s));
|
|
strlcat(s, " version ", sizeof(s));
|
|
strlcat(s, _app_version, sizeof(s));
|
|
strlcat(s, "</h1>", sizeof(s));
|
|
|
|
strlcat(s, "<p><b>System stats:</b><br>", sizeof(s));
|
|
strlcat(s, isMQTTConnected() ? " MQTT is connected\n" : " MQTT is disconnected\n", sizeof(s));
|
|
strlcat(s, "<br>", sizeof(s));
|
|
|
|
// uptime
|
|
char buffer[200];
|
|
uint32_t t = _getUptime(); // seconds
|
|
uint32_t d = t / 86400L;
|
|
uint32_t h = ((t % 86400L) / 3600L) % 60;
|
|
uint32_t rem = t % 3600L;
|
|
uint8_t m = rem / 60;
|
|
uint8_t sec = rem % 60;
|
|
sprintf(buffer, " System uptime: %d days %d hours %d minutes %d seconds<br>", d, h, m, sec);
|
|
strlcat(s, buffer, sizeof(s));
|
|
|
|
// memory
|
|
uint32_t total_memory = _getInitialFreeHeap();
|
|
uint32_t free_memory = ESP.getFreeHeap();
|
|
sprintf(buffer, " Memory: %d bytes free (%2u%%)<br>", free_memory, 100 * free_memory / total_memory);
|
|
strlcat(s, buffer, sizeof(s));
|
|
|
|
strlcat(s, "<p>", sizeof(s));
|
|
if (_web_callback) {
|
|
char custom[MYESP_MAXCHARBUFFER];
|
|
(_web_callback)(custom);
|
|
strlcat(s, custom, sizeof(s));
|
|
}
|
|
strlcat(s, "</p><br>", sizeof(s));
|
|
|
|
// check why we're here
|
|
if ((_firstInstall) || (_wifi_ssid == NULL)) {
|
|
strlcat(s, "<p>Looks like a first install! Go <a href=/reset>here</a> to connect the System to your network.</p>", sizeof(s));
|
|
} else {
|
|
strlcat(s, "<p>Go <a href=/reset>here</a> to connect the System to your wireless network.</p>", sizeof(s));
|
|
}
|
|
|
|
strlcat(s, webCommonPage_end, sizeof(s));
|
|
webServer.sendHeader("Content-Length", String(strlen(s)));
|
|
webServer.send(200, "text/html", s);
|
|
}
|
|
|
|
// Creates a webpage that allows the user to change the SSID and Password from the browser
|
|
void MyESP::_webResetPage() {
|
|
char s[1000] = {0};
|
|
|
|
strlcpy(s, webCommonPage_start, sizeof(s));
|
|
strlcat(s, webCommonPage_start_body, sizeof(s));
|
|
|
|
strlcat(s, "<h1>", sizeof(s));
|
|
strlcat(s, _app_name, sizeof(s));
|
|
strlcat(s, " version ", sizeof(s));
|
|
strlcat(s, _app_version, sizeof(s));
|
|
strlcat(s, "</h1>", sizeof(s));
|
|
|
|
// Check to see if we've been sent any arguments and instantly return if not
|
|
if (webServer.args() == 0) {
|
|
strlcat(s, "<p>", sizeof(s));
|
|
|
|
if (_wifi_ssid != NULL) {
|
|
strlcat(s, "Current wifi SSID is ", sizeof(s));
|
|
strlcat(s, _wifi_ssid, sizeof(s));
|
|
strlcat(s, ".<br>", sizeof(s));
|
|
}
|
|
|
|
strlcat(s, "<br>Please enter your new wifi credentials below.</p>", sizeof(s));
|
|
|
|
strlcat(s, webResetPage_form, sizeof(s));
|
|
strlcat(s, webCommonPage_end, sizeof(s));
|
|
webServer.sendHeader("Content-Length", String(strlen(s)));
|
|
webServer.send(200, "text/html", s);
|
|
|
|
} else {
|
|
// Create a string containing all the arguments
|
|
// Check to see if there are new values (also doubles to check the length of the new value is long enough)
|
|
if (webServer.arg("newssid").length() <= MAX_SSID_LEN) {
|
|
if (webServer.arg("newssid").length() == 0) {
|
|
_wifi_ssid = NULL;
|
|
} else {
|
|
_wifi_ssid = strdup(webServer.arg("newssid").c_str());
|
|
}
|
|
}
|
|
|
|
if (webServer.arg("newpassword").length() <= MAX_PWD_LEN) {
|
|
if (webServer.arg("newpassword").length() == 0) {
|
|
_wifi_password = NULL;
|
|
} else {
|
|
_wifi_password = strdup(webServer.arg("newpassword").c_str());
|
|
}
|
|
}
|
|
|
|
// Store the new settings
|
|
fs_saveConfig();
|
|
|
|
// Reply with a web page to indicate success or failure
|
|
strlcat(s, webResetPage_post, sizeof(s));
|
|
strlcat(s, webCommonPage_end, sizeof(s));
|
|
webServer.sendHeader("Content-Length", String(strlen(s)));
|
|
webServer.send(200, "text/html", s);
|
|
|
|
delay(500);
|
|
resetESP();
|
|
}
|
|
}
|
|
|
|
// reset all settings
|
|
void MyESP::_webResetAllPage() {
|
|
char s[1000] = {0};
|
|
|
|
strlcpy(s, webCommonPage_start, sizeof(s));
|
|
strlcat(s, webCommonPage_start_body, sizeof(s));
|
|
|
|
strlcat(s, "<h1>", sizeof(s));
|
|
strlcat(s, _app_name, sizeof(s));
|
|
strlcat(s, " version ", sizeof(s));
|
|
strlcat(s, _app_version, sizeof(s));
|
|
strlcat(s, "</h1>", sizeof(s));
|
|
|
|
// Check to see if we've been sent any arguments and instantly return if not
|
|
if (webServer.args() == 0) {
|
|
strlcat(s,
|
|
"<p>Are you absolutely sure you want to erase all settings?<br>Typing 'yes' will restart the System and you'll need to reconnect to the wifi "
|
|
"Access Point called ems-esp.</p>",
|
|
sizeof(s));
|
|
|
|
strlcat(s, webResetAllPage_form, sizeof(s));
|
|
strlcat(s, webCommonPage_end, sizeof(s));
|
|
webServer.sendHeader("Content-Length", String(strlen(s)));
|
|
webServer.send(200, "text/html", s);
|
|
} else {
|
|
// delete all settings
|
|
if (webServer.arg("confirm") == "yes") {
|
|
_fs_eraseConfig();
|
|
delay(1000); // wait 1 sec
|
|
resetESP();
|
|
}
|
|
}
|
|
}
|
|
|
|
// set up web server
|
|
void MyESP::_webserver_setup() {
|
|
webServer.on("/", [this]() { _webRootPage(); });
|
|
webServer.on("/reset", [this]() { _webResetPage(); });
|
|
webServer.on("/resetall", [this]() { _webResetAllPage(); });
|
|
|
|
webServer.begin();
|
|
|
|
myDebug_P(PSTR("[WEB] Web server started."));
|
|
}
|
|
|
|
// bootup sequence
|
|
// quickly flash LED until we get a Wifi connection, or AP established
|
|
// fast way is to use WRITE_PERI_REG(PERIPHS_GPIO_BASEADDR + (state ? 4 : 8), (1 << EMSESP_Status.led_gpio)); // 4 is on, 8 is off
|
|
void MyESP::_bootupSequence() {
|
|
uint8_t boot_status = getSystemBootStatus();
|
|
|
|
if ((boot_status == MYESP_BOOTSTATUS_BOOTED) || (millis() <= MYESP_BOOTUP_DELAY)) {
|
|
return; // already booted, or still starting up
|
|
}
|
|
|
|
// only kick in after a few seconds
|
|
if (boot_status == MYESP_BOOTSTATUS_POWERON) {
|
|
_setSystemBootStatus(MYESP_BOOTSTATUS_BOOTING);
|
|
}
|
|
|
|
static uint32_t last_bootupflash = 0;
|
|
|
|
// flash LED quickly
|
|
if ((millis() - last_bootupflash > MYESP_BOOTUP_FLASHDELAY)) {
|
|
last_bootupflash = millis();
|
|
int state = digitalRead(LED_BUILTIN);
|
|
digitalWrite(LED_BUILTIN, !state);
|
|
}
|
|
|
|
if (isWifiConnected()) {
|
|
_setSystemBootStatus(MYESP_BOOTSTATUS_BOOTED); // completed, reset flag
|
|
digitalWrite(LED_BUILTIN, LOW); // turn off LED
|
|
}
|
|
}
|
|
|
|
// setup MyESP
|
|
void MyESP::begin(const char * app_hostname, const char * app_name, const char * app_version) {
|
|
_app_hostname = strdup(app_hostname);
|
|
_app_name = strdup(app_name);
|
|
_app_version = strdup(app_version);
|
|
|
|
_telnet_setup(); // Telnet setup, called first to set Serial
|
|
|
|
// set up onboard LED
|
|
pinMode(LED_BUILTIN, OUTPUT);
|
|
digitalWrite(LED_BUILTIN, HIGH);
|
|
|
|
_getInitialFreeHeap(); // get initial free mem
|
|
_rtcmemSetup(); // rtc internal mem setup
|
|
|
|
if (getSystemBootStatus() == MYESP_BOOTSTATUS_RESETNEEDED) {
|
|
myDebug_P(PSTR("** resetting all settings"));
|
|
_firstInstall = true; // flag as an initial install so the config file will be recreated
|
|
}
|
|
|
|
_eeprom_setup(); // set up EEPROM for storing crash data, if compiled with -DCRASH
|
|
|
|
_fs_setup(); // SPIFFS setup, do this first to get values
|
|
_wifi_setup(); // WIFI setup
|
|
_ota_setup(); // init OTA
|
|
_webserver_setup(); // init web server
|
|
|
|
// print a welcome message
|
|
myDebug_P(PSTR("\n* %s version %s"), _app_name, _app_version);
|
|
SerialAndTelnet.flush();
|
|
|
|
_setSystemCheck(false); // reset system check
|
|
_heartbeatCheck(true); // force heartbeat
|
|
}
|
|
|
|
/*
|
|
* Loop. This is called as often as possible and it handles wifi, telnet, mqtt etc
|
|
*/
|
|
void MyESP::loop() {
|
|
jw.loop(); // WiFi
|
|
ArduinoOTA.handle(); // OTA
|
|
|
|
if (_ota_doing_update) {
|
|
return; // quit if in the middle of an update
|
|
}
|
|
|
|
_calculateLoad();
|
|
_systemCheckLoop();
|
|
_heartbeatCheck();
|
|
_bootupSequence();
|
|
webServer.handleClient(); // web server client requests
|
|
|
|
// if we're in AP mode, use the web server, otherwise switch to telnet
|
|
if (!isAPmode()) {
|
|
_telnetHandle();
|
|
}
|
|
|
|
_mqttConnect(); // MQTT
|
|
|
|
yield(); // ...and breath
|
|
}
|
|
|
|
MyESP myESP; // create instance
|